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Abstract. With the use of temporal derivative of flux function, a two-stage temporal
discretization has been recently proposed in the design of fourth-order schemes based
on the generalized Riemann problem (GRP) [21] and gas-kinetic scheme (GKS) [28].
In this paper, the fourth-order gas-kinetic scheme will be extended to solve the com-
pressible multicomponent flow equations, where the two-stage temporal discretization
and fifth-order WENO reconstruction will be used in the construction of the scheme.
Based on the simplified two-species BGK model [41], the coupled Euler equations for
individual species will be solved. Each component has its individual gas distribution
function and the equilibrium states for each component are coupled by the physical
requirements of total momentum and energy conservation in particle collisions. The
second-order flux function is used to achieve the fourth-order temporal accuracy, and
the robustness is as good as the second-order schemes. At the same time, the source
terms, such as the gravitational force and the chemical reaction, will be explicitly in-
cluded in the two-stage temporal discretization through their temporal derivatives.
Many numerical tests from the shock-bubble interaction to ZND detonative waves are
presented to validate the current approach.

AMS subject classifications: 76T10, 76P05, 76N15

Key words: Multicomponent flows, gas kinetic scheme, two-stage temporal discretization.

1 Introduction

The development of numerical methods for compressible multicomponent flows is im-
portant in computational fluid dynamics. Over the past decades, significant progresses
have been made for the computations of multicomponent flows which are associated
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with discontinuities and shock waves. One of the popular approaches is to solve an ex-
tended system in which additional equations are introduced to the original Euler equa-
tions in order to track different components. The additional equations can be the equa-
tions for the volume fraction, mass fraction, and ratio of specific heats of the mixture
[1, 6, 35]. In order to eliminate spurious oscillations and other computational inaccura-
cies in the conservative methods, some non-conservative approaches which capture the
contact discontinuities by making use of additional non-conservative governing equa-
tions were proposed [1, 2, 17, 27, 36]. Another approach is the sharp interface method.
Each fluid is solved separately on each side of the interface by the method designed for
a single-component flow. Interfaces between different fluids are captured by the level-
set method [30] or front tracking method [38, 39]. Boundary conditions at interface are
given by ghost-fluid method or application of exact Riemann solver at the interface [6,39].
Although interface can be resolved sharply, it is difficult to apply these methods to the
interfaces associated with complex geometry.

The gas-kinetic scheme has been developed systematically for the compressible flow
computations [42,43]. An evolution process from kinetic scale to hydrodynamic scale has
been constructed for the flux evaluation. The kinetic effect through particle free transport
contributes to the artificial dissipation for the capturing of shock waves, and the hydro-
dynamic effect plays a dominant role for the capturing of resolved viscous and heat con-
ducting solutions. In this sense, the gas-kinetic scheme is hybrid method of upwind and
central difference, but with a smooth transition between these two limits. Due to the cou-
pling of inviscid and viscous terms in the kinetic formulation, there is no fundamental
barrier for the finite volume gas-kinetic scheme to capture Navier-Stokes solutions with
structured or unstructured meshes. With the discretization in particle velocity space, a
unified gas-kinetic scheme has been developed for the transport process in the entire
flow regimes from rarefied to continuum ones [11, 26, 44]. Recently, with the incorpo-
ration of higher-order initial data reconstruction, a third-order gas-kinetic scheme has
been proposed in [22, 25, 29]. The flux evaluation is based on the time evolution solu-
tion of flow variables from initial piece-wise discontinuous polynomials around a cell
interface. However, based on the time accurate evolution solution from a general initial
condition for the flux function, the gas-kinetic scheme becomes complicated for its fur-
ther improvement of the order of the scheme, such as the construction of a fourth-order
flux function [24]. However, instead of developing one step time integration method, the
two-stage Lax-Wendroff time stepping method in [21] provides an alternative framework
to develop a fourth-order gas-kinetic scheme with a second-order flux function only [28].
In comparison with the formal one-stage time-stepping third-order gas-kinetic solver,
the fourth-order method not only reduces the complexity of the flux function, but also
improves the accuracy of the scheme, even though the third- and fourth-order schemes
have similar computation cost. Most importantly, the robustness of the fourth-order gas-
kinetic scheme is as good as the second-order one.

The BGK-based numerical methods for the multicomponent flow have also been pro-
posed in recent years. By incorporating a conservative γ-model [1] into the gas-kinetic


