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Abstract

In this paper, we present a novel penalty model called ExPen for optimization over the

Stiefel manifold. Different from existing penalty functions for orthogonality constraints,

ExPen adopts a smooth penalty function without using any first-order derivative of the

objective function. We show that all the first-order stationary points of ExPen with a suf-

ficiently large penalty parameter are either feasible, namely, are the first-order stationary

points of the original optimization problem, or far from the Stiefel manifold. Besides, the

original problem and ExPen share the same second-order stationary points. Remarkably,

the exact gradient and Hessian of ExPen are easy to compute. As a consequence, abun-

dant algorithm resources in unconstrained optimization can be applied straightforwardly

to solve ExPen.

Mathematics subject classification: 90C30, 65K05.
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1. Introduction

In this paper, we consider the following optimization problem:

min
X∈Rn×p

f(X)

s.t. X⊤X = Ip,
(OCP)

where Ip denotes the p×p identity matrix, and f : Rn×p 7→ R satisfies the following assumption.

Assumption 1.1 (Blank Assumption on f). The functions f and ∇f are locally Lipschitz

continuous in R
n×p.

Recall that a mapping T : R
n×p → R

m is locally Lipschitz continuous over R
n×p if for

any X0 ∈ R
n×p, there exists a constant M and δ > 0 such that for any X ∈ R

n×p satisfying

‖X −X0‖F ≤ δ, it holds that ‖T (X) − T (X0)‖ ≤ M ‖X −X0‖F.

The feasible region of the orthogonality constraints X⊤X = Ip is the Stiefel manifold em-

bedded in the n× p real matrix space, denoted by

Sn,p :=
{

X ∈ R
n×p | X⊤X = Ip

}

.
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We also call it as the Stiefel manifold for brevity. Optimization problems with orthogonality

constraints have wide applications in statistics [17, 49], scientific computation [37, 43], image

processing [6] and many other related areas [25, 41, 68]. Interested readers can refer to some

recent works [21, 35, 59, 63], a recent survey [33], and several books [4, 10] for details.

1.1. Motivation

Optimization over the Stiefel manifold, which is a smooth and compact Riemannian mani-

fold, has been discovered to enjoy a close relationship with unconstrained optimization. How-

ever, developing optimization approaches over the Stiefel manifold is inherently complicated

by the nonconvexity of the manifold. Various existing unconstrained optimization approaches,

i.e. the approaches for solving nonconvex unconstrained optimization problems, can be ex-

tended to their Riemannian versions by the local diffeomorphisms between the Stiefel manifold

and Euclidean space. The approaches, called Riemannian optimization approaches for brevity

hereinafter, include gradient descent with line-search [2, 4, 36, 58, 60], conjugate gradient meth-

ods [3], Riemannian accelerated gradient method [13,54,66,67], Riemannian adaptive gradient

methods [7], etc. With the frameworks and geometrical materials described in [4], theoret-

ical results of these Riemannian optimization approaches have been established by following

almost the same proof techniques as their unconstrained prototypes. These results include the

global convergence, local convergence rate, worst-case complexity, and saddle-point-escaping

properties, [5, 12, 13, 24, 32, 55, 69].

The Riemannian optimization approaches usually consist of two fundamental parts. The

first one is the so-called retraction which maps a point from the tangent space to the manifold.

Retractions can be further categorized into two classes: the geodesic-like retractions and the

projection-like ones. The former ones require to calculate the geodesics along the manifold

and hence are expensive. The latter ones enjoy relatively lower computational cost, but as

demonstrated in various existing works [21, 61, 63], computing the projection-like retractions

is still more expensive than matrix-matrix multiplication. The second part is called parallel

transport which moves a tangent vector along a given curve on a Stiefel manifold parallelly. The

purpose of parallel transport is to design the manifold version of some advanced unconstrained

optimization approaches, such as conjugate gradient methods or gradient methods with mo-

mentum. However, as illustrated in [4], computing the parallel transport on Stiefel manifold is

equivalent to finding a solution to a differential equation, which is definitely impractical in com-

putation. To this end, the authors of [4] have proposed the concept of vector transport, which

can be regarded as an approximation to parallel transport, hence is computationally afford-

able. Unfortunately, due to the approximation error introduced by vector transports, analyzing

the convergence properties of Riemannian optimization algorithms is challenging and usually

cannot directly follow the existing results for their unconstrained counterparts, see [35] for in-

stances. As illustrated in various existing works [5, 12, 13, 66, 67, 69], both parallel transports

and geodesics play an essential role in establishing convergence properties. It is still difficult to

verify whether their theoretical convergence properties is valid when these approaches are built

by retractions and vector transports.

To avoid computing the retractions, parallel transports, or vector transports to the Stiefel

manifold, some approaches aim to find smooth mappings from the Euclidean space to the

Stiefel manifold, which directly reformulates OCP to unconstrained optimization. Among them,

[38,39] construct equivalent unconstrained problems for OCP by exponential function for square

matrices. To efficiently compute the matrix exponential, they apply the iterative approach
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proposed by [30]. Therefore, their approaches require O(n3) flops in each iteration for computing

the matrix exponential and thus are computationally expensive in practice. Inspired by [38,39],

several recent works use Cayley transformation [16, 27, 40, 47] to avoid computing the matrices

exponential. These approaches require computing the inverse of n× n matrices in each iterate,

which still requires O(n3) flops in general. Furthermore, calculating the derivatives through

the exponential mapping or the Cayley transformation can be more costly. In particular, as

illustrated in the numerical experiments in [1, 16], when applying nonlinear conjugate gradient

methods, the computational time of these approaches is usually much higher than existing

Riemannian conjugate gradient approaches.

Recently, some infeasible approaches have been verified to be efficient in solving optimiza-

tion problems over the Stiefel manifold. They utilize a completely different approach from

existing Riemannian optimization methods. Based on the framework of the augmented La-

grangian method (ALM) [8,28,48,51], the authors of [21] have proposed the proximal linearized

augmented Lagrangian method (PLAM) and its column-wise normalization version (PCAL)

for (OCP). Both PLAM and PCAL update the multipliers corresponding to the orthogonality

constraints by a closed-form expression. Additionally, [1] have proposed the landing algorithm,

which follows a two-step alternative updating framework. Inspired by the closed-form updat-

ing scheme in PLAM and PCAL, the authors of [61] have proposed an exact penalty function

named PenC,

min
‖X‖

F
≤K

hPenC(X) = f(X) − 1

2

〈

Φ
(

X⊤∇f(X)
)

, X⊤X − Ip
〉

+
β

4

∥

∥X⊤X − Ip
∥

∥

2

F
,

where K ≥ √
p is a prefixed constant and Φ is the symmetrization operator defined as

Φ(M) :=
1

2
(M + M⊤).

In [61], the authors have illustrated the equivalence between OCP and PenC, which further

proposed the corresponding infeasible first-order and second-order methods PenCF and PenCS,

respectively. Moreover, successive works [34, 62] have illustrated that PenC could be extended

to objective function with special structures. The above-mentioned penalty-function-based ap-

proaches are verified to enjoy high efficiency and scalability due to avoiding retractions or par-

allel transport to the Stiefel manifold. However, their penalty functions involve the first-order

derivatives of the original objective, which leads to two limitations. Firstly, the smoothness of

the penalty function requires higher-order smoothness of the original objective function. Sec-

ondly, calculating an exact gradient of these penalty functions is usually expensive in practice.

As a result, many existing unconstrained optimization approaches cannot be directly applied

to minimize these penalty functions.

1.2. Contributions

The contributions of this paper can be summarized as the following two folds.

A novel penalty function. We propose a novel penalty function

h(X) := f

(

X

(

3

2
Ip −

1

2
X⊤X

))

+
β

4

∥

∥X⊤X − Ip
∥

∥

2

F
, (1.1)

and construct the following unconstrained optimization problem which is abbreviated as ExPen:

min
X∈Rn×p

h(X). (ExPen)
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With a sufficiently large penalty parameter β, we illustrate that any first-order stationary point

(FOSP) of ExPen is either feasible and hence a FOSP of OCP, or far away from the Stiefel

manifold. Besides, we prove that any eigenvalue of the Riemannian Hessian at any first-order

stationary point X ∈ Sn,p is an eigenvalue of ∇2h(X). Then we show that any second-order

stationary point (SOSP) of ExPen is an SOSP of OCP. We call the above two relationships

the first-order relationship and second-order relationship, respectively, for brevity. These two

relationships imply that ExPen can be regarded as an exact penalty function.

An universal tool. The exact penalty model ExPen builds up a bridge between various

existing unconstrained optimization approaches and OCP. Moreover, those rich theoretical

results of unconstrained optimization approaches can be directly applied in solving OCP. In

particular, some newly developed techniques for unconstrained optimization can be extended

to solve optimization over the Stiefel manifold through ExPen. We use the nonlinear conjugate

gradient method as an example. It is difficult to find a compromise between computational

efficiency and theoretical guarantee if we adopt Riemannian optimization approaches to achieve

this extension. Preliminary numerical experiments illustrates that ExPen yields direct and

efficient of nonlinear conjugate gradient solver from SciPy package.

1.3. Notations

In this paper, the Euclidean inner product of two matrices X,Y ∈ R
n×p is defined as

〈X,Y 〉 = tr(X⊤Y ), where tr(A) is the trace of the square matrix A. Besides, ‖·‖2 and ‖·‖F
represent the 2-norm and the Frobenius norm, respectively. The notations diag(A) and Diag(x)

stand for the vector formed by the diagonal entries of matrix A, and the diagonal matrix with

the entries of x ∈ R
n to be its diagonal, respectively. We denote the smallest eigenvalue of A

by λmin(A). We set the Riemannian metric on Stiefel manifold as the metric inherited from

the standard inner product in R
n,p. We set TX as the tangent space of Stiefel manifold at X ,

which can be expressed as

TX :=
{

D ∈ R
n×p | Φ(D⊤X) = 0

}

,

while NX is denoted as the normal space of Stiefel manifold at X

NX :=
{

D ∈ R
n×p | D = XΛ,Λ = Λ⊤

}

.

And gradf(X) denotes the Riemannian gradient of f at X ∈ Sn,p in Riemannian metric that

is inherited from the Euclidean metric, namely,

gradf(X) := ∇f(X) −XΦ
(

X⊤∇f(X)
)

.

Besides, we uses ∇2f(X)[D] to represent the Hessian-matrix product. The Riemannian Hessian

of f at X ∈ Sn,p in Euclidean measure is denoted as hess f(X) : TX → TX , whose bilinear form

can be written as

〈D1, hess f(X)[D2]〉 :=
〈

D1,∇2f(X)[D2] −D2Φ
(

X⊤∇f(X)
)〉

, ∀D1, D2 ∈ TX .

Finally, PSn,p
(X)=UV ⊤ denotes the orthogonal projection to Stiefel manifold, where X=UΣV ⊤

is the economic SVD of X with U ∈ Sn,p, V ∈ Sp,p and Σ is p × p diagonal matrix with the

singular values of X on its diagonal.
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The rest of this paper is organized as follows. In Section 2, we present several preliminaries

and useful lemmas. Then we explore the first-order and second-order relationships between

OCP and ExPen, respectively, in Section 3. We show how to solve OCP through unconstrained

optimization approaches by an illustrative example in Section 4 and draw a brief conclusion in

the last section.

2. Preliminaries

In this section, we provide several preliminary properties of ExPen. We first introduce the

definitions, assumptions and define several constants. Then we give some preliminary properties

of ExPen. Finally, we present the computational complexity of calculating the derivatives of

ExPen.

2.1. Definitions

The first-order optimality condition of problem OCP can be written as

Definition 2.1 ([4]). Given a point X ∈ Sn,p, we call X a first-order stationary point of OCP

if gradf(X) = 0.

According to [20], any X ∈ R
n×p is a first-order stationary point of OCP if and only if it

satisfies
{

∇f(X) −XΦ
(

X⊤∇f(X)
)

= 0,

X⊤X = Ip.

Next, we present the definition of the second-order optimality condition of OCP.

Definition 2.2. Given a point X ∈ Sn,p, if f is twice-differentiable, X is a first-order station-

ary point of OCP and

〈D, hess f(X)[D]〉 ≥ 0

holds for any D ∈ TX , then we call X a second-order stationary point of OCP.

Besides, we present the definitions of first-order and second-order optimality conditions of

ExPen. Given a point X ∈ R
n×p, we say X is a first-order stationary point of a differentiable

function h : Rn×p → R if and only if ∇h(X) = 0. And when h is twice-order differentiable, X

is a second-order stationary point of h if and only if X is a first-order stationary point of h and

〈

∇2h(X)[D], D
〉

≥ 0, ∀D ∈ R
n×p. (2.1)

Next we present the definitions of  Lojasiewicz inequality [45, 46], which coincide with the

definitions in [9].

Definition 2.3. Let f be a differentiable function. Then f is said to have the Euclidean

 Lojasiewicz gradient inequality at X ∈ R
n×p if and only if there exists a neighborhood U of

X, and constants θ ∈ (0, 1], C > 0 such that for any Y ∈ U ,

‖∇f(Y )‖F ≥ C|f(Y ) − f(X)|1−θ.

Besides, we present the definitions of Riemannian  Lojasiewicz inequality [31].
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Definition 2.4. Let f be a differentiable function. Then f is said to have the Riemannian

 Lojasiewicz gradient inequality at X ∈ Sn,p if and only if there exists a neighborhood U ⊂ Sn,p

of X, and constants θ ∈ (0, 1], C > 0 such that for any Y ∈ U ,

‖grad f(Y )‖F ≥ C|f(Y ) − f(X)|1−θ.

The constant θ is usually named as  Lojasiewicz exponent in the gradient inequality.

2.2. Assumptions

In this subsection, we present some additional assumptions on the objective function f in

OCP, which are usually optional throughout this paper. Before presenting these additional

assumptions used in some parts of this paper, we first define some set and operators:

• Ω := {X ∈ R
n×p | ‖X‖2 ≤ 1 + 1/12},

• Ωr := {X ∈ R
n×p | ‖X⊤X − Ip‖F ≤ r},

• G(X) := ∇f(Y )|Y =X(3Ip/2−X⊤X/2),

• H(X) := ∇2f(Y )|Y =X(3Ip/2−X⊤X/2),

• JX(D) := DX(3Ip/2 −X⊤X/2) −XΦ(D⊤X),

• g(X) := f
(

X(3Ip/2 −X⊤X/2)
)

.

Clearly, we have Ω1/12 ⊂ Ω1/6 ⊂ Ω. In addition, we present several constants for the theoretical

analysis of ExPen:

• M0 := supX∈Ω f(X) − infX∈Ω f(X),

• M1 := supX∈Ω ‖G(X)‖F,

• M2 := supX,Y ∈Ω,X 6=Y

(

‖∇g(X) −∇g(Y )‖F/‖X − Y ‖F
)

,

• β̄ := max{12M1, 6M2}.

It is worth mentioning that Assumption 1.1 guarantees that both f and ∇f are locally

Lipschitz continuous over Rn×p. Consequently, both G and ∇g are locally Lipschitz continuous

over Rn×p. Therefore, together with the fact that Ω is a compact subset of Rn×p, the parameters

M0,M1 and M2 are finite and independent from the penalty parameter β.

Assumption 2.1 (The Global Lipschitz Continuity of f). f is globally Lipschitz contin-

uous in R
n×p.

Although Assumption 2.1 is restrictive, it is optional in our theoretical analysis. It will be

specifically mentioned where applicable.

Moreover, under Assumption 2.1, we define several additional constants for ExPen:

• M̂1 := supX∈Rn×p ‖G(X)‖F,

• M̂2 := supX,Y ∈Rn×p,X 6=Y

(

‖∇g(X) −∇g(Y )‖F/‖X − Y ‖F
)

,

• β̂ := max{12M̂1, 6M̂2}.
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We emphasize that parameters M̂1 and M̂2 are independent with the penalty parameter β.

Besides, it follows from Assumption 2.1 that M̂1 ≥ M1 and M̂2 ≥ M2.

Furthermore, when we analyze the Hessian at h(X), the objective function f in OCP should

be twice-differentiable. As a results, in some cases we assume the objective function f be twice

differentiable.

Assumption 2.2 (The Second-Order Differentiability of f). ∇2f(X) exists at every

X∈Rn×p.

In the rest of this subsection, we present several useful lemmas for further use. We first

show that JX is the Jacobian of the mapping X 7→ X(3Ip/2−X⊤X/2) in the following lemma.

Proposition 2.1. For any X,Y ∈ R
n×p, let D = Y −X, we have

∥

∥

∥

∥

Y

(

3

2
Ip −

1

2
Y ⊤Y

)

−X

(

3

2
Ip −

1

2
X⊤X

)

− JX(D)

∥

∥

∥

∥

F

= O
(

‖D2
F‖

)

.

Besides,

∥

∥

∥

∥

Y

(

3

2
Ip −

1

2
Y ⊤Y

)

−X

(

3

2
Ip −

1

2
X⊤X

)

−JX(D)−
[

DΦ(D⊤X)+
1

2
XD⊤D

]
∥

∥

∥

∥

F

= O
(

‖D3
F‖

)

.

Proof. Let D = Y −X , from the expression of Y (3Ip/2 − Y ⊤Y/2) we can conclude that

Y

(

3

2
Ip −

1

2
Y ⊤Y

)

= X

(

3

2
Ip −

1

2
X⊤X

)

+D

(

3

2
Ip −

1

2
X⊤X

)

−XΦ(X⊤D) −DΦ(D⊤X) − 1

2
XD⊤D − 1

2
DD⊤D

= X

(

3

2
Ip −

1

2
X⊤X

)

+ JX(D) −DΦ(D⊤X) − 1

2
XD⊤D − 1

2
DD⊤D,

and thus complete the proof. �

In the following Lemma, we present the expression of ∇h(X).

Proposition 2.2. For any X ∈ R
n×p,

∇h(X) = G(X)

(

3

2
Ip −

1

2
X⊤X

)

−XΦ
(

X⊤G(X)
)

+ βX
(

X⊤X − Ip
)

.

Proof. First, we aim to prove that the linear mapping JX is self-adjoint for any X ∈ R
n×p.

From the expression of JX , for any Z,W ∈ R
n×p, we then obtain

〈JX(W ), Z〉 =

〈

W

(

3

2
Ip −

1

2
X⊤X

)

−XΦ(X⊤W ), Z

〉

= tr

(

Z⊤W

(

3

2
Ip −

1

2
X⊤X

))

− tr
(

Z⊤XΦ(X⊤W )
)

(i)
= tr

(

W⊤Z

(

3

2
Ip −

1

2
X⊤X

))

− tr
(

W⊤XΦ(X⊤Z)
)

=

〈

Z

(

3

2
Ip −

1

2
X⊤X

)

−XΦ(X⊤Z),W

〉

= 〈JX(Z),W 〉 . (2.2)
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Here (i) follows the fact that tr(AB) = tr(A⊤B) holds for any square matrix A and any

symmetric matrix B. By Proposition 2.1, for any X,Y ∈ R
n×p, let D = Y −X , we have

f

(

Y

(

3

2
Ip −

1

2
Y ⊤Y

))

− f

(

X

(

3

2
Ip −

1

2
X⊤X

))

= 〈G(X), JX(D)〉 + O
(

‖D2
F‖

)

=
〈

D, JX
(

G(X)
)〉

+ O
(

‖D2
F‖

)

=

〈

D,G(X)

(

3

2
Ip −

1

2
X⊤X

)

−XΦ
(

X⊤G(X)
)

〉

+ O
(

‖D2
F‖

)

,

which illustrates that

∇g(X) = G(X)

(

3

2
Ip −

1

2
X⊤X

)

−XΦ
(

X⊤G(X)
)

.

Then from the fact that

h(X) = g(X) + β
∥

∥X⊤X − Ip
2

F

∥

∥,

we conclude that

∇h(X) = G(X)

(

3

2
Ip −

1

2
X⊤X

)

−XΦ
(

X⊤G(X)
)

+ βX
(

X⊤X − Ip
)

,

and complete the proof. �

We can conclude from the definition of M1 and Proposition 2.2 that ‖∇g(X)‖F ≤ 2M1 for

any X ∈ Ω. Besides, from the expression of h(X) illustrated in Lemma 2.2, we can conclude

that ∇h(X) = gradf(X) holds for any X ∈ Sn,p. Furthermore, the following proposition

illustrates the expression of ∇2h(X).

Proposition 2.3. Suppose f(X) satisfies the conditions in Assumption 2.2, then

∇2g(X)[D] = JX
(

H(X)[JX(D)]
)

−DΦ
(

X⊤G(X)
)

−XΦ
(

D⊤G(X)
)

−G(X)Φ(D⊤X).

Moreover,

∇2h(X)[D] = ∇2g(X)[D] + β
(

2XΦ(X⊤D) + D(X⊤X − Ip)
)

.

Proof. As illustrated in (2.2) from Lemma 2.2, the mapping JX is self-adjoint for any

X ∈ R
n×p. Then by Proposition 2.1, for any Y ∈ R

n×p and let D = Y −X , we have

f

(

Y

(

3

2
Ip −

1

2
Y ⊤Y

))

− f

(

X

(

3

2
Ip −

1

2
X⊤X

))

= f

(

X

(

3

2
Ip −

1

2
X⊤X

)

+ JX(D) −
[

DΦ(D⊤X) +
1

2
XD⊤D

])

− f

(

X

(

3

2
Ip −

1

2
X⊤X

))

+ O
(

‖D3
F‖

)

=

〈

G(X), JX(D) −
[

DΦ(D⊤X) +
1

2
XD⊤D

]〉

+
1

2

〈

H(X)[JX(D)], JX(D)
〉

+ O
(

‖D3
F‖

)

= 〈G(X), JX(D)〉 −
〈

G(X), DΦ(D⊤X)+
1

2
XD⊤D

〉
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+
1

2

〈

H(X)[JX(D)], JX(D)
〉

+ O
(

‖D3
F‖

)

= 〈D,∇g(X)〉 −
〈

Φ
(

D⊤G(X)
)

,Φ(D⊤X)
〉

− 1

2

〈

D⊤D,X⊤G(X)
〉

+
1

2

〈

H(X)[JX(D)], JX(D)
〉

+ O
(

‖D3
F‖

)

.

Therefore, the Hessian of g(X) can be expressed as

∇2g(X)[D] = JX
(

H(X)[JX(D)]
)

−DΦ
(

X⊤G(X)
)

−XΦ
(

D⊤G(X)
)

−G(X)Φ(D⊤X).

Moreover, since
∥

∥Y ⊤Y − Ip
∥

∥

2

F
−
∥

∥X⊤X − Ip
∥

∥

2

F
=

〈

4D,X
(

X⊤X − Ip
)〉

+ 4
〈

Φ(D⊤X),Φ(D⊤X)
〉

+ 2
〈

D⊤D,X⊤X − Ip
〉

+ O
(

‖D3
F‖

)

,

the Hessian of h(X) can be expressed as

∇2h(X)[D] = ∇2g(X)[D] + β
[

2XΦ(X⊤D) + D
(

X⊤X − Ip
)]

.

The proof is complete. �

Next, we give an important equality.

Lemma 2.1. For any X ∈ R
n×p, we have

〈

X
(

X⊤X − Ip
)

,∇g(X)
〉

= −3

2

〈(

X⊤X − Ip
)2
,Φ

(

X⊤G(X)
)〉

.

Proof. Consider the inner product of ∇g(X) and X(X⊤X−Ip), the following equality holds

for any X ∈ R
n×p:

〈

X
(

X⊤X − Ip
)

,∇g(X)
〉

=

〈

X
(

X⊤X − Ip
)

, G(X)

(

3

2
Ip −

1

2
X⊤X

)〉

−
〈

X
(

X⊤X − Ip
)

, XΦ
(

X⊤G(X)
)〉

=

〈

(

X⊤X − Ip
)

(

3

2
Ip −

1

2
X⊤X

)

,Φ
(

X⊤G(X)
)

〉

−
〈(

X⊤X − Ip
)

X⊤X,Φ
(

X⊤G(X)
)〉

= −3

2

〈

(

X⊤X − Ip
)2
,Φ

(

X⊤G(X)
)

〉

.

The proof is complete. �

Finally, we arrive at the main proposition in this preliminary section.

Proposition 2.4. Suppose Assumption 2.1 holds, and X̃ is a first-order stationary point of

ExPen, then ‖X̃‖2 ≤ 1 + M̂1/β. Furthermore, when β ≥ β̂, we can conclude that all the

first-order stationary points of ExPen are contained in Ω.

Proof. Let X̃ = UΣV ⊤ be the singular value decomposition of X̃ , namely, U ∈ R
n×p and

V ∈ R
n×p are the orthogonal matrices and Σ is a diagonal matrix with singular values of X̃

on its diagonal and σ1 ≤ · · · ≤ σp. Suppose the statement to be proved is not true, we achieve

σp > 1 + M̂1/β. Let D̃ := UDiag(0, . . . , 0, 1)V ⊤, then from the first-order optimality condition,

we have
〈

∇h(X̃), D̃
〉

= 0.

Besides, Assumption 2.1 illustrates that ‖G(X)‖F is bounded and thus
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∣

∣

〈

D̃,∇g
(

X̃
)〉∣

∣ =

∥

∥

∥

∥

〈

D̃,G(X)

(

3

2
Ip −

1

2
X⊤X

)

−
〈

D,XΦ
(

X⊤G(X)
)〉

〉
∥

∥

∥

∥

≤
∣

∣

∣

∣

tr

((

3

2
Ip −

1

2
X⊤X

)

D⊤G(X)

)∣

∣

∣

∣

+
1

2

∣

∣tr
(

D⊤XX⊤G(X)
)
∣

∣ +
1

2

∣

∣tr
(

G(X)⊤XD⊤X
)
∣

∣

≤
∣

∣

∣

∣

3

2
− 1

2
σ2
p

∣

∣

∣

∣

M̂1 +
1

2
σ2
pM̂1 +

1

2
σ2
pM̂1 ≤

3

2

(

σ2
p + 1

)

M̂1.

On the other hand, from the definition of D̃, we can conclude that

〈

X̃
(

X̃⊤X̃ − Ip
)

, D̃
〉

= σp(σ2
p − 1).

Notice that when β ≥ 3M̂1, for any t ≥ 1 + M̂1/β, it holds that

(t2 − 1)t

t2 + 1
>

(t2 − 1)

t2 + 1
≥ 1 − 2

t2 + 1
≥ 1 − 1

1 + 3M̂1/β
≥ 3M̂1

2β
. (2.3)

Therefore, when β ≥ 3M̂1, we achieve

〈

∇h
(

X̃
)

, D̃
〉

≥ β
〈

X̃
(

X̃⊤X̃ − Ip
)

, D̃
〉

−
∣

∣

〈

D̃,∇g
(

X̃
)〉∣

∣

≥ (σ2
p − 1)(βσp) − 3

2

(

σ2
p + 1

)

M̂1 > 0,

which contradicts to the first-order optimality. Therefore, we can conclude that

∥

∥X̃
∥

∥

2
≤ 1 +

M̂1

β
.

The proof is complete. �

Additionally, in the following proposition, we illustrate that Assumption 2.1 implies that

ExPen is bounded below for any β > 0.

Proposition 2.5. Suppose Assumption 2.1 holds, then for any β > 0, ExPen is bounded below

over R
n×p.

Proof. For any X ∈ R
n×p, it holds from Assumption 2.1 that

|g(X) − g(0)| =

∣

∣

∣

∣

f

(

X

(

3

2
Ip −

1

2
X⊤X

))

− f(0)

∣

∣

∣

∣

≤ M̂1

∥

∥

∥

∥

X

(

3

2
Ip −

1

2
X⊤X

)∥

∥

∥

∥

F

≤ pM̂1

(

1

2
‖X‖32 +

3

2
‖X‖2

)

.

Moreover, it holds that
∥

∥X⊤X − Ip
∥

∥

F
≥

(

‖X‖22 − 1
)2
.

Therefore, for any X ∈ R
n×p that satisfies

‖X‖2 ≥ 128pM̂1

β
+ 2,
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it holds that
(

‖X‖22 − 1
)2 ≥ 1

16
‖X‖42 .

Then we achieve

h(X) − h(0) ≥ β

4

∥

∥X⊤X − Ip
∥

∥

F
− |g(X) − g(0)|

≥ β

4

(

‖X‖22 − 1
)2 − pM̂1

(

1

2
‖X‖32 +

3

2
‖X‖2

)

≥ β

64
‖X‖42 − pM̂1

(

1

2
‖X‖32 +

3

2
‖X‖2

)

≥ β

64
‖X‖42 − 2pM̂1 ‖X‖32 > 0.

As a result, it holds that

inf
X∈Rn×p

h(X) = min

{

inf
‖X‖

2
≤

128pM̂1

β
+2

h(X), inf
‖X‖

2
≥

128pM̂1

β
+2

h(X)

}

≥ min

{

inf
‖X‖

2
≤

128pM̂1

β
+2

h(X), h(0)

}

> −∞.

Hence we complete the proof. �

2.3. Computational complexity of the first-order oracle

In this subsection, we analyze the cost of calculating the first-order derivative of h(X),

which takes the main computational cost in each iterate of a first-order algorithm such as

gradient descent methods, nonlinear conjugate gradient methods, etc. Then we compare it with

the fundamental operations in Riemannian optimization approaches. From the expression for

∇h(X) illustrated in Lemma 2.2, we find that computing ∇h(X) only involves computing ∇f

and matrix-matrix multiplication. The computational cost of the basic linear algebra operations

and the overall costs of computing the gradient of h are listed in Table 2.1, while a comparison

between several fundamental operations in Riemannian optimization and their corresponding

operations for h(X) are listed in Table 2.2. Here, FO denotes the computational costs of

computing the gradient of f , and those terms in bold stand for the operations that cannot be

parallelized.

Table 2.1: Computational complexity the first-order oracle in ExPen.

Compute ∇f(X(3Ip/2 −X⊤X/2))(3Ip/2 −X⊤X/2)

X⊤X np2

X(X⊤X − Ip) 2np2

G(X) = ∇f(Y )|Y =X(3Ip/2−X⊤X/2) 1FO

G(X)(3Ip/2 −X⊤X/2) 2np2

Compute XΦ(X⊤G(X))
Φ(X⊤G(X)) 2np2

XΦ(X⊤G(X)) 2np2

In total 1FO + 9np2



12 N.C. XIAO AND X. LIU

Table 2.2: Comparison on the computational complexity of the first-order oracles among Riemannian

optimization approaches, ExPen based approaches and the specialized optimization algorithm PLAM.

Here Lβ(X,Λ) := f(X) − 〈X⊤X − Ip,Λ〉/2 + β‖X⊤X − Ip‖
2
F/4.

Riemannian optimization approaches

Riemannian gradient
∇f(X) −X∇f(X)⊤X

1FO + 4np2 [21]

Retraction
Cholesky factorization: 3np2 + O(p3)

Gram-Schmidt: 2np2

Vector transport
ξX ∈ TX → ξX − Y Φ(Y ⊤ξX) ∈ TY

4np2

ExPen based approaches

Euclidean gradient
∇h(X)

1FO + 9np2

No retraction
—

—

No vector transport
—

—

PLAM [21]

Descending direction
∇xLβ(X,Φ(∇f(X)⊤X))

1FO + 7np2 [21]

No retraction
—

—

No vector transport
—

—

3. Properties of ExPen

In this section, we analyze the theoretical properties of ExPen.

3.1. First-order relationship

In this subsection, we study the first-order relationship between OCP and ExPen. The

main theoretical results of this subsection can be summarized in Fig. 3.1. Here “A.”, “D.”,

“P.”, “T.” are the abbreviations of “Assumption”, “Definition”, “Proposition”, and “Theorem”,

respectively.

FOSP of ExPen

Inside Ω

Feasible FOSP of OCP
D. 2.1

β ≥ β̄

Infeasible Far from Sn,p

Not SOSP of ExPen

A. 2.2, T. 3.2 β ≥ β̄

T. 3.1

β ≥ β̄

Outside Ω Not exist
A. 2.1, P. 2.4

β ≥ β̂

Fig. 3.1. Roadmap of the first-order relationship between OCP and ExPen.
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The following theorem categorizes the first-order stationary points of ExPen in Ω.

Theorem 3.1. Suppose X∗ ∈ Ω is a first-order stationary point of ExPen, and β ≥ β̄, then

either X∗ is a first-order stationary point of OCP, or σmin(X∗) ≤
√

2M1/β.

Proof. Suppose σmin(X∗) >
√

2M1/β, then βX∗⊤X∗ − 2M1Ip is positive definite. Besides,

from Lemma 2.1 we achieve

0 =
〈

∇h(X∗), X∗
(

X∗⊤X∗ − Ip
)〉

≥
〈

βX∗
(

X∗⊤X∗ − Ip
)

, X∗
(

X∗⊤X∗ − Ip
)〉

−
∣

∣

〈

∇g(X∗), X∗
(

X∗⊤X∗ − Ip
)〉
∣

∣

≥
〈

βX∗
(

X∗⊤X∗ − Ip
)

, X∗
(

X∗⊤X∗ − Ip
)〉

− 3

2

∥

∥X∗⊤G(X∗)
∥

∥

2
tr
(

(

X∗⊤X∗ − Ip
)2
)

≥
〈

βX∗
(

X∗⊤X∗ − Ip
)

, X∗
(

X∗⊤X∗ − Ip
)〉

−
〈

3

2
‖X∗‖2 ‖G(X∗)‖F · Ip,

(

X∗⊤X∗ − Ip
)2
〉

≥
〈

βX∗⊤X∗ − 2M1Ip,
(

X∗⊤X∗ − Ip
)2
〉

≥ 0,

which illustrates that X∗⊤X∗ = Ip. Then we can conclude that 0 = ∇h(X∗) = grad f(X∗)

and thus complete the proof. �

As illustrated in Theorem 3.1, any first-order stationary point of ExPen in Ω is either a first-

order stationary point of (OCP), or is far from the Stiefel manifold. The following theorem

illustrates that any infeasible first-order stationary point of ExPen cannot be a second-order

stationary point of h(X).

Theorem 3.2. Suppose Assumption 2.2 holds, β ≥ β̄, then any infeasible first-order stationary

point X̃ of ExPen in Ω is not a second-order stationary point of ExPen. More specifically,

λmin(∇2h(X̃)) ≤ −β/24.

Proof. Suppose the statement is not true, namely, X̃ is a second-order stationary point of

OCP. Since β ≥ 12M1, it holds that σmin(X̃⊤X̃) ≤ 1/6 by Proposition 3.1. Let X̃ = UΣV ⊤

be the singular value decomposition of X̃ , namely, U ∈ R
n×p and V ∈ R

n×p are the orthogonal

matrices and Σ is a diagonal matrix with singular values of X̃ on its diagonal. Without loss of

generality, we assume σ1 ≤ 1/
√

6 which is the first entry of the diagonal matrix Σ.

Then we denote D = −u1v
⊤
1 , where u1 and v1 are the first columns of U and V , respectively.

It holds that

(X̃ + tD)⊤(X̃ + tD) = X̃⊤X̃ + 2tD⊤X̃ + t2D⊤D

= V ⊤Σ2V − 2tσ1v1v
⊤
1 + t2v1v

⊤
1 .

Due to the first-order stationarity of X̃ , it holds ∇h(X̃) = 0 which implies D⊤∇h(X̃) = 0.

First, we have

∥

∥(X̃ + tD)⊤(X̃ + tD) − Ip
∥

∥

2

F

=
∥

∥X̃⊤X̃ − Ip + 2tΦ(X̃⊤D) + t2D⊤D
∥

∥

2

F
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≥
∥

∥X̃⊤X̃ − Ip
∥

∥

2

F
+ 4t2

〈

Φ(X̃⊤D),Φ(X̃⊤D)
〉

+ 2t2
〈

D⊤D, X̃⊤X̃ − Ip
〉

+ O(t3)

≥
∥

∥X̃⊤X̃ − Ip
∥

∥

2

F
+ 4t2σ2

1 − 2t2(1 − σ2
1) + O(t3)

≥
∥

∥X̃⊤X̃ − Ip
∥

∥

2

F
− t2 + O(t3).

As a result,

h(X̃ + tD) ≤ h(X̃) + t ·
〈

D,∇h(X̃)
〉

+
t2

2

∥

∥∇2g(X̃)
∥

∥

F
‖D‖2F − β

8
t2 + O(t3)

≤ h(X̃) +
t2

2
M2 −

βt2

8
+ O(t3) ≤ h(X̃) − t2β

24
+ O(t3),

which contradicts to the second-order optimality of ExPen. Therefore, we can conclude that

any infeasible first-order stationary point of ExPen in Ω is not a second-order stationary point

of ExPen, and λmin(∇2h(X̃)) ≤ −β/24. �

Combining Proposition 2.4 with Theorem 3.1, we arrive at the following corollary.

Corollary 3.1. Suppose Assumptions 2.1 and 2.2 hold, and β ≥ β̂. Let X∗ be a first-order

stationary point of ExPen, then either X∗ is a first-order stationary point of OCP, or is far

from the Stiefel manifold and can not be a second-order stationary point of ExPen.

The proof of this corollary is straightforward and hence omitted.

3.2. Second-order relationship

In this subsection, we study the first-order relationship between OCP and ExPen. The main

theoretical results of this subsection can be summarized in Fig. 3.2.

SOSP of ExPen

Inside Ω

Feasible SOSP of OCP
T. 3.4

β ≥ β̄

Infeasible Not SOSP of ExPen
T. 3.2

β ≥ β̄

Outside Ω Not exist
P. 2.4, A. 2.1

β ≥ β̂

Fig. 3.2. Roadmap of the second-order relationship between OCP and ExPen under Assumption 2.2.

We first analyze the relationship between Riemannian Hessian of the original objective

function f and the Euclidean Hessian of the penalty function h.

Lemma 3.1. Suppose f(X) satisfies Assumption 2.2. Then for any given X ∈ Sn,p and any

D1 ∈ TX , the following equality holds:

〈

D1,∇2h(X)[D1]
〉

=
〈

D1,∇2f(X)[D1] −D1Φ
(

X⊤∇f(X)
)〉

. (3.1)
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Proof. Since D1 ∈ TX , by the definition of TX we have Φ(D⊤
1 X) = 0. Moreover, the

definition of JX indicates that JX(D1) = D1. As a result, from Proposition 2.3 we can conclude

that

∇2h(X)[D1] = ∇2g(X)[D1] = JX
(

H(X)[JX(D1)]
)

−D1Φ
(

X⊤∇f(X)
)

−∇f(X)Φ
(

X⊤D1

)

−XΦ
(

D⊤
1 ∇f(X)

)

= JX
(

∇2f(X)[D1]
)

−D1Φ
(

X⊤∇f(X)
)

−XΦ
(

D⊤
1 ∇f(X)

)

. (3.2)

Therefore, for any D1 ∈ TX , we have

〈

D1,∇2h(X)[D1]
〉

=
〈

D1,∇2f(X)[D1] −D1Φ
(

X⊤∇f(X)
)〉

−
〈

Φ(D⊤
1 X),Φ

(

D⊤
1 ∇f(X)

)〉

=
〈

D1,∇2f(X)[D1] −D1Φ
(

X⊤∇f(X)
)〉

.

The proof is complete. �

Lemma 3.2. Suppose f(X) satisfies Assumption 2.2 and X ∈ Sn,p is a first-order stationary

point of h(X). Then for any D1 ∈ TX and any D2 ∈ NX , we have

〈

D2,∇2h(X)[D2]
〉

≥ (2β −M2) ‖D2‖2F , (3.3)
〈

D1,∇2h(X)[D2]
〉

= 0. (3.4)

Proof. Since D1 ∈ TX , by the definition of TX we have Φ(D⊤
1 X) = 0. Besides, the definition

of JX indicates that JX(D1) = D1. Since D1 ∈ TX and D2 ∈ NX , we have JX(D2) = 0.

Besides, there exists a symmetric matrix Λ2 ∈ R
p×p such that D2 = XΛ2. Then we have

〈

D2,∇2h(X)[D1]
〉

=
〈

D2, JX
(

∇2f(X)[JX(D1)]
)

−D1Φ
(

X⊤∇f(X)
)

−XΦ
(

D⊤
1 ∇f(X)

)〉

= −
〈

D2, D1Φ
(

X⊤∇f(X)
)〉

−
〈

D2, XΦ
(

D⊤
1 ∇f(X)

)〉

= −tr
(

Λ2X
⊤D1X

⊤∇f(X)
)

− tr
(

Λ2Φ
(

D⊤
1 XX⊤∇f(X)

))

(i)
= tr

(

Λ2D
⊤
1 XX⊤∇f(X)

)

− tr
(

Λ2Φ
(

D⊤
1 XX⊤∇f(X)

))

(ii)
= tr

(

Λ2

[

D⊤
1 XX⊤∇f(X) − Φ

(

D⊤
1 XX⊤∇f(X)

)])

= 0.

Here (i) follows the fact that D⊤
1 X is skew-symmetric, and (ii) directly uses the fact that for

any T ∈ R
p×p, T − Φ(T ) is skew-symmetric.

Moreover, notice that D2 ∈ NX implies that ‖Φ(D⊤
2 X)‖F = ‖D‖F. Then by the expression

of ∇2h(X) in Proposition 2.3, we can conclude that

〈

D2,∇2h(X)[D2]
〉

=
〈

D2,∇2g(X)[D2]
〉

+ 2β
∥

∥Φ(D⊤
2 X)

∥

∥

2

F
≥ (2β −M2) ‖D2‖2F ,

which completes the proof. �

Theorem 3.3. Suppose f(X) satisfies Assumption 2.2, for any first-order stationary point

X ∈ Sn,p of OCP, any eigenvalue of hess f(X) is an eigenvalue of ∇2h(X). In turn, any

eigenvalue of ∇2h(X) is either an eigenvalue of hess f(X), or greater than 2β −M2.
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Proof. Let σ1 be an eigenvalue of hess f(X), it follows from Definition 2.2 that there exists

an D̂1 ∈ TX such that

JX
(

∇2f(X)[D̂1] − D̂1Φ
(

X⊤∇f(X)
))

= σD1.

In addition, Lemma 3.1 indicates that

∇2h(X)[D̂1] = JX
(

∇2f(X)[D̂1] − D̂1Φ
(

X⊤∇f(X)
))

= σD1.

Therefore, any eigenvalue of hess f(X) is an eigenvalue of ∇2h(X).

On the other hand, Lemmas 3.1 and 3.2 verify that the linear operator ∇2h(X) maps

a vector in TX or NX to TX or NX , respectively. Then any eigenvector of ∇2h(X) is either in

TX or NX . For any D2 ∈ NX , (3.3) implies that
〈

D2,∇2h(X)[D2]
〉

≥ (2β −M2) ‖D2‖2F ,

from which we can conclude that any eigenvalue of ∇2h(X) is either an eigenvalue of hess f(X),

or greater than 2β −M2. �

Based on Theorem 3.3, we can establish the second-order relationship between OCP and

ExPen.

Theorem 3.4. Suppose f(X) satisfies Assumption 2.2 and β ≥ β̄, then any second-order sta-

tionary point of h(X) in Ω is a second-order stationary point of OCP. Moreover, OCP and

ExPen have exactly the same second-order stationary points in Ω.

Proof. Let X ∈ Ω be a second-order stationary point of h(X), then all eigenvalues of

∇2h(X) are nonnegative. It follows from Theorems 3.1 and 3.2 that X is feasible. We can

further conclude X is a first-order stationary point of OCP by Proposition 2.2. In addition,

Theorem 3.3 shows that all eigenvalues of hess f(X) consist of a subset of the spectra of ∇2h(X),

and thus are nonnegative. Namely, X is a second-order stationary point of OCP.

In turn, let X ∈ Sn,p be a second-order stationary point of OCP, naturally, all the eigen-

values of hess f(X) are nonnegative. Then we can immediately obtain that all the eigenvalues

of ∇2h(X) are nonnegative resulting from Theorem 3.3 and the fact that 2β ≥ M . Hence, X

is a second-order stationary point of h(X). �

Based on the second-order relationship between OCP and ExPen in Ω illustrated in Theo-

rem 3.4, we can immediately obtain their second-order relationship in R
n×p by utilizing Propo-

sition 2.4. We omit the proof, since it is quite straightforward.

Corollary 3.2. Suppose Assumptions 2.1 and 2.2 hold, and β ≥ β̂, then OCP and ExPen share

the same second-order stationary points.

3.3. Estimating stationarity

When we implement an infeasible approach to ExPen, the returned solution is usually

infeasible since the iterates are not necessarily restricted on Sn,p. Sometimes we pursue high

accuracy for the feasibility at the same time. To this end, we impose an orthonormalization as

a postprocess after obtaining a solution X with mild accuracy by applying an unconstrained

optimization approach to solve ExPen. Namely,

X → PSn,p
(X), (3.5)

where PSn,p
: Rn×p → Sn,p is the projection on Stiefel manifold defined in Section 1.3.
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In this subsection, we study the relationship between the stationarity of PSn,p
(X) with

respect to OCP and the stationarity X with respect to ExPen. More specifically, we aim

to estimate an upper-bound for ‖gradf(PSn,p
(X))‖F from ‖∇h(X)‖F. Therefore, we could

explicitly setting the stopping criteria for ExPen to achieve a desired accuracy in solving OCP.

Moreover, the iteration complexity of various unconstrained optimization approaches directly

follows from existing rich results when applied to solve ExPen.

The following lemma guarantees that the postprocess (3.5) can further reduce the function

value if the current iterate is sufficiently close to the Stiefel manifold.

Proposition 3.1. Suppose X ∈ Ω1/6, then it holds that

h
(

PSn,p
(X)

)

≤ h(X) −
(

β

4
− M1

2

)

∥

∥X⊤X − Ip
∥

∥

2

F
.

Proof. By the SVD of X , we first conclude that
∥

∥

∥

∥

X

(

3

2
Ip −

1

2
X⊤X

)

− PSn,p
(X)

∥

∥

∥

∥

F

=

∥

∥

∥

∥

UΣ

(

3

2
Ip −

1

2
Σ2

)

V ⊤ − UV ⊤

∥

∥

∥

∥

F

=

∥

∥

∥

∥

Σ

(

3

2
Ip −

1

2
Σ2

)

− Ip

∥

∥

∥

∥

F

=

∥

∥

∥

∥

(

1

2
Σ + Ip

)

(Σ − Ip)
2

∥

∥

∥

∥

F

(i)

≤ 1

2

∥

∥Σ2 − Ip
∥

∥

2

F
=

1

2

∥

∥X⊤X − Ip
∥

∥

2

F
. (3.6)

Here (i) directly follows from (Σ + 2Ip)(Σ − Ip)2 � (Σ + Ip)2(Σ − Ip)2 when Σ � 5Ip/6, and

the fact that ‖A2‖F ≤ ‖A‖2F holds for any symmetric matrix A.

Then we can conclude that

h(X) − h
(

PSn,p
(X)

)

= f

(

X

(

3

2
Ip −

1

2
X⊤X

))

− f
(

PSn,p
(X)

)

+
β

4

∥

∥X⊤X − Ip
∥

∥

2

F

(ii)

≥ −M1

∥

∥

∥

∥

X

(

3

2
Ip −

1

2
X⊤X

)

− PSn,p
(X)

∥

∥

∥

∥

F

+
β

4

∥

∥X⊤X − Ip
∥

∥

2

F

(iii)

≥
(

β

4
− M1

2

)

∥

∥X⊤X − Ip
∥

∥

2

F
.

Here (ii) follows the Lipschitz continuity of f , and (iii) is directly from (3.6). �

Lemma 3.3. For any X ∈ Ω1/6, we have

‖∇h(X)‖2F ≥ ‖∇g(X)‖2F +

(

2

3
β2 − 4βM1

)

∥

∥X⊤X − Ip
∥

∥

2

F
.

Proof. Since

h(X) = g(X) +
β

4

∥

∥X⊤X − Ip
∥

∥

2

F
,

we have

〈∇h(X),∇h(X)〉 = 〈∇g(X),∇g(X)〉 + 2β
〈

∇g(X), X
(

X⊤X − Ip
)〉

+ β2
∥

∥X
(

X⊤X − Ip
)∥

∥

2

F

= ‖∇g(X)‖2F − 3β
〈

Φ
(

X⊤G(X)
)

,
(

X⊤X − Ip
)2
〉

+ β2
∥

∥X
(

X⊤X − Ip
)∥

∥

2

F

≥ ‖∇g(X)‖2F +

(

2

3
β2 − 4βM1

)

∥

∥X⊤X − Ip
∥

∥

2

F
.



18 N.C. XIAO AND X. LIU

Here the second equality directly follows Lemma 2.1. �

Lemma 3.4 illustrates the relationship between ‖∇h(X)‖F and ‖gradf(PSn,p
(X))‖F.

Lemma 3.4. Suppose β ≥ β̄, X ∈ Ω1/6, then it holds that

‖∇h(X)‖F ≥ 1

2

∥

∥gradf
(

PSn,p
(X)

)∥

∥

F
+

β

4

∥

∥X⊤X − Ip
∥

∥

F
.

Proof. Suppose X has singular value decomposition as X = UΣV ⊤, we can conclude that

∥

∥X − PSn,p
(X)

∥

∥

F
= ‖Σ − Ip‖F ≤ 6

11
‖Σ2 − Ip‖F =

6

11

∥

∥X⊤X − Ip
∥

∥

F
. (3.7)

Therefore, the results in Lemma 3.3 illustrates that

‖∇h(X)‖F ≥ 1

2
‖∇g(X)‖F +

1

3

√

6β2 − 36βM1

∥

∥X⊤X − Ip
∥

∥

F

≥ 1

2

∥

∥∇g
(

PSn,p
(X)

)∥

∥

F
− 3M2

11

∥

∥X⊤X − Ip
∥

∥

F

+
1

3

√

6β2 − 36βM1

∥

∥X⊤X − Ip
∥

∥

F

≥ 1

2

∥

∥grad f
(

PSn,p
(X)

)∥

∥

F
+

β

4

∥

∥X⊤X − Ip
∥

∥

F
.

The proof is complete. �

Proposition 3.2. Suppose Assumption 2.2 holds, given any X ∈ Ω1/6, then it holds that

σmin

(

hess f
(

PSn,p
(X)

))

≥ σmin

(

∇2h(X)
)

−
∥

∥∇2g(X) −∇2g
(

PSn,p
(X)

)∥

∥

F

− 9

2
‖∇h(X)‖F . (3.8)

Proof. Let Y := PSn,p
(X), i.e. let X = UΣV ⊤ be the singular value decomposition of X ,

then Y = UV ⊤. Then from Lemma 3.1, for any D1 ∈ TY , it holds that

〈

D1,∇2h(Y )[D1]
〉

=
〈

D1,∇2f(X)[D1] −D1Φ
(

X⊤∇f(X)
)〉

.

Therefore, the σmin(hess f(Y )) can be expressed by

σmin

(

hess f(Y )
)

= min
D1∈TY ,

‖D1‖
F
=1

〈D1,∇g(Y )[D1]〉 .

Let

D̃ := arg min
D1∈TY ,

‖D1‖
F
=1

〈D1,∇g(Y )[D1]〉 ,

then it holds that

∣

∣

〈

D̃,∇2g(X)[D̃]
〉

−
〈

D̃,∇2g(X)[D̃]
〉∣

∣ ≤ ‖∇2g(X) −∇2g(Y )‖F.

Besides, from the expression of the Hessian of ‖X⊤X − Ip‖2F, we achieve

〈

D̃, D̃
(

X⊤X − Ip
)

+ 2XΦ(D̃⊤X)
〉

≤
〈

D̃, D̃
(

X⊤X − Ip
)〉

+ 2
〈

D̃,XΦ(D̃⊤X)
〉
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≤ ‖D‖2F
∥

∥X⊤X − Ip
∥

∥

F
+ 2

∥

∥Φ(X⊤D̃)
∥

∥

2

F

= ‖D‖2F
∥

∥X⊤X − Ip
∥

∥

F
+ 2

∥

∥Φ
(

(X − Y )⊤D̃
)∥

∥

2

F

≤
∥

∥X⊤X − Ip
∥

∥

F
+ 2 ‖X − Y ‖2F ‖D‖2F

≤
∥

∥X⊤X − Ip
∥

∥

F
+

72

121

∥

∥X⊤X − Ip
∥

∥

2

F

≤ 11

10

∥

∥X⊤X − Ip
∥

∥

F
.

Therefore, we conclude that

σmin

(

∇h(X)
)

= min
D∈Rn,

‖D‖
F
=1

〈

D,∇2h(X)[D]
〉

≤ min
D∈TY ,

‖D‖
F
=1

〈

D,∇2h(X)[D]
〉

≤
〈

D̃,∇2h(X)D̃
〉

=
〈

D̃,∇2g(X)D̃
〉

+ β
〈

D̃, D̃
(

X⊤X − Ip
)

+ 2XΦ(D̃⊤X)
〉

≤ σmin

(

hess f(Y )
)

+ ‖∇2g(X) −∇2g(Y )‖F +
11β

10

∥

∥X⊤X − Ip
∥

∥

F

≤ σmin

(

hess f(Y )
)

+ ‖∇2g(X) −∇2g(Y )‖F +
9

2
‖∇h(X)‖F ,

and complete the proof. �

3.4.  Lojasiewicz gradient inequality

In this section, we study the relationship between the Riemannian  Lojasiewicz gradient

inequality for f(X) and the Euclidean  Lojasiewicz gradient inequality for h(X).

Proposition 3.3. Suppose f(X) satisfies the Riemannian  Lojasiewicz gradient inequality at

X ∈ Sn,p with  Lojasiewicz exponent θ ∈ (0, 1/2], i.e there exists a neighborhood U ⊂ Sn,p and

a constant C > 0 such that

‖gradf(Y )‖F ≥ C|f(Y ) − f(X)|1−θ

holds for any Y ∈ U and the penalty parameter of ExPen satisfies β > max{8CM1, 1, β̄}.

Then h(X) satisfies the  Lojasiewicz gradient inequality at X ∈ Sn,p with  Lojasiewicz exponent

θ ∈ (0, 1/2].

Proof. For any Y ∈ Ω, we denote Z := Y (Y ⊤Y )−1/2. It is clear that Z ∈ Sn,p. By

Lemma 2.2 and the Riemannian  Lojasiewicz gradient inequality of f , we have

‖∇g(Z)‖F = ‖gradf(Z)‖F ≥ C|f(Z) − f(X)|1−θ = C|g(Z) − g(X)|1−θ.

Besides, since

∥

∥

∥

∥

(

3

2
Ip −

1

2
X⊤X

)2

X⊤X − Ip

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

X⊤X − Ip +
(

Ip −X⊤X
)

X⊤X +
1

4
X⊤X

(

X⊤X − Ip
)2
∥

∥

∥

∥

F

=

∥

∥

∥

∥

(

1

4
X⊤X − Ip

)

(

X⊤X − Ip
)2
∥

∥

∥

∥

F

,
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we obtain

|g(Y ) − g(Z)| ≤ M1

∥

∥Y ⊤Y − Ip
∥

∥

2

F
. (3.9)

Together with Lemma 3.4, we can conclude that

‖∇h(Y )‖F ≥ 1

2
‖∇g(Z)‖F +

β

4

∥

∥Y ⊤Y − Ip
∥

∥

F
.

In addition, since θ ∈ (0, 1/2], and Y ∈ Ω, we have

|h(Y ) − h(X)|1−θ =

∣

∣

∣

∣

g(Y ) − g(X) +
β

4

∥

∥Y ⊤Y − Ip
∥

∥

2

F

∣

∣

∣

∣

1−θ

≤ |g(Y ) − g(X)|1−θ +

(

β

4

∥

∥Y ⊤Y − Ip
∥

∥

2

F

)1−θ

≤ |g(Y ) − g(X)|1−θ +
β

4

∥

∥Y ⊤Y − Ip
∥

∥

F
.

Therefore, we have

‖∇h(Y )‖F ≥ ‖∇g(Z)‖F +
β

4

∥

∥Y ⊤Y − Ip
∥

∥

F

≥ C|g(Z) − g(X)|1−θ +
β

4

∥

∥Y ⊤Y − Ip
∥

∥

F

(i)

≥ C|g(Y ) − g(X)|1−θ − C|g(Z) − g(Y )|1−θ +
β

4

∥

∥Y ⊤Y − Ip
∥

∥

F

(ii)

≥ C|g(Y ) − g(X)|1−θ − CM1−θ
1

∥

∥Y ⊤Y − Ip
∥

∥

2−2θ

F
+

β

4

∥

∥Y ⊤Y − Ip
∥

∥

F

≥ C|g(Y ) − g(X)|1−θ +
β

8

∥

∥Y ⊤Y − Ip
∥

∥

F

≥ min{C, 1/2}|h(Y ) − h(X)|1−θ.

Here inequality (i) uses the fact that

|a|1−θ + |b|1−θ ≥ (|a| + |b|)1−θ ≥ |a + b|1−θ for any a, b ∈ R, θ ∈ (0, 1/2].

Besides, inequality (ii) directly follows from (3.9). As a result, we obtain

‖∇h(Y )‖F ≥ min{C, 1/2}|h(Y ) − h(X)|1−θ,

which concludes the proof. �

Besides, we can even show that OCP and ExPen share the same local minimizers.

Theorem 3.5. Suppose Assumptions 2.1 and 2.2 hold, and β ≥ β̂, then ExPen and OCP share

the same local minimizers.

Proof. By Corollaries 3.1 and 3.2, we can conclude that any local minimizers of ExPen are

on Stiefel manifold. Since h(X) = f(X) holds for any X ∈ Sn,p, then any local minimizers of

ExPen are local minimizers of OCP.

On the other hand, let X∗ ∈ Sn,p be a local minimizer of OCP, then there exists γ ∈ (0, 1/12)

such that f(Z) ≥ f(X) holds for any Z ∈ Sn,p, ‖Z −X∗‖F ≤ γ. Then for any Y ∈ R
n×p,

‖Y −X∗‖F ≤ γ

2
γ, Y ∈ Ω 11

12
γ ,
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we can obtain that

∥

∥PSn,p
(Y ) −X∗

∥

∥

F
≤

∥

∥PSn,p
(Y ) − Y

∥

∥

F
+ ‖Y −X∗‖F ≤ γ

2
+

γ

2
≤ γ.

Here the second inequality recalls the relationship (3.7). Then it follows from Proposition 3.1

that

h(Y ) − h(X∗) = h(Y ) − h
(

PSn,p
(Y )

)

+ h
(

PSn,p
(Y )

)

− h(X∗)

≥
(

β

4
− M1

2

)

∥

∥Y ⊤Y−Ip
∥

∥

2

F
≥ 0,

which concludes the proof. �

4. Application

4.1. Theoretical analysis for nonlinear conjugate gradient method

Nonlinear conjugate gradient (CG) methods are a class of important methods for solving

unconstrained optimization problems. The first CG method, called Fletcher-Reeves CG (FR-

CG), was proposed in [19]. Then various nonlinear CG methods were developed [14, 15, 18, 19,

22, 29, 44, 50]. Interested readers can refer to the survey [23] for details. Recently, a number

of works extend CG methods to optimization problems over the Stiefel manifold [3, 52, 53, 70].

These works are developed within the frameworks provided by [4], and thus extensively involve

retractions and parallel or vector transports. Hence, as discussed before, we are forced to comply

with the low efficiency if using the parallel transports or the lack of convergence if choosing the

vector transport instead.

Contrarily, applying nonlinear CG methods to minimizing ExPen over Rn×p can inherit both

of the efficiency and convergence properties directly. The exact penalty model ExPen provides

a bridge between the unconstrained optimization approaches and the original model OCP. In

this section, we demonstrate the power of this bridge through directly applying the FR-CG

method to solve OCP through ExPen. First of all, we present an ExPen version of the FR-CG

in Algorithm 4.1.

To prove the convergence of Algorithm 4.1, we first illustrate a nice property of ExPen

through the following lemma.

Lemma 4.1. Suppose β ≥ 384M0. For any sequence {Xk} that satisfies X0 ∈ Ω1/24, h(Xk) ≤
h(X0) and ‖Xk+1 −Xk‖F ≤ 1/24 for any k ≥ 0. Then it holds that {Xk} ⊂ Ω1/12.

Proof. Firstly, for any Y ∈ Ω1/24 and Z ∈ Ω \ Ω1/12, we have

h(Y ) − h(Z) < sup
W∈Ω

h(W ) − inf
W∈Ω

h(W ) +
β

1152
− β

288
≤ M0 −

β

384
≤ 0. (4.1)

Then we prove the lemma by induction. Suppose {X0, . . . , Xk} ⊂ Ω1/12. Then notice that

‖Xk+1 −Xk‖F ≤ 1/24, it holds that Xk+1 ∈ Ω1/6. Together with the fact that h(Xk+1) ≤
h(X0), it directly follows from (4.1) that Xk+1 ∈ Ω1/12. Therefore, the induction illustrates

that {Xk} ⊂ Ω1/12, thus we complete the proof. �

Lemma 4.1 guarantees that the iterates generated by any monotonic algorithm starting

from an initial point X0 ∈ Ω1/12 are restricted in the region Ω1/6 under mild conditions. Then
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Algorithm 4.1: Nonlinear FR-CG Method for Solving ExPen.

Require: Input data: functions f .

1 Choose initial guess X0 and parameters 0 < δ ≤ σ ≤ 1/2, set k := 0, D0 = −∇h(X0).

2 while not terminate do

3 Compute the stepsize ηk that satisfies ηk ‖Dk‖F ≤ 1/24 by strong Wolfe line

search [23],

h(Xk + ηkDk) − h(Xk) ≤ δηk 〈∇h(Xk), Dk〉 ,
| 〈∇h(Xk + ηkDk), Dk〉 | ≤ −σ 〈∇h(Xk), Dk〉 .

4 Xk+1 = Xk + ηkDk.

5 Compute the CG update parameter τk = ‖∇h(Xk+1)‖2F/‖∇h(Xk)‖2F.

6 Compute the search direction Dk+1 = −∇h(Xk+1) + τkDk.

7 Set k := k + 1.

8 end

9 Return Xk.

the Step 3 in Algorithm 4.1 indicates that {h(Xk)} is monotone decreasing. Then combining

Lemma 4.1 and Assumption 1.1, we conclude that the objective function f satisfies the Lipschitz

conditions and boundness conditions in [23]. Furthermore, since 〈Dk,∇h(Xk)〉 < 0 holds for

any k ≥ 0 and the step sizes are generated using the strong Wolfe condition, the validity of

the Zoutendijk condition [71] is guaranteed by [23, Theorem 2.1]. Therefore, based on [23,

Theorem 4.2], we can directly establish the global convergence result for Algorithm 4.1 and

omit its proof for simplicity.

Theorem 4.1. Suppose β ≥ max{384M0, β̂}. Let {(Xk, Dk)} be the sequence generated by

Algorithm 4.1 initiated from X0 ∈ Ω1/24. If 〈∇h(Xk), Dk〉 < 0 holds for any k ≥ 0, then any

accumulation point of {Xk} is a first-order stationary point of OCP.

Remark 4.1. Algorithm 4.1 and Theorem 4.1 take FR-CG as example. In fact, if we update

the parameter sequence {τk} by the PRP [50], DY [14], or HS [29] formulas, we can obtain

similar global convergence properties as well. Interested readers are referred to the survey

paper [23] for details.

Remark 4.2. It is worth mentioning that a small penalty parameter β may lead to the failure

of convergence, while a large penalty parameter may result in a large condition number, thus

lead to slow convergence rate. Several existing works on developing penalty methods for OCP

have suggested some practically useful choice of the penalty parameter β, interested readers

can refer to [21, 61, 62] for details.

4.2. Numerical experiments

In this section, we numerically demonstrate the power of the bridge, provided by ExPen,

between the unconstrained optimization approaches and the original model OCP. All the nu-

merical experiments in this section are run in serial in a platform with AMD Ryzen 5800 H

CPU and 16 GB RAM under Ubuntu 18.10 running Python 3.7.0 and Numpy 1.20.0 [26].
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We choose nonlinear eigenvalue problem and the Brockett function minimization as the test

problems. The details of how to construct the test instances are described in the following two

subsections, respectively.

In the presented experiments, we set the penalty parameter β in ExPen as suggested in

[21, 61, 62], i.e. β = ‖∇f(X0)‖F/10, where X0 is the initial point. Besides, we choose the

nonlinear conjugate gradient solver [19,48] provided in the package SciPy 1.6.3 [57] to minimize

ExPen in R
n×p. This optimization approach is referred as ExPen-CG. We terminate ExPen-CG

when ‖∇h(Xk)‖F ≤ 10−3, or the maximum number of iterations exceeds 10000, while keeping

all the other parameters as their default values in the package.

For comparison, we first select the Riemannian conjugate gradient (RCG) solver from the

package PyManopt (version 0.2.5) [56]. RCG is one of the state-of-the-art Riemannian solvers

in Python platform. Furthermore, we also choose some state-of-the-art infeasible optimization

solvers into the comparisons. These solvers include PCAL [21], PenC [61] and SLPG [63] from

the STOP package [64]. We terminate these solvers when the maximum number of iterations

exceeds 10000 and set the tolerance for gradient as 10−3. Meanwhile, we set the other pa-

rameters in these solvers by default. Furthermore, for the final solution X̃ generated by all

the compared algorithms, we project X̃ onto the Stiefel manifold as the post-processing step

employed in [21, 61–63].

4.2.1. Nonlinear eigenvalue problems

In this subsection, we test the performance of all the compared solves in solving a class of

nonlinear eigenvalue problems arisen from electronic structure calculation [11, 42, 65]

min
X∈Rn×p

f(X) =
1

2
tr(X⊤LX) +

α

4
ρ⊤XL†ρX

s.t. X⊤X = Ip,

(4.2)

where ρX := diag(XX⊤), L is a tridiagonal matrix with 2 as diagonal entries and −1 as

subdiagonal entries. Besides, L† refers to the pseudo-inverse of L. We initiate all the compared

solvers at the same initial point, which is randomly generated over Sn,p. Tables 4.1 and 4.2

illustrate the performance of all the compared algorithms in solving problem 4.2 with different

combinations of problem parameters n, p. Here, we run each instance for 10 times and present

the averaged results. We can learn from Tables 4.1 and 4.2 that all the compared solvers

reach similar function values while ExPen-CG is comparable with the state-of-the-art solvers.

Remarkably, ExPen-CG outperforms RCG in terms of CPU time and iterations.

Furthermore, we exhibit the convergence curves of ExPen-CG in the aspect of function value

gap evaluated by f(Xk)−f(X∗), the stationarity ‖∇f(Xk)‖ and the feasibility ‖Xk
⊤Xk − Ip‖F.

Here f(X∗) is computed by RCG solver from PyManopt package that satisfies ‖gradf(X∗)‖F ≤
1012. In Fig. 4.1, we present the curves of ExPen-CG under different combination of the param-

eters. From Figs. 4.1(a), 4.1(d) and 4.1(g), we can observe that the sequence {Xk} generated

by ExPen-CG achieves almost the same function values as RCG. Moreover, Figs. 4.1(c), 4.1(f)

and 4.1(i) illustrate that the sequence generated by ExPen-CG converges towards Sn,p.

4.2.2. Brockett function minimization problems

In this subsection, we test the numerical performance of all the tested algorithms on minimizing

the Brockett function over the Stiefel manifold [58],
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Table 4.1: The results of the nonlinear eigenvalue problems with varying n.

Solver Fval Iteration Stationarity Feasibility CPU time(s)

n = 250, p = 50

ExPen-CG 2.810709e+03 567.5 5.63e-04 1.79e-14 1.16

PCAL 2.810709e+03 1528.3 8.44e-04 9.83e-15 1.54

PenC 2.810709e+03 1211.4 8.00e-04 1.01e-14 1.21

SLPG 2.810709e+03 1275.3 8.40e-04 9.97e-15 1.25

RCG 2.810709e+03 1103.1 9.78e-04 5.49e-15 4.28

n = 500, p = 50

ExPen-CG 2.810709e+03 632.6 6.83e-04 1.92e-14 3.52

PCAL 2.810709e+03 1739.5 8.67e-04 1.00e-14 4.64

PenC 2.810709e+03 1486.1 9.04e-04 9.99e-15 3.82

SLPG 2.810709e+03 1274.7 8.16e-04 9.77e-15 3.67

RCG 2.810709e+03 1111.7 9.78e-04 5.85e-15 9.96

n = 1000, p = 50

ExPen-CG 2.810709e+03 715.6 9.35e-04 2.06e-14 5.14

PCAL 2.810709e+03 1849.6 9.72e-04 1.07e-14 7.61

PenC 2.810709e+03 1580.9 9.05e-04 1.09e-14 6.18

SLPG 2.810709e+03 1303.6 7.69e-04 1.11e-14 6.12

RCG 2.810709e+03 1492.2 9.82e-04 7.80e-15 18.53

n = 1500, p = 50

ExPen-CG 2.810709e+03 787.0 7.88e-04 2.22e-14 7.29

PCAL 2.810709e+03 1680.7 9.24e-04 1.13e-14 9.70

PenC 2.810709e+03 1651.8 9.29e-04 1.10e-14 9.00

SLPG 2.810709e+03 1281.3 8.54e-04 1.10e-14 8.51

RCG 2.810709e+03 1206.9 9.83e-04 8.32e-15 20.17

n = 2000, p = 50

ExPen-CG 2.810709e+03 866.4 7.52e-04 2.35e-14 10.14

PCAL 2.810709e+03 1863.0 8.45e-04 1.16e-14 14.17

PenC 2.810709e+03 1619.0 9.18e-04 1.15e-14 11.78

SLPG 2.810709e+03 1583.1 8.96e-04 1.14e-14 10.93

RCG 2.810709e+03 1140.2 9.85e-04 8.43e-15 24.49

Table 4.2: The results of the nonlinear eigenvalue problems with varying p.

Solver Fval Iteration Stationarity Feasibility CPU time(s)

n = 1000, p = 10

ExPen-CG 3.570857e+01 165.1 6.52e-04 5.74e-15 0.23

PCAL 3.570857e+01 331.9 8.36e-04 3.03e-15 0.22

PenC 3.570857e+01 295.9 7.34e-04 3.42e-15 0.19

SLPG 3.570857e+01 266.8 8.64e-04 3.30e-15 0.13

RCG 3.570857e+01 179.7 9.68e-04 2.43e-15 0.43

n = 1000, p = 30

ExPen-CG 6.482086e+02 434.7 7.39e-04 1.07e-14 2.11

PCAL 6.482086e+02 860.0 7.21e-04 7.09e-15 1.74

PenC 6.482086e+02 846.7 8.77e-04 7.19e-15 1.61

SLPG 6.482086e+02 773.3 7.44e-04 7.11e-15 1.30

RCG 6.482086e+02 596.3 9.90e-04 5.31e-15 5.26
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Table 4.2: The results of the nonlinear eigenvalue problems with varying p (cont’d).

Solver Fval Iteration Stationarity Feasibility CPU time(s)

n = 1000, p = 50

ExPen-CG 2.810709e+03 752.3 6.95e-04 2.06e-14 5.51

PCAL 2.810709e+03 1845.1 9.58e-04 1.09e-14 7.56

PenC 2.810709e+03 1481.5 8.77e-04 1.08e-14 5.78

SLPG 2.810709e+03 1394.7 7.66e-04 1.10e-14 5.07

RCG 2.810709e+03 1019.1 9.77e-04 7.85e-15 17.62

n = 1000, p = 70

ExPen-CG 7.523209e+03 1111.8 7.15e-04 2.34e-14 14.15

PCAL 7.523209e+03 3612.8 1.61e-03 1.35e-14 19.82

PenC 7.523209e+03 2928.3 8.91e-04 1.36e-14 15.10

SLPG 7.523209e+03 2439.5 9.46e-04 1.37e-14 15.11

RCG 7.523209e+03 2248.9 9.84e-04 1.06e-14 52.19

n = 1000, p = 100

ExPen-CG 2.156071e+04 1639.7 7.49e-04 3.50e-14 29.80

PCAL 2.156071e+04 4775.8 2.77e-02 1.74e-14 39.30

PenC 2.156071e+04 4499.7 5.82e-03 1.76e-14 35.53

SLPG 2.156071e+04 4642.2 8.88e-04 1.72e-14 34.73

RCG 2.156071e+04 2871.3 1.20e-03 1.50e-14 102.80

(a) (n, p) = (250, 50) (b) (n, p) = (250, 50) (c) (n, p) = (250, 50)]

(d) (n, p) = (2000, 50) (e) (n, p) = (2000, 50) (f) (n, p) = (2000, 50)]

(g) (n, p) = (1000, 100)
(h) (n, p) = (1000, 100) (i) (n, p) = (1000, 100)

Fig. 4.1. The convergence curves of ExPen-CG on nonlinear eigenvalue problems.
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min
X∈Rn×p

f(X) =
1

2
tr(X⊤BXC)

s.t. X⊤X = Ip,

(4.3)

where B ∈ R
n×n and C ∈ R

p×p are two randomly generated symmetric matrices. We initiate

ExPen-CG and RCG at the same point, which is randomly generated over Sn,p. Tables 4.3

and 4.4 illustrate the performance of these compared algorithms with different combinations of

problem parameters n and p. Here, we run each instance for 10 times and present the averaged

results. We observe that all the compared algorithms achieve almost the same function values,

and ExPen-CG achieves comparable performance as all the compared algorithms. In particular,

ExPen-CG outperforms RCG in all the test instances.

Table 4.3: The results of the Brockett function minimization problems with varying n.

Solver Fval Iteration Stationarity Feasibility CPU time(s)

n = 250, p = 50

ExPen-CG -9.611694e+00 962.7 7.97e-04 1.64e-14 2.99

PCAL -9.610215e+00 2209.5 9.96e-04 8.46e-15 3.07

PenC -9.610213e+00 2326.1 9.93e-04 8.43e-15 3.26

SLPG -9.610306e+00 1848.4 9.46e-04 8.27e-15 2.45

RCG -9.613055e+00 2417.4 9.92e-04 3.84e-15 12.39

n = 500, p = 50

ExPen-CG -9.570277e+00 859.4 7.45e-04 1.69e-14 6.97

PCAL -9.568621e+00 1917.1 9.90e-04 8.20e-15 6.81

PenC -9.568620e+00 2176.8 9.90e-04 8.29e-15 7.61

SLPG -9.568844e+00 1844.6 9.44e-04 8.11e-15 6.15

RCG -9.571521e+00 2172.6 9.96e-04 3.15e-15 24.76

n = 1000, p = 50

ExPen-CG -1.056750e+01 816.8 7.55e-04 1.69e-14 9.17

PCAL -1.056576e+01 1789.7 9.91e-04 8.22e-15 10.03

PenC -1.056577e+01 2190.5 9.90e-04 8.20e-15 11.79

SLPG -1.056600e+01 1637.0 9.48e-04 7.97e-15 10.81

RCG -1.056893e+01 3078.1 9.94e-04 3.07e-15 49.66

n = 1500, p = 50

ExPen-CG -1.059979e+01 723.9 7.62e-04 1.63e-14 12.14

PCAL -1.059830e+01 1632.3 9.87e-04 7.80e-15 14.00

PenC -1.059828e+01 2004.8 9.96e-04 7.87e-15 16.55

SLPG -1.059850e+01 1518.6 9.28e-04 7.90e-15 12.49

RCG -1.060131e+01 2845.3 9.96e-04 2.79e-15 66.11

n = 2000, p = 50

ExPen-CG -1.098884e+01 712.2 7.63e-04 1.67e-14 16.49

PCAL -1.098736e+01 1584.2 9.81e-04 7.97e-15 19.29

PenC -1.098741e+01 1837.1 9.67e-04 7.93e-15 21.78

SLPG -1.098743e+01 1514.2 9.61e-04 7.80e-15 15.59

RCG -1.099041e+01 3106.6 9.94e-04 2.61e-15 101.91
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Table 4.4: The results of the Brockett function minimization problems with varying p.

Solver Fval Iteration Stationarity Feasibility CPU time(s)

n = 1000, p = 10

ExPen-CG -2.551708e+00 343.1 6.20e-04 4.62e-15 0.86

PCAL -2.551070e+00 623.4 9.50e-04 2.19e-15 0.98

PenC -2.551053e+00 675.0 9.78e-04 1.90e-15 1.01

SLPG -2.551101e+00 582.3 9.41e-04 2.21e-15 0.87

RCG -2.552008e+00 1278.9 9.91e-04 1.09e-15 5.69

n = 1000, p = 30

ExPen-CG -6.479578e+00 576.9 6.95e-04 9.92e-15 3.16

PCAL -6.478547e+00 1345.6 9.89e-04 4.87e-15 3.99

PenC -6.478539e+00 1553.4 9.94e-04 5.10e-15 4.42

SLPG -6.478541e+00 1289.7 9.72e-04 4.86e-15 4.81

RCG -6.480546e+00 2474.2 9.95e-04 2.11e-15 22.56

n = 1000, p = 50

ExPen-CG -1.032617e+01 838.2 7.45e-04 1.64e-14 9.00

PCAL -1.032438e+01 1698.3 9.94e-04 8.25e-15 9.66

PenC -1.032442e+01 2127.4 9.88e-04 8.22e-15 11.58

SLPG -1.032457e+01 1522.5 9.39e-04 8.13e-15 9.71

RCG -1.032752e+01 2895.4 9.96e-04 3.10e-15 49.96

n = 1000, p = 70

ExPen-CG -1.312272e+01 850.7 7.84e-04 2.02e-14 12.65

PCAL -1.312096e+01 2131.2 9.96e-04 1.03e-14 14.91

PenC -1.312099e+01 2492.5 9.97e-04 1.03e-14 16.79

SLPG -1.312106e+01 1848.2 9.54e-04 1.01e-14 16.20

RCG -1.312455e+01 3298.1 9.96e-04 3.74e-15 69.18

n = 1000, p = 100

ExPen-CG -2.039827e+01 1169.3 7.91e-04 2.69e-14 22.14

PCAL -2.039602e+01 2413.2 9.97e-04 1.31e-14 24.27

PenC -2.039603e+01 2838.3 9.94e-04 1.31e-14 27.86

SLPG -2.039626e+01 2289.9 9.43e-04 1.29e-14 24.60

RCG -2.040059e+01 4261.6 9.96e-04 4.85e-15 128.97

5. Conclusion

The optimization over the Stiefel manifold has a close connection with unconstrained opti-

mization. To efficiently extend existing unconstrained optimization approaches to their Stiefel

versions and establish the corresponding theoretical analysis, most existing approaches are

mainly based on the frameworks summarized in [4]. These approaches always involve comput-

ing the retractions and parallel/vector transports. However, computing retractions or parallel

transport on the Stiefel manifold lack efficiency or scalability, while computing the vector trans-

port can hardly inherit nice techniques in theoretical analysis.

In this paper, we present a novel exact smooth penalty function and its corresponding
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penalty model ExPen for OCP. We show that ExPen is well-defined under mild assumptions

and study its theoretical properties. As illustrated in Figs. 3.1 and 3.2, we have proved the first-

order and second-order relationships between OCP and ExPen, respectively. These properties

guarantee that ExPen and OCP share first-order or second-order stationary points or local

minimizers with a sufficiently large given penalty parameter.

In conclusion, we can directly adopt unconstrained optimization approaches to solve OCP

through the bridge built by ExPen. Meanwhile, we can easily inherit the nice convergence prop-

erties of those approaches. We use the nonlinear conjugate gradient method as an instance. We

present its ExPen version and establish its global convergence. It is worth mentioning that this

ExPen version is performed in Euclidean space and hence avoids computing the retractions or

parallel transports on the Stiefel manifold. Our present example highlights that those progress

in nonconvex unconstrained optimization will immediately benefit optimization over the Stiefel

manifold through ExPen. Moreover, the presented numerical examples further address the great

potential of ExPen.
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