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Abstract

For solving the stochastic differential equations driven by fractional Brownian motion,

we present the modified split-step theta method by combining truncated Euler-Maruyama

method with split-step theta method. For the problem under a locally Lipschitz condition

and a linear growth condition, we analyze the strong convergence and the exponential

stability of the proposed method. Moreover, for the stochastic delay differential equations

with locally Lipschitz drift condition and globally Lipschitz diffusion condition, we give the

order of convergence. Finally, numerical experiments are done to confirm the theoretical

conclusions.
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1. Introduction

Recently, stochastic differential equations (SDEs) have been employed to describe many

phenomena, such as finance [3], biomedical engineering [2, 12], water resources [16] and so on.

Here, we consider the SDE

{

dx(t) = Z
(

x(t)
)

dt+ T
(

x(t)
)

dB(t), t ∈ [0,̥],

x(0) = x0,
(1.1)

where Z (·) : Rm → Rm and T (·) : Rm → Rm×m are measurable functions, B(·) is an m-di-

mensional fractional Brownian motion (fBm) with the Hurst parameter H ∈ (1/2, 1) and the

initial value x0 ∈ Rm.

For most SDEs, it is always difficult to give the exact solutions. Thus, many scholars focus

their attention on the numerical solutions. In the last decade, great progress has been made

in the numerical analysis for SDEs driven by Brownian motion. The split-step theta (SST)

scheme in [10] preserved exponential mean square stability for autonomous and non-autonomous
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equations under suitable conditions. The truncated Euler-Maruyama (EM) method in [13] was

developed for solving SDEs with locally Lipschitz continuous coefficient. Later on, a series

of truncated methods were studied, such as the truncated Milstein method [6], the multilevel

Monte Carlo truncated EM method [7], the modified truncated EM method [11] and the full

implicit truncated EM method [19].

Compared with the Brownian motion, the lack of independent increments makes it difficult

to deal with the fBm. As far as we know, the investigations of numerical methods for SDEs

driven by fBm with locally Lipschitz coefficients have produced fewer results than those for

SDEs driven by Brownian motion. Recently, [8] applied backward Euler scheme to the CIR

problem driven by the fBm and obtained its strong convergence order. In [20], the authors

constructed the implicit Euler scheme for the SDEs driven by fBm with locally Lipschitz drift

and studied its strong convergence. To our best knowledge, there is few research on the SST

method and the truncated EM method for the SDEs with fBm so far. Here, we will combine

the SST method with the modified truncated EM method to provide a new modified split-step

theta (MSST) method for solving the SDEs the fBm.

We finish this section by presenting its structure of the paper. Section 2 is concerned with

some notations on the fBm and the Malliavin derivative, and give some necessary assumptions

for the SDE (1.1). In Section 3, we propose the MSST method for this problem and obtain

the convergence order. Section 4 analyzes the exponential stability in mean square of the

proposed method. Section 5 studies the strong convergence of MSST method for stochastic

delay differential equation (SDDE). Finally, the theoretical conclusions are demonstrated by

two numerical experiments.

2. Preliminaries

Denote by (Ω,Υ,P) a complete probability space, {Υt}t≥0 is increasing and continuous,

{Υ0} contains all P-null sets. Unless otherwise specified, we always use the symbols below. The

fBm has the continuous correction (see [1]), that is, for n ≥ 1,

E|B(w1)−B(w2)|n =
2

n
2

√
π
Γ

(

n+ 1

2

)

|w1 − w2|nH , ∀w1, w2 ∈ [0,̥]. (2.1)

Let L2
φ([0,̥]) be an Hilbert space,

φ(w1, w2) := H(2H − 1)|w1 − w2|2H−2

and u : [0,̥] → R be a measurable function. Denote the random variable F : Ω → R as

F = K(B(t1), B(t2), · · · , B(tn)), where K is a smooth function with all bounded derivatives

and 0 = t0 < t1 < · · · < tn = ̥. Define the Malliavin derivative (see [17])

D̟F :=

n
∑

i=1

∂K
∂xi

(

B(t1), B(t2), · · · , B(tn)
)

1[0,ti](̟), ̟ ∈ [0,̥].

The space D1,p is the completion of the set of all nonlinear functionals with

‖F‖D1,p :=
(

E[|F|p] + E[‖DF‖pφ]
)

1
p .

Denote by δ the adjoint operator of derivative operator D. If there is δ(G) ∈ L2
φ([0,̥]) such

that E [Fδ(G)] = E [〈G,DF〉φ] for any F ∈ D1,2, then G is integrable. Define the Skorohod

integral
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∫ ̥

0

G(t)δB(t) := δ(G),

which satisfies

E

(
∫ ̥

0

G(t)δB(t)

)

= 0.

Denote by
∫ ̥

0
G(t)dB(t) the pathwise integral, then

∫ ̥

0

G(t)dB(t) =

∫ ̥

0

G(t)δB(t) +

∫ ̥

0

∫ ̥

0

φ(t, s)DsG(t)dt ds.

Finally, for later analysis, we assume that the functions Z (x) and T (x) in (1.1) satisfy

locally Lipschitz continuous condition and linear growth condition.

Assumption 2.1. For any positive constant Λ and x, x̊ ∈ Rm with |x| ∨ |̊x| ≤ Λ, there is

a positive function L(Λ) such that

|Z (x) − Z (̊x)| ∨ |T (x) − T (̊x)| ≤ L(Λ)|x− x̊|.

Assumption 2.2. For any x, x̊ ∈ Rm, there is a positive constant K such that

〈x− x̊,Z (x)− Z (̊x)〉 ≤ K(1 + |x− x̊|2), (2.2)

|T (x) − T (̊x)|2 ≤ K(1 + |x− x̊|2). (2.3)

Remark 2.1. For any x ∈ Rm, there is a positive constant K depending on Z (0) and T (0)

such that 〈x,Z (x)〉 + |T (x)|2 ≤ K(1 + |x|2).

In view of (2.2) and (2.3), we can obtain

〈x,Z (x)〉 = 〈x,Z (x)− Z (0)〉+ 〈x,Z (0)〉 ≤ K + |Z (0)|2 +
(

K +
1

2

)

|x|2,

|T (x)|2 ≤ 2|T (x)− T (0)|2 + 2|T (0)|2 ≤ 2K + 2|T (0)|2 + 2K|x|2.

It is worth noticing that, when the coefficients in (1.1) satisfy the weaker assumptions

than Assumptions 2.1 and 2.2, the existence and boundedness of its exact solutions have been

proved in [4].

3. Strong Convergence

Firstly, we introduce the modified truncation functions in [11]. Let ∆t∗ be a positive number

which is sufficiently small, ω(∆t) : (0,∆t∗] → (0,∞) be a strictly decreasing function such that

L(ω(∆t)) ≥ 1 and

lim
∆t→0

ω(∆t) = ∞, lim
∆t→0

L4
(

ω(∆t)
)

·∆t = 0.

To simplify the notations, we write ω(∆t) as ω∆. Define the modified truncation functions

Z∆(x) =







Z (x), |x| ≤ ω∆,
|x|
ω∆

Z

(

ω∆
x

|x|

)

, |x| > ω∆,
(3.1)
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and

T∆(x) =







T (x), |x| ≤ ω∆,
|x|
ω∆

T

(

ω∆
x

|x|

)

, |x| > ω∆.
(3.2)

Due to [11, Remark 2.1], the way of defining the modified truncation functions is reasonable,

because such barrier functions always exist. It is worth noting that the above modified trunca-

tion functions are globally Lipschitz continuous. Moreover, for any ∆t ∈ (0,∆t∗], the modified

truncation functions satisfy the Assumption 2.2 and Remark 2.1.

Lemma 3.1. Under Assumption 2.2, for any x, x̊ ∈ Rm, there exists a positive constant K̂

such that

〈x− x̊,Z∆(x)− Z∆(̊x)〉 ≤ K̂(1 + |x− x̊|2), (3.3)

|T∆(x) − T∆(̊x)|2 ≤ K̂(1 + |x− x̊|2), (3.4)

〈x,Z∆(x)〉+ |T∆(x)|2 ≤ K̂(1 + |x|2). (3.5)

Proof. Since the truncation functions are globally Lipschitz continuous, the results (3.3)

and (3.4) are straightforward. Thus, we only need to prove (3.5).

If |x| ≤ ω∆, then Z∆(x) = Z (x) and T∆(x) = T (x). Then (3.5) holds.

When |x| > ω∆, according to (3.1) and (3.2), we know

Z∆(x) =
|x|
ω∆

Z

(

ω∆
x

|x|

)

, T∆(x) =
|x|
ω∆

T

(

ω∆
x

|x|

)

.

Under Assumption 2.2, we deduce that

〈x,Z∆(x)〉+ |T∆(x)|2 =
|x|2
ω2
∆

ω∆

〈

x

|x| ,Z
(

ω∆
x

|x|

)〉

+
|x|2
ω2
∆

∣

∣

∣

∣

T

(

ω∆
x

|x|

)∣

∣

∣

∣

2

≤ |x|2
ω2
∆

K

(

1 + ω2
∆

|x|2
|x|2

)

≤ K̂(1 + |x|2).

Thus, we complete the proof. �

Next, by replacing the coefficients Z (x) and T (x) with the modified truncation functions

Z∆(x) and T∆(x), we propose MSST method for the SDE (1.1). Let tn = n∆t with ∆t = ̥/N

and n = 0, 1, . . . , N . Denote the numerical solution of (1.1) by µn ≈ x(tn), then the MSST

method can be written as

Un = µn + θ∆tZ∆(Un), (3.6)

µn+1 = µn +∆tZ∆(Un) + T∆(Un)∆Bn, (3.7)

where θ ∈ [1/2, 1], µ0 = x0 and ∆Bn = B(tn+1)−B(tn).

To analyze the convergence of MSST method, we first consider the bounds of µn and Un.

In the following, we use C to stand for all the finite positive constants independent of ∆t, note

that they may be different, even though they appear in the same line.

Lemma 3.2. Under the Assumptions 2.1 and 2.2, for any 0 < ∆t ≤ ∆t∗ ≤ 1/(2θK̂) with

θ ∈ [1/2, 1] and p ≥ 1/H, it holds

E

[

sup
0<∆t≤∆t∗

sup
0≤n≤N

|Un|2p
]

∨ E

[

sup
0<∆t≤∆t∗

sup
0≤n≤N

|µn|2p
]

≤ C.
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Proof. From (3.6), due to Lemma 3.1, we can derive

|Un|2 = |µn|2 + θ2∆t2 |Z∆(Un)|2 + 2θ∆t 〈Un − θ∆tZ∆(Un),Z∆(Un)〉
≤ |µn|2 + 2θ∆t 〈Un,Z∆(Un)〉
≤ |µn|2 + 2θ∆tK̂(1 + |Un|2).

Let α = 1/(1− 2θ∆tK̂) and β = 2θ∆tK̂/(1− 2θ∆tK̂), then

|Un|2 ≤ α |µn|2 + β. (3.8)

From (3.7), we get

|µn+1|2 = |µn|2 +∆t2|Z∆(Un)|2 + |T∆(Un)|2 · |∆Bn|2 + 2 〈µn,∆tZ∆(Un)〉
+ 2 〈µn,T∆(Un)∆Bn〉+ 2 〈∆tZ∆(Un),T∆(Un)∆Bn〉 .

With the help of (3.6), we have

|µn+1|2 ≤ |µn|2 +∆t2|Z∆(Un)|2 + |T∆(Un)|2 · |∆Bn|2 + 2 〈Un − θ∆tZ∆(Un),∆tZ∆(Un)〉

+ 2 〈µn,T∆(Un)∆Bn〉+ 2

〈Un − µn

θ
,T∆(Un)∆Bn

〉

≤ |µn|2 + |T∆(Un)|2 · |∆Bn|2 + 2 〈Un,∆tZ∆(Un)〉+ 2 〈µn,T∆(Un)∆Bn〉

+
2

θ
〈Un,T∆(Un)∆Bn〉 −

2

θ
〈µn,T∆(Un)∆Bn〉 .

By using Lemma 3.1 and (3.8), we arrive at

|µn+1|2 ≤ |µn|2 + |T∆(Un)|2 · |∆Bn|2 + 2K̂∆t(1 + α|µn|2 + β)

+ 2

(

1− 1

θ

)

〈µn,T∆(Un)∆Bn〉+
2

θ
〈Un,T∆(Un)∆Bn〉

= |µn|2 + 2αK̂∆t|µn|2 + 2(1 + β)K̂∆t+ |T∆(Un)|2 · |∆Bn|2

+ 2

(

1− 1

θ

)

〈µn,T∆(Un)∆Bn〉+
2

θ
〈Un,T∆(Un)∆Bn〉 .

After simple calculations, we derive

|µn+1|2 ≤ |µ0|2 + 2αK̂∆t

n
∑

ℓ=0

|µℓ|2 + 2(1 + β)K̥̂+

n
∑

ℓ=0

|T∆(Uℓ)|2 · |∆Bℓ|2

+ 2

(

1− 1

θ

) n
∑

ℓ=0

〈µℓ,T∆(Uℓ)∆Bℓ〉+
2

θ

n
∑

ℓ=0

〈Uℓ,T∆(Uℓ)∆Bℓ〉 . (3.9)

Taking the p-th power on both sides of (3.9), we have

|µn|2p ≤ 6p−1

{

|µ0|2p + (2αK̂∆t)pnp−1
n−1
∑

ℓ=0

|µℓ|2p +
(

2(1 + β)K̥̂
)p

+ np−1
n−1
∑

ℓ=0

|T∆(Uℓ)|2p|∆Bℓ|2p + 2p
(

1

θ
− 1

)p ∣
∣

∣

∣

n−1
∑

ℓ=0

〈µℓ,T∆(Uℓ)∆Bℓ〉
∣

∣

∣

∣

p

+

(

2

θ

)p ∣
∣

∣

∣

n−1
∑

ℓ=0

〈Uℓ,T∆(Uℓ)∆Bℓ〉
∣

∣

∣

∣

p
}

.
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For 0 ≤ n ≤ κ with κ is an integer and κ ∈ [0, N), we get

E

[

max
0≤n≤κ

|µn|2p
]

≤ 6p−1

{

|µ0|2p + (2αK̂∆t)pκp−1
κ−1
∑

ℓ=0

E|µℓ|2p + (2(1 + β)K̥̂)p

+ κp−1
κ−1
∑

ℓ=0

E
[

|T∆(Uℓ)|2p · |∆Bℓ|2p
]

+ 2p
(

1− 1

θ

)p

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈µℓ,T∆(Uℓ)∆Bℓ〉
∣

∣

∣

∣

p
]

+

(

2

θ

)p

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈Uℓ,T∆(Uℓ)∆Bℓ〉
∣

∣

∣

∣

p
]}

. (3.10)

Due to the Hölder inequality, (2.1) and (3.8), we obtain

6p−1κp−1
κ−1
∑

ℓ=0

E
[

|T∆(Uℓ)|2p · |∆Bℓ|2p
]

≤ Cκp−1K̂p∆t2pH
κ−1
∑

ℓ=0

(

(1 + β)2p + α2p
E|µℓ|4p

)

. (3.11)

Using a similar way to consider other items of (3.10), we arrive at

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈µℓ,T∆(Uℓ)∆Bℓ〉
∣

∣

∣

∣

p
]

≤ CK̂
p
2 ∆tpH

κ−1
∑

ℓ=0

(

(1 + β)2p + (1 + α2p)E|µℓ|4p
)

, (3.12)

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈Uℓ,T∆(Uℓ)∆Bℓ〉
∣

∣

∣

∣

p
]

≤ CK̂
p
2 ∆tpH

κ−1
∑

ℓ=0

(

(1 + β)2p + β2p + 2α2p
E|µℓ|4p

)

. (3.13)

Substituting (3.11)-(3.13) into (3.10), we derive

E

[

max
0≤n≤κ

|µn|2p
]

≤ 6p−1|µ0|2p + C
(

(1 + β)K̥̂
)p

+ Cκp−1(1 + β)2pK̂p
̥

2pH−1

+ C

(

1

θ
− 1

)p

(1 + β)2pK̂
p
2̥

pH−1

+ Cθ−p
(

(1 + β)2p + β2p
)

K̂
p
2 ̥

pH−1

+ C(αK̂∆t)p
κ−1
∑

ℓ=0

E|µℓ|2p + Cα2pK̂p∆t2pH
κ−1
∑

ℓ=0

E|µℓ|4p

+ C

(

1

θ
− 1

)p

(1 + α2p)K̂
p
2∆tpH

κ−1
∑

ℓ=0

E|µℓ|4p

+ Cθ−pα2pK̂
p
2 ∆tpH

κ−1
∑

ℓ=0

E|µℓ|4p
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≤ C + (2αK̂∆t)p
κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|µi|2p
]

+ Cα2pK̂p∆t2pH
κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|µi|4p
]

+ C

(

1

θ
− 1

)p

(1 + α2p)K̂
p
2∆tpH

κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|µi|4p
]

+ Cθ−pα2pK̂
p
2 ∆tpH

κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|µi|4p
]

.

By applying the property of expectation and the Willett-Wong inequality (see [18, Theo-

rem 2.3.11]), there exists a positive constant C such that

E

[

sup
0≤∆t≤∆t∗

sup
0≤n≤N

|µn|2p
]

≤ C.

Furthermore, by combining with (3.8), we know that E[sup0≤∆t≤∆t∗ sup0≤n≤N |Un|2p] is also

bounded, which completes the proof. �

It is noted that the stochastic integral is a useful tool to simplify the way of dealing with

fBm. To analyze the error of the numerical solution, we introduce the continuous version of Un

and µn. Set

U(t) =
N−1
∑

n=0

1{tn≤t<tn+1}Un + 1{t=tN}UN , t ∈ [0,̥], (3.14)

µ̄(t) := µn + (t− tn)Z∆(Un) + T∆(Un)
(

B(t)−B(tn)
)

, t ∈ [tn, tn+1), (3.15)

which can be transformed into the integral form

µ̄(t) = µ0 +

∫ t

0

Z∆

(

U(s)
)

ds+

∫ t

0

T∆

(

U(s)
)

dB(s), t ∈ [tn, tn+1). (3.16)

Lemma 3.3. Under Assumptions 2.1 and 2.2, it holds

sup
0≤t≤̥

E
[

|µ̄(t)− U(t)|2
]

≤ CL2(ω∆)∆t
2H , ∀∆t ∈ (0,∆t∗]. (3.17)

Proof. For any fixed t ∈ (0,̥], denote by tn(t) the time node such that t ∈ (tn(t), tn(t)+1],

where n(t) is a positive integer and n(t) + 1 ≤ N . From (3.14)-(3.15), we get

µ̄(t)− U(t) = (t− tn(t))Z∆(Un(t)) + T∆(Un(t))
(

B(t)−B(tn(t))
)

.

With the help of (2.1), [11, Lemma 2.2], Cauchy inequality and Jensen inequality on expectation,

we can obtain

E
[

|µ̄(t)− U(t)|2
]

≤ 2∆t2E|Z∆(Un(t))|2 + 2E
(

|T∆(Un(t))|2 · |B(t)−B(tn(t))|2
)

≤ 2∆t2E
[

L(ω∆)|Un(t)|+ Z (0)
]2

+ 2∆t2H
√

E
[

L(ω∆)|Un(t)|+ T (0)
]4

≤ 2L2(ω∆)∆t
2
[

E|Un(t)|2 + |Z (0)|2
]

+ 2L2(ω∆)∆t
2H
√

E|Un(t)|4 + |T (0)|4.

Here, we get the above formula based on the fact that L(ω∆) ≥ 1. Furthermore, we get

sup
0≤t≤̥

E
[

|µ̄(t)− U(t)|2
]

≤ 2L2(ω∆)∆t
2
[

sup
0≤n(t)≤N

E|Un(t)|2 + |Z (0)|2
]

+ 2L2(ω∆)∆t
2H
√

sup
0≤n(t)≤N

E|Un(t)|4 + |T (0)|4.

Combining with the boundness of E[sup0≤n≤N |Un|2p], we can derive (3.17). �
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Lemma 3.4. Under Assumptions 2.1 and 2.2, we have

E

[

sup
0≤t≤̥

|µ̄(t)|2
]

≤ C. (3.18)

Proof. By using the notation n(t) in the proof of Lemma 3.3, from (3.6), we get

µ̄(t) = µn(t) + (t− tn(t))Z∆(Un(t)) + T∆(Un(t))
(

B(t)−B(tn(t))
)

= µn(t) + (t− tn(t))
Un(t) − µn(t)

θ∆t
+ T∆(Un(t))

(

B(t)−B(tn(t))
)

=

(

1− t− tn(t)

θ∆t

)

µn(t) +
t− tn(t)

θ∆t
Un(t) + T∆(Un(t))

(

B(t) −B(tn(t))
)

. (3.19)

Applying the supremum and taking expectation on two sides of (3.19), we arrive at

E

[

sup
0≤t≤̥

|µ̄(t)|2
]

≤ 3

{(

1 +
1

θ

)2

E

[

sup
0≤n(t)≤N

|µn(t)|2
]

+
1

θ2
E

[

sup
0≤n(t)≤N

|Un(t)|2
]

+ E

[

sup
0≤n(t)≤N

|T∆(Un(t))∆Bn(t)|2
]

}

. (3.20)

Here

E

[

sup
0≤n(t)≤N

|T∆(Un(t))∆Bn(t)|2
]

≤ E

[

sup
0≤n(t)≤N

|T∆(Un(t))|2 · |B(t) −B(tn(t))|2
]

≤ E

[

sup
0≤n(t)≤N

K̂(1 + |Un(t)|2)|B(t)−B(tn(t))|2
]

≤
N
∑

j=1

K̂
(

1 + sup
0≤j≤N

E|Uj |4
)

∆t2H ≤ C.

Recalling the conclusion in Lemma 3.2, the boundedness of all items on the right-hand of (3.20)

guarantees the desired result (3.18). �

To analyze the convergence of the MSST method, we introduce

ϕΛ := inf{t ≥ 0 : |x(t)| ≥ Λ},
̺Λ := inf{t ≥ 0 : |µ̄(t)| ≥ Λ or |U(t)| ≥ Λ},
ζΛ := ϕΛ ∧ ̺Λ, r(t) := µ̄(t)− x(t).

Theorem 3.1. Under the Assumptions 2.1 and 2.2, for any q ≥ 2, ∆t ∈ (0,∆t∗] and Λ ≤ ω∆,

we have

E|r(t ∧ ζΛ)|q ≤ CL2q(ω∆)∆t
qH . (3.21)

Proof. Use the Itô formula (see [15, p. 184]) first, then we apply the relationship between

the pathwise integral and Skorohod integral with respect to fBm. For ζ < t ∧ ζΛ, it holds

E|r(t ∧ ζΛ)|q = qE

∫ t∧ζΛ

0

|r(s)|q−2
〈

r(s),Z∆

(

U(s)
)

− Z
(

x(s)
)〉

ds

+ qE

∫ t∧ζΛ

0

|r(s)|q−2
〈

r(s),T∆

(

U(s)
)

− T
(

x(s)
)〉

δB(s)

+ qE

∫ t∧ζΛ

0

∫ t∧ζΛ

0

Dζ

{

|r(s)|q−2
〈

r(s),T∆

(

U(s)
)

− T
(

x(s)
)〉

}

φ(ζ, s)dζ ds.
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Since the expectation of Skorohod integral equals to zero, then

E|r(t ∧ ζΛ)|q = qE

∫ t∧ζΛ

0

|r(s)|q−2
〈

r(s),Z∆

(

U(s)
)

− Z
(

x(s)
)〉

ds

+ qE

∫ t∧ζΛ

0

∫ t∧ζΛ

0

Dζ

{

|r(s)|q−2
〈

r(s),T∆

(

U(s)
)

− T
(

x(s)
)〉

}

φ(ζ, s)dζ ds.

According to the definition of the modified truncation function, it is obvious that when

0 ≤ s ≤ t ∧ ζΛ, we have |U(t)| ≤ Λ ≤ ω∆. To deal with the Malliavin derivative, it is necessary

to impose the coercive assumption similar to [9]. Here, for any continuous function ̺(x), we

suppose there exist two constants α1 > 0, β1 > 0 such that |Dζ̺(x)| ≤ α1|̺(x)| + β1. In view

of r(s) = µ̄(s)− U(s) + U(s)− x(s), we derive

E|r(t ∧ ζΛ)|q ≤ qE

∫ t∧ζΛ

0

|r(s)|q−2
〈

U(s)− x(s),Z
(

U(s)
)

− Z
(

x(s)
)〉

ds

+ qE

∫ t∧ζΛ

0

|r(s)|q−2
〈

µ̄(s)− U(s),Z
(

U(s)
)

− Z
(

x(s)
)〉

ds+ qβ1̥
2H

+ α1qE

∫ t∧ζΛ

0

∫ t∧ζΛ

0

|r(s)|q−2
〈

µ̄(s)− x(s),T
(

U(s)
)

− T
(

x(s)
)〉

φ(ζ, s)dζ ds.

Due to Assumption 2.2 and Cauchy inequality, we can arrive at

E|r(t ∧ ζΛ)|q ≤ qKE

∫ t∧ζΛ

0

|r(s)|q−2
(

1 + |U(s)− x(s)|2
)

ds

+ 4qL(ω∆)E

∫ t∧ζΛ

0

|r(s)|q−2|U(s)− x(s)| · |µ̄(s)− U(s)|ds

+ qα1E

∫ t∧ζΛ

0

∫ t∧ζΛ

0

|r(s)|qφ(ζ, s)dζ ds

+ qα1KE

∫ t∧ζΛ

0

∫ t∧ζΛ

0

|r(s)|q−2
(

1 + |U(s) − x(s)|2
)

φ(ζ, s)dζ ds+ qβ1̥
2H

≤ (1 + α1̥
2H−1)qKE

∫ t∧ζΛ

0

|r(s)|q−2ds+ (1 + α1̥
2H−1)qKE

∫ t∧ζΛ

0

|r(s)|qds

+ (1 + α1̥
2H−1)qKE

∫ t∧ζΛ

0

|r(s)|q−2|µ̄(s)− U(s)|2ds

+ qα1̥
2H−1

E

∫ t∧ζΛ

0

|r(s)|qds+ qβ1̥
2H−1

+ 4qL(ω∆)E

∫ t∧ζΛ

0

|r(s)|q−2|U(s)− x(s)| · |µ̄(s)− U(s)|ds.

With the help of Young inequality, we get

E|r(t ∧ ζΛ)|q ≤ (1 + α1̥
2H−1)(q − 2)KE

∫ t∧ζΛ

0

|r(s)|qds+ 2(1 + α1̥
2H−1)K̥

+ qβ1̥
2H−1 + (1 + α1̥

2H−1)qKE

∫ t∧ζΛ

0

|r(s)|qds

+ (1 + α1̥
2H−1)(q − 2)KE

∫ t∧ζΛ

0

|r(s)|qds
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+ 2(1 + α1̥
2H−1)KE

∫ t∧ζΛ

0

|µ̄(s)− U(s)|qds

+ qα1̥
2H−1

E

∫ t∧ζΛ

0

|r(s)|qds+ (q − 2)E

∫ t∧ζΛ

0

|r(s)|qds

+ 2
(

4L(ω∆)
)

q
2E

∫ t∧ζΛ

0

|U(s)− x(s)| q2 |µ̄(s)− U(s)| q2 ds.

Then, by using

|U(s)− x(s)| q2 ≤ 2
q
2

(

|U(s)− µ̄(s)| q2 + |µ̄(s)− x(s)| q2
)

,

we arrive at

E|r(t ∧ ζΛ)|q ≤ CE

∫ t∧ζΛ

0

|r(s)|qds+ C
(

Lq(ω∆) + L
q
2 (ω∆)

)

E

∫ t∧ζΛ

0

|µ̄(s)− U(s)|qds

+ 2(1 + α1̥
2H−1)K̥+ qβ1̥

2H−1

≤ CE

∫ t∧ζΛ

0

|r(s)|qds+ CL2q(ω∆)∆t
qH .

Applying the Grönwall inequality, we derive (3.21). �

Now, we are in the position to give the convergence order of MSST method at the terminal

time ̥.

Theorem 3.2. Under Assumptions 2.1 and 2.2, if there exist p > q ≥ 2, ∆t ∈ (0,∆t∗] such

that

L− pq
p−q (ω∆)∆t

− pqH

2(p−q) ≤ ω∆,

then E|r(̥)|q ≤ CL2q(ω∆)∆t
qH .

Proof. With the help of Young inequality, for any δ > 0 and p > q ≥ 2, the q-th moment of

the error for MSST method (3.6)-(3.7) at ̥ satisfies

E (|r(̥)|q) ≤ E
(

|r(̥)|q1{ζΛ>̥}

)

+ E
(

|r(̥)|q1{ζΛ≤̥}

)

≤ E
(

|r(̥)|q1{ζΛ>̥}

)

+
qδ

p
E|r(̥)|p + p− q

pδq/(p−q)
P(ζΛ ≤ ̥). (3.22)

Applying the Cauchy inequality to |r(̥)|p, by using Lemma 3.4 and the boundness of the

moment of x(̥), we obtain

E|r(̥)|p ≤ CE|µ̄(̥)|p + CE|x(̥)|p ≤ C.

According to the definition of ζΛ,

P(ζΛ ≤ ̥) ≤ P(ϕΛ ≤ ̥) + P(̺Λ ≤ ̥).

Since P(̺Λ ≤ ̥) ≤ C/Λ2 and P(ϕΛ ≤ ̥) ≤ C/Λ2, (3.22) can be rewritten as

E|r(̥)|q ≤ E (|r(̥ ∧ ζΛ)|q) +
Cqδ

p
+

C(p− q)

pΛ2δq/(p−q)
.

If we choose

δ = L2q(ω∆)∆t
qH , Λ =

(

Lq(ω∆)∆t
(qH)

2

)− p
p−q

,



Modified Split-Step Method for SDEs Driven by FBM 11

then

E|r(̥)|q ≤ E (|r(̥ ∧ ζΛ)|q) +
CqL2q(ω∆)∆t

qH

p

+
C(p− q)

p(L2q(ω∆)∆tqH)
−p/(p−q)

(L2q(ω∆)∆tqH )
q/(p−q)

.

Due to Theorem 3.1, we derive

E|r(̥)|q ≤ E (|r(̥ ∧ ζR)|q) + CL2q(ω∆)∆t
qH ≤ CL2q(ω∆)∆t

qH .

The proof is complete. �

4. Exponential Stability

Here, we consider the exponential stability of MSST method for SDE (1.1). Here, we select

∆t > 0 as an arbitrary fixed stepsize, tn = n∆t.

Definition 4.1 ([14, Definition 2.3]). Let p > 0, for a given ∆t > 0, a numerical solution

is said to be exponential stable in the p-th moment for the SDE (1.1) with the initial value

x0 ∈ Rm, if there exist positive constants ̺1 and λ1 such that

E|µn|p ≤ ̺1|x0|pr−λ1tn .

To analyze the exponential stability of MSST method, we need the following condition.

Assumption 4.1. There exist positive constants K1 and K2 such that for any x ∈ Rm, Z (x)

and T (x) satisfy 〈x,Z (x)〉 ≤ −K1|x|2 and |x| · |T (x)∆B| + |T (x)∆B|2 ≤ K2|x|2, where

∆B = B(t1)−B(t2), ∀t1, t2 ∈ [0,̥], K1 and K2 satisfy

2(1− θ)∆tK1 −
(

3 + (1− θ)∆t
)

K2 > 16(1− θ)∆tL2(ω∆) + 16∆t2L2(ω∆).

Theorem 4.1. Let the coefficients Z (x), T (x) satisfy Assumptions 2.1, 2.2 and 4.1. Then

the MSST method (3.6), (3.7) is exponential stable in mean square.

Proof. Squaring on both sides of (3.7) yields

|µn+1|2 = |µn|2 +∆t2|Z∆(Un)|2 + |T∆(Un)∆Bn|2 + 2∆t 〈µn,Z∆(Un)〉
+ 2 〈µn,T∆(Un)∆Bn〉+ 2∆t 〈Z∆(Un),T∆(Un)∆Bn〉 .

Because of µn = Un − θ∆tZ∆(Un), then

|µn+1|2 ≤ |µn|2 +∆t2|Z∆(Un)|2 + |T∆(Un)∆Bn|2 − 2∆t 〈Un,Z∆(Un〉
+ 2|Un| |T∆(Un)∆Bn|+ (1 − θ)∆t|Z∆(Un)|2 + (1− θ)∆t|T∆(Un)∆Bn|2.

Under Assumption 4.1, we arrive at

E|µn+1|2 ≤ E|µn|2 + 16∆t2L2(ω∆)E|Un|2 − 2K1∆tE|Un|2

+
(

3 + (1 − θ)∆t
)

K2E|Un|2 + 16(1− θ)∆tL2(ω∆)E|Un|2. (4.1)
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By squaring on both sides of (3.6), in view of the Assumption 4.1, we have

|Un|2 ≤ 〈Un, µn〉 − θK1∆
|Un|2
2

+
|µn|2
2

− θK1∆t|Un|2.

Thus, we can obtain |Un|2 ≤ α−1
2 |µn|2, where α2 = 1+ 2θK1∆t. Inserting it into (4.1) leads to

α2E|µn+1|2 ≤
[

α2 + 16∆t2L2(ω∆) +
(

3 + (1− θ)∆t
)

K2

+ 16(1− θ)∆tL2(ω∆)− 2K1∆t
]

E|µn|2.

Multiplying η(n+1)∆t with a constant η > 1 on both sides leads to

α2η
(n+1)∆t

E|µn+1|2 − α2η
n∆t

E|µn|2

≤
[(

α2 + 16∆t2L2(ω∆) +
(

3 + (1− θ)∆t
)

K2

+ 16(1− θ)∆tL2(ω∆)− 2K1∆t
)

η∆t − 1
]

ηn∆t
E|µn|2.

Choose λ1 such that

0 < λ1 ≤ 1

∆t
ln
(

1+2θK1∆t+16∆t2L2(ω∆)+
(

3+(1−θ)∆t
)

K2+16(1−θ)∆tL2(ω∆)−2K1∆t
)−1

,

and η = eλ1 , then

(1 + 2θK1∆t)r
λ1(n+1)∆t

E|µn+1|2

≤ (1 + 2θK1∆t)|x0|2 +
[(

1 + 2θK1∆t+ 16∆t2L2(ω∆) +
(

3 + (1− θ)∆t
)

K2

+ 16(1− θ)∆tL2(ω∆)− 2K1∆t
)

rλ1∆t − 1
]

n
∑

ℓ=0

rλ1ℓ∆t
E|µℓ|2.

Thus, there is a positive constant ̺1 such that rλ1tn+1E|µn+1|2 ≤ ̺1|x0|2, which completes the

proof. �

5. SDE with a Delay Term

Consider the SDDE

{

dy(t) = F
(

y(t)
)

dt+ G
(

y(t), y(t− τ)
)

dB(t), t ∈ [0,̥],

y(t) = ξ(t), t ∈ [−τ, 0],
(5.1)

where τ > 0, F : Rm → Rm and G : Rm × Rm → Rm×m are measurable functions, B(·) is

an m-dimensional fBm with H ∈ (1/2, 1), ξ : [−τ, 0] → Rm is Υ0 measurable function satisfying

sup−τ≤t≤0 E|ξ(t)|2 ≤ M with M being a positive constant. The existence and boundedness of

its exact solutions are given in [5]. To study the strong convergence of the MSST method for

the problem (5.1), we first give the following assumptions.

Assumption 5.1. For any positive constant Λ, there is a positive function L(Λ) with respect

to Λ such that for any y, ẙ ∈ Rm, |y| ∨ |̊y| ≤ Λ, F (·) satisfies

|F (y) − F (̊y)| ≤ L(Λ)|y − ẙ|.
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Assumption 5.2. There is a positive constant K such that, for any y, ẙ ∈ Rm, F (·) satisfies

〈y − ẙ,F (y)− F (̊y)〉 ≤ K(1 + |y − ẙ|2).

Remark 5.1. There is a positive constant K with respect to F (0), such that for any y ∈ Rm,

〈y,F (y)〉 ≤ K(1 + |y|2).

Define F∆(y) by the similar way as (3.1) and (3.2), that is

F∆(y) =







F (y), |y| ≤ ω∆,
|y|
ω∆

F

(

ω∆
y

|y|

)

, |y| > ω∆.

It is obvious that the modified truncation function F∆(y) is globally Lipschitz continuous. In

addition, for any ∆t ∈ (0,∆t∗], F∆(·) satisfies Assumption 5.2 and Remark 5.1. Then, we give

the following conclusion.

Lemma 5.1. Under Assumption 5.2, for any y, ẙ ∈ Rm, ∆t ∈ (0,∆t∗], there is a positive

constant K̂ such that

〈y − ẙ,F∆(y)− F∆(̊y)〉 ≤ K̂(1 + |y − ẙ|2), 〈y,F∆(y)〉 ≤ K̂(1 + |y|2).

For the coefficient G (·, ·), we assume it satisfies the globally Lipschitz continuous condition

and the polynomial growth condition.

Assumption 5.3. For any λ ∈ (0, 1], y, ẙ, z, z̊ ∈ Rm with t ∈ [0,̥], there exist two positive

constants M0 and K0 such that

|G (y, z)− G (̊y, z̊)| ≤M0(|y − ẙ|+ |z − z̊|),
|G (y, z)|2 ≤ K0(1 + |y|2λ + |z|2λ).

Here, we suppose that there is m ∈ Z such that τ = m∆t. Applying the MSST method to

SDDE (5.1), we obtain the numerical scheme

Ψn = Ψn + θ∆tF∆(Ψn), (5.2)

ψn+1 = Ψn +∆tF∆(Ψn) + G (Ψn,Ψn−m)∆Bn, (5.3)

where Ψn = ξ(n∆t) for n = −m,−m+ 1, . . . , 0 and ψn is the numerical solution, ψ0 = ξ(0).

To analyze the convergence of MSST method for the SDDE (5.1), we give the following

bounds for ψn and Ψn.

Lemma 5.2. Under the Assumptions 5.1-5.3, for any 0 < ∆t ≤ ∆t∗ ≤ 1/(2θK̂), θ ∈ [1/2, 1]

and p ≥ 1/H, the following moment property holds:

E

[

sup
0<∆t≤∆t∗

sup
0≤n≤N

|Ψn|2p
]

∨ E

[

sup
0<∆t≤∆t∗

sup
0≤n≤N

|ψn|2p
]

≤ C. (5.4)
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Proof. Similar to (3.8), we have |Ψn|2 ≤ α|ψn|2 + β. By squaring on both sides of (5.3),

inserting F∆(Ψn) = (Ψn − ψn)/(θ∆t) and applying Lemma 5.1, we derive

|ψn|2 ≤ |ψ0|2 + 2αK̂∆t
n−1
∑

ℓ=0

E|ψℓ|2 + 2(1 + β)K̥̂

+
n−1
∑

ℓ=0

E
[

|G (Ψℓ,Ψℓ−m)|2 · |∆Bℓ|2
]

+ 2

(

1

θ
− 1

)

E

[

∣

∣

∣

∣

n−1
∑

ℓ=0

〈ψℓ,G (Ψℓ,Ψℓ−m)∆Bℓ〉
∣

∣

∣

∣

]

+
2

θ
E

[

∣

∣

∣

∣

n−1
∑

ℓ=0

〈Ψℓ,G (Ψℓ,Ψℓ−m)∆Bℓ〉
∣

∣

∣

∣

]

.

For 0 ≤ n ≤ κ with κ is an integer and κ ∈ [0, N), by taking the p-th power and the mathe-

matical expectation on both sides, we have

E

[

max
0≤n≤κ

|ψn|2p
]

≤ 6p−1

{

|ψ0|2p + (2αK̂∆t)pκp−1
κ−1
∑

ℓ=0

E|ψℓ|2p +
(

2(1 + β)K̥̂
)p

+ κp−1
κ−1
∑

ℓ=0

E
[

|G (Ψℓ,Ψℓ−m)|2p · |∆Bℓ|2p
]

+ 2p
(

1

θ
− 1

)p

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈ψℓ,G (Ψℓ,Ψℓ−m)∆Bℓ〉
∣

∣

∣

∣

p
]

+

(

2

θ

)p

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈Ψℓ,G (Ψℓ,Ψℓ−m)∆Bℓ〉
∣

∣

∣

∣

p
]}

. (5.5)

Similar to (3.11)-(3.13), we get

κ−1
∑

ℓ=0

E
[

|G (Ψℓ,Ψℓ−m)|2p · |∆Bℓ|2p
]

≤ CKp
0∆t

2pH
κ−1
∑

ℓ=0

(

1 +M2λp + β2λp + α2λp
E|ψℓ|4λp

)

,

and

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈ψℓ,G (Ψℓ,Ψℓ−m)∆Bℓ〉
∣

∣

∣

∣

p
]

≤ CK
p
2
0 ∆tpH

κ−1
∑

ℓ=0

(

1 +M2λp + β2λp + E|ψℓ|4p + α2λp
E|ψℓ|4λp

)

,

E

[

max
0≤n≤κ

∣

∣

∣

∣

n−1
∑

ℓ=0

〈Ψℓ,G (Ψℓ,Ψℓ−m)∆Bℓ〉
∣

∣

∣

∣

p
]

≤ CK
p
2
0 ∆tpH

n−1
∑

ℓ=0

(

1 +M2λp + β2p + β2λp + α2p
E|ψℓ|4p + α2λp

E|ψℓ|4λp
)

.
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We insert the above three inequalities into (5.5), then

E

[

max
0≤n≤κ

|ψn|2p
]

≤ 6p−1|ψ0|2p + C
(

(1 + β)K̥̂
)p

+ CKp
0

(

1 +M2λ + β2λ
)

̥
2pH−2

+ C

(

1

θ
− 1

)p

K
p
2
0

(

1 +M2λp + β2λp
)

̥
pH−1

+ Cθ−pK
p
2
0

(

1 +M2λp + β2p
)

̥
pH−1 + C(αK̂∆t)p

κ−1
∑

ℓ=0

E|ψℓ|2p

+ Cα2λKp
0∆t

2pH
κ−1
∑

ℓ=0

E|ψℓ|4λp

+ C

(

1

θ
− 1

)p

K
p
2
0 ∆tpH

κ−1
∑

ℓ=0

(

E|ψℓ|4p + α2λ
E|ψℓ|4λp

)

+ Cθ−pK
p
2
0 ∆tpH

κ−1
∑

ℓ=0

(

α2p
E|ψℓ|4p + α2λp

E|ψℓ|4λp
)

≤ C + C(αK̂∆t)p
κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|ψi|2p
]

+ Cα2λKp
0∆t

2pH
κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|ψi|4p
]

+ C(1 + α2λ)

(

1

θ
− 1

)p

K
p
2
0 ∆tpH

κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|ψi|4p
]

+ C(α2p + α2λp)θ−pK
p
2
0 ∆tpH

κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|ψi|4p
]

≤ C + C∆tp
κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|ψi|2p
]

+ C
(

∆tpH +∆t2pH
)

κ−1
∑

ℓ=0

E

[

max
0≤i≤ℓ

|ψi|4p
]

.

Using the property of expectation and Willett-Wong inequality again, we deduce that

E

[

sup
0≤∆t≤∆t∗

sup
0≤n≤N

|ψn|2p
]

≤ C.

Due to |Ψn|2 ≤ α|ψn|2 + β, we can obtain that

E

[

sup
0≤∆t≤∆t∗

sup
0≤n≤N

|Ψn|2p
]

≤ C.

The proof is complete. �

Denote

Ψ(t) :=

N−1
∑

n=0

1{tn≤t<tn+1}Ψn + 1{t=tN}ΨN ,

ψ̄(t) :=

N−1
∑

n=0

1{tn≤t<tn+1}ψn + 1{t=tN}ψN ,

where Ψ(t) = ξ(t) for t ∈ [−τ, 0]. Then

ψ̄(t) = ψ0 +

∫ t

0

F∆

(

Ψ(s)
)

ds+

∫ t

0

G
(

Ψ(s),Ψ(s− τ)
)

dB(s), t ∈ [tn, tn+1).
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Lemma 5.3. Under Assumptions 5.1-5.3, it holds

sup
0≤t≤̥

E
[

|ψ̄(t)−Ψ(t)|2
]

≤ CL2(ω∆)∆t
2H . (5.6)

Proof. It is similar to Lemma 3.3, so we omit it here. �

Lemma 5.4. Under the Assumptions 5.1-5.3, we have

E

[

sup
0≤t≤̥

|ψ̄(t)|2
]

≤ C. (5.7)

Proof. By using a similar process as (3.19) to deal with ψ̄(t), we can obtain

ψ̄(t)|2 ≤ 3

{

(

1 +
1

θ

)2

|ψn(t)|2 +
1

θ2
|Ψn(t)|2 +

∣

∣G∆(Ψn(t),Ψn(t)−m)∆Bn(t)

∣

∣

2

}

.

Here, the last item satisfies

E

[

sup
0≤n(t)≤N

∣

∣G∆(Ψn(t),Ψn(t)−m)∆Bn(t)

∣

∣

2
]

≤ E

[

sup
0≤n(t)≤N

K2
0

(

1 + |Ψn(t)|2λ + |Ψn(t)−m|2λ
)∣

∣B(t)−B(tn(t))
∣

∣

2
]

≤
N
∑

j=1

CK0

(

1 +M2λ + sup
0≤j≤N

E|Ψj |4λ
)

∆t2H ≤ C.

Using a similar way to obtain (3.18), we get (5.7). �

Define

ϕ̄Λ = inf{t ≥ 0 : |y(t)| ∨ |y(t− τ)| ≥ Λ},
¯̺Λ = inf{t ≥ 0 : |ψ̄(t)| ≥ Λ or |Ψ(t)| ≥ Λ or |Ψt−τ | ≥ Λ},
ζ̄Λ = ϕ̄Λ ∧ ¯̺Λ,

r̄(t) = ψ̄(t)− y(t).

Theorem 5.1. Under Assumptions 5.1-5.3, for any q ≥ 2, ∆t ∈ (0,∆t∗] and Λ ≤ ω∆, we have

E|r̄(t ∧ ζ̄Λ)|q ≤ CL2q (ω∆)∆t
qH .

Proof. When 0 ≤ s ≤ t ∧ ζ̄Λ, one has |Ψ(t)| ≤ Λ ≤ ω∆. It is obvious that

E|r̄(t ∧ ζ̄Λ)|q ≤ qE

∫ t∧ζ̄Λ

0

|r̄(s)|q−2
〈

Ψ(s)− y(s),F
(

Ψ(s)
)

− F
(

y(s)
)〉

ds

+ qE

∫ t∧ζ̄Λ

0

|r̄(s)|q−2
〈

ψ̄(s)−Ψ(s),F
(

Ψ(s)
)

− F
(

y(s)
)〉

ds+ qβ1̥
2H

+ α1qE

∫ t∧ζ̄Λ

0

∫ t∧ζ̄Λ

0

|r̄(s)|q−2
〈

ψ̄(s)− y(s),G
(

Ψ(s),Ψ(s− τ)
)

− G
(

y(s), y(s− τ)
)〉

φ(ζ, s)dζ ds.
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From Assumption 5.2, Cauchy inequality and Young inequality, we derive

E|r̄(t ∧ ζ̄Λ)|q ≤ q
(

K̂ + 2α1M0̥
2H−1

)

E

∫ t∧ζ̄Λ

0

|r̄(s)|q−2ds

+ q
(

K̂ + 2α1M0̥
2H−1

)

E

∫ t∧ζ̄Λ

0

|r̄(s)|qds

+ q
(

K̂ + 2α1M0̥
2H−1

)

E

∫ t∧ζ̄Λ

0

|r̄(s)|q−2|ψ̄(s)−Ψ(s)|2ds

+ qα1̥
2H−1

E

∫ t∧ζ̄Λ

0

|r̄(s)|qds+ qβ1̥
2H−1

+ 4qL(ω∆)E

∫ t∧ζ̄Λ

0

|r̄(s)|q−2 〈Ψ(s)− y(s)〉 · |ψ̄(s)−Ψ(s)|ds.

Similar to the analysis in Theorem 3.1, we derive

E|r̄(t ∧ ζ̄Λ)|q ≤ CE

∫ t∧ζ̄Λ

0

|r̄(s)|qds+ C
(

Lq(ω∆) + L
q
2 (ω∆)

)

E

∫ t∧ζ̄Λ

0

|ψ̄(s)−Ψ(s)|qds

+ 2
(

K̂ + 2α1M0̥
2H−1

)

+ qβ1̥
2H−1

≤ CE

∫ t∧ζ̄Λ

0

|r̄(s)|qds+ CL2q(ω∆)∆t
qH .

By using the Grönwall inequality, we completes the proof. �

Theorem 5.2. Under Assumptions 5.1-5.3, if there exist p > q ≥ 2 and ∆t ∈ (0,∆t∗] such

that

L− pq
p−q (ω∆)∆t

− pqH

2(p−q) ≤ ω∆,

then

E|r̄(̥)|q ≤ CL2q(ω∆)∆t
qH .

Proof. It is similar to Theorem 3.2, so we omit it here. �

6. Numerical Experiments

To demonstrate our theoretical conclusions, we make two experiments in this section. Here,

we do M = 5000 times independent tests and show the mathematical expectation by the way

of calculating mean value. At the terminal time ̥,

ǫN (̥) =

(

1

M

M
∑

ℓ=1

∣

∣xℓ(̥)− xℓN
∣

∣

2

)

1
2

.

Example 6.1. Consider the one-dimension SDE

dx(t) =
(

− 0.3x(t)− 0.1x3(t)
)

dt+
(

− 0.1x(t) + 0.9x3(t)
)

dB(t), t ∈ [0, 1], (6.1)

where x(0) = −0.5.
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(a) H = 0.6 (b) H = 0.7

(c) H = 0.8 (d) H = 0.9

Fig. 6.1. The mean square errors versus stepsize for SDE (6.1).

Here,

Z (x) = −0.3x− 0.1x3, T (x) = −0.1x+ 0.9x3

are locally Lipschitz continuous for |x| ≤ Λ with L(Λ) = −0.4 + 3Λ2, where Λ is a bounded

positive constant. It can be proved that the coefficients satisfy Assumption 2.2.

Let

ω∆ =

√

∆t−
υ
2 + 0.4

3
with υ ∈ (0, 1).

We use the numerical result generated by backward EM method with ∆t = 2−14 as the reference

solution. Fig. 6.1 shows the mean square errors for our method with ∆t = 2−8, 2−9, · · · , 2−13.

The slope of the referenced dotted line is H . By an observation of four subfigures, we find that

the convergence order is close to H , which keeps consistence with Theorem 3.2.

Example 6.2. Consider the one-dimension SDDE
{

dx(t) =
(

− 0.05− 0.01x5(t)
)

dt− 0.8x(t− 1)dB(t), t ∈ [0, 4],

x(t) = t+ 1, t ∈ [−1, 0].
(6.2)

Set

ω∆ =
4

√

∆t−
υ
5

0.05
with υ ∈ (0, 1).

Here, we use the numerical solution of backward EM method with ∆t = 2−12 as the reference

solution. In Fig. 6.2, all the black dotted reference lines are with the slope of H and we plot
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(a) H = 0.6 (b) H = 0.7

(c) H = 0.8 (d) H = 0.9

Fig. 6.2. The mean square errors versus stepsize for SDDE (6.2).

the mean square errors for our method with ∆t = 2−6, 2−7, · · · , 2−11 respectively. It can be

seen that, in agreement with Theorem 5.2, the convergence order of MSST method is also H

for SDDE.
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