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Abstract

Recently, Bai proposed a block-counter-diagonal and a block-counter-triangular precon-

ditioning matrices to precondition the GMRES method for solving the structured system of

linear equations arising from the Galerkin finite-element discretizations of the distributed

control problems in (Computing 91 (2011) 379-395). He analyzed the spectral properties

and derived explicit expressions of the eigenvalues and eigenvectors of the preconditioned

matrices. By applying the special structures and properties of the eigenvector matrices of

the preconditioned matrices, we derive upper bounds for the 2-norm condition numbers

of the eigenvector matrices and give asymptotic convergence factors of the preconditioned

GMRES methods with the block-counter-diagonal and the block-counter-triangular pre-

conditioners. Experimental results show that the convergence analyses match well with

the numerical results.
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1. Introduction

Preconditioning technique as an efficient tool has been widely applied in Krylov subspace

methods for solving linear systems arising from discretizations of partial differential equations.

In [3], Bai considered using the preconditioned Krylov subspace methods to solve the linear

system emerging from the following distributed control problem

min
u,f

1

2
‖u− u∗‖22 + β‖f‖22, (1.1)

subject to −∇2u = f in Ω, (1.2)

with u = g on ∂Ω1 and
∂u

∂n
= g on ∂Ω2, (1.3)

where the domain Ω ⊂ R2 or R3 , ∂Ω1 and ∂Ω2 are distinct, ∂Ω1∪∂Ω2 = ∂Ω and ∂Ω1∩∂Ω2 = ∅,
u∗ is the known desired state. This problem was first introduced by Lions in [10]. We need to

find u which satisfies the PDE problem (1.1)-(1.3) and is as close to u∗ as possible in L2-norm

sense. A recent reference on this topic can be found in [9].

By adopting the discretize-then-optimize approach and employing the Galerkin finite ele-

ment method in the discretization, the PDE-constrained optimization problem (1.1)-(1.3) can

be transformed into a discrete analogue of the minimization problem. By applying the Lagrange
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multiplier technique to the minimization problem, we find that f and u can be defined by the

following linear system

Ax ≡





2βM 0 −M

0 M KT

−M K 0









f

u

λ



 =





0

b

d



 ≡ g, (1.4)

where M ∈ Rm×m is the symmetric positive definite mass matrix, K ∈ Rm×m is the symmetric

stiffness matrix (the discrete Laplacian), d ∈ Rm contains the terms coming from the boundary

values of the discrete solution, b ∈ Rm is the Galerkin projection of the desired state u∗ and

λ is a vector of Lagrange multipliers, see also [7]. (1.4) is a saddle point problem if we write

it in a 2-by-2 block form, see, for instance, [1, 2, 6]. Due to the finite element discretization,

M and K are very large and sparse, the matrix A is large and sparse, too. By making use

of the easiness of matrix-vector multiplications and linear computation in Krylov subspace

methods, many preconditioned Krylov subspace methods have been proposed for solving (1.4),

see, for instance, [3, 5, 8, 11–13]. Specifically, Bai applied the preconditioned GMRES method

to solve the system (1.4) in [3]. He introduced two efficient preconditioners PBCD and PBCT

to accelerate convergence rates of the GMRES method. PBCD is a block-counter-diagonal

preconditioner of form

PBCD =





0 0 −M

0 M 0

−M 0 0



 , (1.5)

and PBCT is a block-counter-triangular preconditioner of form

PBCT =





0 0 −M

0 M KT

−M K 0



 . (1.6)

It is clearly to see that the computation of PBCD or PBCT only requires to solve three lin-

ear sub-systems with the same coefficient matrix M , and does not need to solve any linear

sub-system with coefficient matrix K. Therefore, the implementations of the preconditioned

GMRES methods with these preconditioners for (1.4) are easy and effective.

In [3], the author also gave the spectral properties of the preconditioned matrices P−1

BCD
A

and P
−1

BCT
A.

Theorem 1.1. (Theorem 2.1 in [3]) Let A ∈ R3m×3m be the coefficient matrix of the saddle-

point problem (1.4) and PBCD ∈ R3m×3m be the block-counter-diagonal preconditioner of A

defined in (1.5). Assume that vl is an eigenvalue and x(l) ∈ Cm is the corresponding eigenvector

of the matrix M−1KM−1KT ∈ R
m×m, l = 1, . . . ,m, where vl > 0 (l = 1, . . . ,m). Then

1. the eigenvalues of the preconditioned matrix P
−1

BCD
A are

λ
(l)
k := 1− 3

√

2βvle
(2k+1)πı

3 , k = 0, 1, 2, l = 1, . . . ,m,

where ı denotes the imaginary unit;

2. the eigenvectors of the preconditioned matrix P
−1

BCD
A are





x(l)

0

0



 ,





0

−M−1KTx(l)

0



 and





0

0

x(l)



 , l = 1, . . . ,m.


