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Abstract

Optimization problem of cardinality constrained mean-variance (CCMV) model for

sparse portfolio selection is considered. To overcome the difficulties caused by cardinality

constraint, an exact penalty approach is employed, then CCMV problem is transferred

into a difference-of-convex-functions (DC) problem. By exploiting the DC structure of the

gained problem and the superlinear convergence of semismooth Newton (ssN) method, an

inexact proximal DC algorithm with sieving strategy based on a majorized ssN method

(siPDCA-mssN) is proposed. For solving the inner problems of siPDCA-mssN from du-

al, the second-order information is wisely incorporated and an efficient mssN method is

employed. The global convergence of the sequence generated by siPDCA-mssN is proved.

To solve large-scale CCMV problem, a decomposed siPDCA-mssN (DsiPDCA-mssN) is

introduced. To demonstrate the efficiency of proposed algorithms, siPDCA-mssN and

DsiPDCA-mssN are compared with the penalty proximal alternating linearized minimiza-

tion method and the CPLEX (12.9) solver by performing numerical experiments on real-

word market data and large-scale simulated data. The numerical results demonstrate that

siPDCA-mssN and DsiPDCA-mssN outperform the other methods from computation time

and optimal value. The out-of-sample experiments results display that the solutions of

CCMV model are better than those of other portfolio selection models in terms of Sharp

ratio and sparsity.

Mathematics subject classification: 65K05, 90C06, 90C26, 91G80.

Key words: Sparse portfolio selection, Cardinality constrained mean-variance model, In-

exact proximal difference-of-convex-functions algorithm, Sieving strategy, Decomposed
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1. Introduction

The classical Markowitz model [1], also called mean-variance (MV) model, was proposed

to find the optimal portfolio selection between different assets in a frictionless market. Based

on the MV model, researchers have conducted a large number of studies on the out-of-sample

performance and sparsity of the portfolios. On one hand, some researches [2–6] have been

carried out to improve the out-of-sample performance of allocation. On the other hand, many

researches [7–12] focused on constructing new MV models to find sparse portfolios, which can

greatly reduce the administrative and transaction costs. One common class of the approaches for
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obtaining sparse solutions is introducing sparse regularization strategies in the MV model [7–9].

Another popular class of the methods for getting sparse portfolios is introducing cardinality

constraint into the MV model [10–12]. The cardinality constrained MV (CCMV) model can be

expressed as

min
x∈Rn

F (x) =
1

2
x⊤Qx

s.t. e⊤x− 1 = 0,

r −R⊤x ≤ 0,

0 ≤ x ≤ b,

‖x‖0 ≤ K,

(1.1)

where ‖x‖0 denotes the number of the non-zero entries of x ∈ R
n and K is the upper bound

of the number of investments. Q is the covariance matrix of the n assets, which is symmetric

positive semidefinite. e ∈ R
n is the vector with all components one. R ∈ R

n is the vector of

the expected return of the n assets. r ∈ R is the minimum profit target. The box constraint

0 ≤ x ≤ b means that the short-selling is prohibited and the investment proportion of i-th

asset has an upper bound bi.

The CCMV model in (1.1) belongs to the class of the cardinality constrained quadratic

optimization problems, which have been widely studied, see [13–18]. Due to the combinatorial

nature of cardinality function, the cardinality constrained optimization problems are NP-hard

in most cases [13]. The common optimization methods for the cardinality constrained problem

mainly fall into two main categories: integer programming methods [10, 13, 17, 19, 20] and

heuristic methods [5, 12, 15, 21]. In the class of integer programming methods, the cardinality

constrained problem was reformulated into a mixed integer programming, then the branch-

and-bound framework was used to solve it. The heuristic algorithms for solving cardinality

constrained problem mainly include genetic algorithm, simulated annealing algorithm and tabu

search algorithm. However, both these two kinds of methods are computationally expansive

and time consuming, especially when the scale of problem is large.

Recently, by using the alternating iteration method and sparse projection approach, some

novel and competitive methods were proposed to solve the cardinality constrained optimization

problems. In 2010, Lu et al. [22, 23] proposed a penalty decomposed (PD) method for solving

the cardinality constrained problem, in which, the quadratic penalty subproblems were solved

by a block coordinate descent method. By making full use of the advantages of PD method and

a proximal alternating linearized minimization (PALM) method [24], Teng et al. [25] proposed

a penalty proximal alternating linearized minimization (PPALM) method for large-scale sparse

portfolio problems. As shown in [25], PPALM method can efficiently find the support set

of the local optimal solution of CCMV problem, and PPALM outperforms PD method from

computational time and the performance of solutions. However, the parameter associated with

the proximal term of PPALM method need to be larger than the Lipschitz constant of penalty

subproblem to guarantee its convergence, which would limit its convergence rate severely. In

addition, the penalty parameter is difficult to set because the large penalty parameter usually

leads to ill-conditioned penalty subproblem.

In addition to the above methods those directly dealing with the cardinality constraint,

another common method is to transfer the cardinality constraint problems into the l0-norm

regularization problems. For the l0-norm regularization optimization problem, many con-

vex/nonconvex relaxation approaches are usually used to approximate the l0-norm. On one
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hand, the convex relaxation of the l0-norm is one of the most commonly used methods in sparse

optimization problems, which gives rise to a convex optimization problem. One of the most suc-

cessful examples is the compressed sensing, in which, the l0-norm usually is replaced by the l1-

norm. However, this may reduce the sparsity of the solution and lead to poor performance [7,26].

On the other hand, some nonconvex relaxations of the l0-norm have been proposed, including

the exponential concave function approximation [27], the Capped-l1 approximation [28], the

piecewise linear approximation [29, 30], the smoothly clipped absolute deviation (SCAD) ap-

proximation [31] and the logarithm approximation [32]. However, these convex/nonconvex

relaxation methods only approximate the cardinality constraint, which cannot be completely

equivalent to the original cardinality constrained problems. In order to more precisely deal with

the cardinality constraint, a popular nonconvex approach [33] is used to equivalently transfer

the cardinality constraint ‖x‖0 ≤ K into a DC constraint ‖x‖1 − ‖x‖(K) = 0. Hence, the

CCMV problem in (1.1) can be equivalently reformulated as

min
x∈Rn

F (x) =
1

2
x⊤Qx

s.t. e⊤x− 1 = 0,

r −R⊤x ≤ 0,

0 ≤ x ≤ b,

‖x‖1 − ‖x‖(K) = 0.

(1.2)

It should be pointed out that such an equivalent transformation does not eliminate the diffi-

culties caused by the cardinality constraint. Fortunately, based on the DC structure of this

constraint, we can employ a penalty approach to penalize the DC constraint into the objective

function of (1.2). Therefore, a quadratic DC problem can be obtained, which is formulated as

min
x∈Rn

Fc(x) =
1

2
x⊤Qx + c(‖x‖1 − ‖x‖(K))

s.t. e⊤x− 1 = 0,

r −R⊤x ≤ 0,

0 ≤ x ≤ b.

(1.3)

Theoretically, we can prove that such a penalty approach is an exact penalty method, which

guarantees the equivalence of solving (1.3) with solving (1.2) or (1.1). Consequently, (1.3) can

be solved under the framework of DC programming approach. For a sparse portfolio selection

problem with a feasible set {x ∈ R
n : e⊤x − 1 = 0,x ≥ 0, ‖x‖0 ≤ K}, Gotoh et al. [33]

provided an exact penalty result and gave a proximal DC algorithm to solve the gained penalized

problem. In their algorithm framework, the inner problems of the proximal DC algorithm need

to be solved exactly.

For large-scale DC programming minx f1(x) − f2(x), it may be impossible or unnecessary

to solve the convex inner problems of a DC algorithm (DCA) exactly. In general, it takes a

lot of computation to solve an optimization problem to a high precision by using an iterative

algorithm. Hence, it is computationally expensive to solve all the inner problems of DCA to a

high precision. In particular, it is unnecessary to solve the inner problems to a high precision

at the initial iteration of DCA. To deal with this issue, a popular approach is to consider the

inexactness of solution when solving the inner problem of DCA. The inner problem of proximal
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DCA in step k can be expressed as

min
x

G(x) := f1(x) − 〈wk,x〉 +
α

2
‖x− xk‖2,

where wk ∈ ∂f2(xk). Let xk+1 be an inexact solution of minx∈Rn G(x), then there exists an

inexact term ∆k+1 such that ∆k+1 ∈ ∂G(xk+1). To ensure the convergence of the general

inexact proximal DCA, the inexact solution xk+1 and the corresponding inexact term ∆k+1

were required to satisfy the termination condition similar to ‖∆k+1‖ ≤ ηk‖xk+1 − xk‖ with a

given constant α ≥ ηk ≥ 0, see [36]. Since ∆k+1 is related to xk+1 implicitly, the algorithm for

solving the inner problem may be unable to terminate even if the inner problem is solved to the

higher precision. Hence, this inexact strategy is difficult to implement in practical application,

especially when the problem is nonsmooth. Therefore, it remains a challenging work to design an

inexact proximal DCA that can guarantee the theoretical convergence and has good numerical

performance for solving the large-scale DC programming.

For solving (1.3), we propose an efficient inexact proximal DC algorithm with sieving strat-

egy (siPDCA) as the outer iterative algorithm of the whole algorithm framework. To ensure

that the whole inexact algorithm is convergent and the method for solving inner problems can

be terminated, we first use a simple and numerically implementable inexact condition for solv-

ing the inner problems and then employ a “sieve” to perform a post-process on the inexact

solution. It is essential to efficiently solve the inner problems of siPDCA for the efficiency

of whole algorithm framework. By making full use of the semismooth properties in the dual

inner problems and the superlinear convergence of the semismooth Newton (ssN) method, it is

natural to adopt a majorized ssN (mssN) method to solve the inner problems from the dual.

As a result, we introduce an efficient algorithm framework, called siPDCA based on a mssN

method (siPDCA-mssN), to solve (1.3). Intuitively, it is computationally expensive to solve the

Newton equations. However, we make full use of the second-order sparsity of problem and the

sparsity of solutions during deigning mssN method, which makes the computational cost of the

whole mssN method comparable to that of a first-order algorithm, or even lower. Moreover, in

mssN method, a numerically efficient algorithm is used to compute the Euclidean projection on

a set composed of an inequality constraint and n box constraints. We prove that the sequence

generated by siPDCA-mssN globally converges to a stationary point of (1.3) and the stationary

point is also the local minimizer of the CCMV problem if it satisfies the cardinality constraint.

Based on the violation of first-order optimality conditions, Wang et al. [50] proposed a

decomposed strategy to reduce the large-scale sparse optimization problem into a much s-

mall problem. Inspired by Wang et al.’s work, we employ an efficient decomposed strategy

into siPDCA-mssN for solving the large-scale CCMV problem, and the resulting algorithm

is called decomposed siPDCA-mssN (DsiPDCA-mssN). At each iteration of DsiPDCA-mssN,

only a small-scale CCMV problem is solved by siPDCA-mssN, which is efficient in terms of

computation and storage. We prove that the solution sequence generated by DsiPDCA-mssN

subsequentially converges to a local minimizer of the original CCMV problem under some mild

assumptions.

The rest of this paper is organized as the follows. In Section 2, the exact penalty property

of (1.3) is analyzed. In Section 3, the siPDCA-mssN is proposed for solving (1.3), whose inner

problems are solved by the mssN method from the dual. In Section 4, the global convergence

of the sequence generated by siPDCA-mssN is proved. In Section 5, the DsiPDCA-mssN is

proposed to solve the large-scale CCMV problem. In Section 6, the numerical experiments are

performed on some real-word market data sets and large-scale stimulated data sets to display
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the numerical effectiveness of siPDCA-mssN and DsiPDCA-mssN for solving (1.1).

Below are some common notations to be used in this paper. We use ∅ to denote the empty

set. ‖ · ‖ is used to represent the l2-norm of vectors and matrices. Let ‖x‖(K) be the Ky Fan

K-norm of x, which is given as ‖x‖(K) =
∑K

i=1 |x(i)| with |x(1)| ≥ · · · ≥ |x(n)|. We use ΠC(x)

to denote an orthogonal projection of x on set C. The Proxp(x) is used to denote the proximal

projection of function p at x. Let δC(x) be the indicate function of the set C at x. We use

λ1(Q) to denote the largest eigenvalue of positive semidefinite matrix Q. For a given positive

integer t, It is used to denotes the identity matrix of size t.

2. Exact Penalty Approach for the Cardinality Constraint

Mean-variance Problem

Let Ω = {x ∈ R
n : e⊤x− 1 = 0, r −R⊤x ≤ 0,0 ≤ x ≤ b}. In order to ensure that (1.1) is

feasible and that all the portfolios of size K have a chance to be selected, we give the following

assumption about the set Ω.

Assumption 2.1. Suppose that min1≤i≤n bi ≥ 1
K

and Ω 6= ∅.

Let p(x) := ‖x‖1−‖x‖(K) and F := {x ∈ Ω : p(x) = 0}. It should be noted that Ω is a bounded

set and under Assumption 2.1, both Ω and F are nonempty compact sets. Since p(x) ≥ 0, when

the value of c is large enough, the penalty term will give a heavy cost for constraint violation

p(x) > 0. Consequently, the solution of (1.1) can be obtained by iteratively solving (1.3) with

increasing penalty parameter c.

Some recent works [33–35] tried to find the exact penalty parameter values for various

cardinality constrained problems under some assumptions. Based on the feasible set F ′ = {x ∈
R

n : e⊤x − 1 = 0,x ≥ 0, ‖x‖0 ≤ K} and the Lipschitz smoothness of objective function,

an exact penalty result for the sparse portfolio selection problem was given in [33]. For the

additional constraints in feasible set F , the constraint R⊤x ≥ r ensures that the optimal

portfolio satisfies a minimum profit target and the constraints x ≤ b require that the investment

proportion of each asset is bounded above. Thus these constraints are meaningful for portfolio

selection. However, these additional constraints make the theoretical analysis of the exact

penalty of our model more difficult than that in [33].

Following from [34, Theorem 2 and Proposition 1], we give the following two properties about

the error bound of dist(x,F) for any x ∈ Ω by using the compactness of F and Assumption

2.1.

Proposition 2.1. For any ǫ > 0 and z ∈ F , there exists a constant ρ(z, ǫ) > 0 such that

dist(x,F) ≤ ρ(z, ǫ)p(x), ∀x ∈ B(z, ǫ) ∩ Ω. (2.1)

Proof. Let x be any point in B(z, ǫ) ∩ Ω. If x ∈ F , then dist(x,F) = 0 and p(x) = 0,

which implies that (2.1) holds. Next, we prove that there exists a constant ρ(z, ǫ) such that

dist(x,F) ≤ ρ(z, ǫ)p(x), ∀x ∈ [B(z, ǫ) ∩ Ω] \ F .

Since x ∈ [B(z, ǫ) ∩ Ω] \ F , then p(x) > 0 and dist(x,F) > 0. For any τ > 1, consider the

following function:

h(x) = p(x) + τ
p(x)

dist(x,F)
‖x− x‖, x ∈ Ω.
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Notice that h(x) is lower semicontinuous on Ω, lower bounded and coercive (lim‖x‖→+∞ h(x) =

+∞). Hence, we can suppose that an optimal solution of minx∈Ω h(x) is obtained at y ∈ Ω,

i.e.,

h(y) =p(y) + τ
p(x)

dist(x,F)
‖y − x‖ ≤ h(x)

=p(x) + τ
p(x)

dist(x,F)
‖x− x‖, ∀x ∈ Ω. (2.2)

This implies that

p(y) ≤ p(x) + τ
p(x)

dist(x,F)
‖x− y‖, ∀x ∈ Ω. (2.3)

Since p(y) ≥ 0, by setting x = x in (2.2), it holds that

τ
p(x)

dist(x,F)
‖y − x‖ ≤ p(x).

This, together with τ > 1, implies that ‖y − x‖ < dist(x,F) ≤ ǫ and y ∈ [B(z, 2ǫ) ∩ Ω] \ F .

Consequently, it holds that p(y) = ‖y‖1 − ‖y‖(K) > 0. Let ī and j̄ be the indices of the K-th

and K + 1-st largest elements of y, respectively. From p(y) > 0 and Assumption 2.1, we have

0 < yj̄ ≤ yī <
1

K
≤ min(bī, bj̄), (2.4)

where the third inequality is due to e⊤y = 1,y ≥ 0 and yj̄ > 0. Let eī and ej̄ be the unit

vectors in the corresponding coordinate directions. We shall distinguish the following two cases.

(1) When Rī ≥ Rj̄ , let ŷ = y − t(ej̄ − eī), where t is a sufficiently small positive number such

that 0 < t ≤ yj̄ and yī + t ≤ bī, then we have ŷ ∈ Ω and

‖ŷ − y‖ =
√

2t, p(y) − p(ŷ) = ‖ŷ‖(K) − ‖y‖(K) = t > 0.

Since τ > 1 is arbitrary, by setting x = ŷ in (2.3), it holds that dist(x,F) ≤
√

2p(x).

(2) When Rī < Rj̄ , let ŷ = y − (yī − t)(eī − ej̄), where t is a positive number such that

0 < t < yj̄ and yī + yj̄ − t ≤ bj̄ , then we have ŷ ∈ Ω and

‖ŷ − y‖ =
√

2(yī − t), p(y) − p(ŷ) = ‖ŷ‖(K) − ‖y‖(K) = yj̄ − t > 0.

Thus, by setting x = ŷ in (2.3), from the arbitrariness of τ > 1, it holds that dist(x,F) ≤√
2 yī−t

yj̄−t
p(x). Therefore, by setting ρ(z, ǫ) = max(

√
2,
√

2 yī−t

yj̄−t
), we obtain that (2.1) holds.

This completes the proof. �

Proposition 2.2. There exists a constant ρ > 0 such that for any x ∈ Ω,

dist(x,F) ≤ ρp(x). (2.5)

Proof. By the compactness of F , there exist finite points z1, · · · , zN in F and ǫ(zi) > 0, i =

1, · · · , N such that

F ⊂
N⋃

i=1

B(zi, ǫ(zi)/2).
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From Proposition 2.1, it holds that for each i ∈ {1, · · · , N}, there exists a constant ρ(zi, ǫ(zi))

such that

dist(x,F) ≤ ρ(zi, ǫ(zi))p(x), ∀x ∈ B(zi, ǫ(zi)) ∩ Ω. (2.6)

Let ǫ = min1≤i≤N ǫ(zi) and ρ̂ = max1≤i≤N ρ(zi, ǫ(zi)). For any x ∈ Ω satisfying dist(x,F) ≤
ǫ/2, there exists a z ∈ F such that ‖x− z‖ ≤ ǫ/2. Then there is an index i ∈ {1, · · · , N} such

that z ∈ B(zi, ǫ(zi)/2). Consequently, it holds that

‖x− zi‖ ≤ ‖x− z‖ + ‖z − zi‖ ≤ ǫ
2 + ǫ(zi)

2 ≤ ǫ(zi).

This, together with (2.6), implies that dist(x,F) ≤ ρ(zi, ǫ(zi))p(x) ≤ ρ̂p(x) for all x ∈ Ω

satisfying dist(x,F) ≤ ǫ/2. Next, let x ∈ Ω with dist(x,F) > ǫ/2. We say that there is a

constant β > 0 such that

p(x) ≥ β, ∀x ∈ Ω, dist(x,F) >
ǫ

2
. (2.7)

If this is not the case, suppose for contradiction that there is a sequence {xk} such that for

each k, p(xk) < βk with βk > 0 and limk→∞ βk = 0. By the compactness of Ω, without loss

of generality, assume that xk converges to a x ∈ Ω. From the lower semicontinuity of p(x), it

holds that p(x) = 0, i.e., x ∈ F , which yields a contradiction that dist(xk,F) ≤ ‖xk −x‖ → 0.

Since Ω is bounded, then dist(·,F) is bounded above on Ω, i.e., there is a constant s > 0 such

that dist(x,F) ≤ s, ∀x ∈ Ω. Hence, we have

dist(x,F) ≤ s ≤ s

β
p(x), ∀x ∈ Ω, dist(x,F) >

ǫ

2
. (2.8)

By setting ρ = max(ρ̂, s
β

), it holds that for any x ∈ Ω, dist(x,F) ≤ ρp(x). This completes the

proof. �

It should be noted that F (x) = 1
2x

⊤Qx is Lipschitz continuous on Ω, based on which, we can

give the following global exact penalty property of (1.3) with respect to (1.1).

Theorem 2.1. Let L be the Lipschitz constant of F (x) on Ω. Then for any c > ρL with ρ same

as the one in Proposition 2.2, xc ∈ Ω is a global minimizer of (1.3) with penalty parameter

c > ρL if and only if xc is also a global minimizer of (1.1).

Proof. For sufficiency, if xc is a global minimizer of (1.1), then p(xc) = 0 and xc is a feasible

solution of (1.3). From Proposition 2.2, it holds that ∀x ∈ Ω,

Fc(x) = F (x) + cp(x)

≥ F (x) + ρLp(x)

≥ F (x) + L‖x− ΠF (x)‖
≥ F (ΠF (x)) ≥ F (xc) = Fc(xc),

(2.9)

where the first inequality holds from c > ρL and p(x) ≥ 0, the second inequality holds from

Proposition 2.2 and dist(x,F) = ‖x − ΠF (x)‖, the third inequality is due to the Lipschitz

continuity of F (x) on Ω, the last inequality follows from the optimality of xc to (1.1). These

inequalities implies that xc is also a global minimizer of (1.3).

For necessary, if xc ∈ Ω is a global minimizer of (1.3) with c > ρL. Notice that if ‖xc‖0 ≤ K,

then we have xc ∈ F , p(xc) = 0 and ∀x ∈ F ,

F (x) = Fc(x) ≥ Fc(xc) = F (xc),
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where the first equality follows from p(x) = 0, the inequality is due to the optimality of xc to

(1.3). This implies that xc is also a global minimizer of (1.1) if ‖xc‖0 ≤ K. Thus, it is sufficient

to prove that ‖xc‖0 ≤ K. Suppose that ‖xc‖0 > K, then we have p(xc) > 0. Consequently, it

holds that
Fc(xc) = F (xc) + cp(xc)

> F (xc) + ρLp(xc)

≥ F (xc) + L‖xc − ΠF (x)‖
≥ F (ΠF (x)) = Fc(ΠF (x)),

where the first inequality holds from c > ρL and p(xc) > 0, the third inequality is due to the

Lipschitz continuity of F (x) on Ω, the last equality is due to p(ΠF (xc)) = 0. These inequalities

implies that Fc(xc) > Fc(ΠF (xc)) with ΠF (xc) ∈ F ⊂ Ω, which is contradict to the optimality

of xc to (1.3). Hence, ‖xc‖0 ≤ K and xc is also a global minimizer of (1.1). This completes

the proof. �

By using Proposition 2.2 and Lipschitz continuity of F (x) on Ω, we display in the next

proposition the local exact penalty property of (1.3) with respect to (1.1).

Theorem 2.2. Let L be the Lipschitz constant of F (x) on Ω. For any c > ρL with ρ same as

the one in Proposition 2.2, then any local minimizer x ∈ F of (1.1) is also a local minimizer

of (1.3) with penalty parameter c > ρL. Conversely, if x ∈ Ω is a local minimizer of (1.3) with

penalty parameter c > 0 and ‖x‖0 ≤ K, then x is also a local minimizer of (1.1).

Proof. For the first part, if x ∈ F is a local minimizer of (1.1), then p(x) = 0 and

F (x) ≤ F (x), ∀x ∈ B(x, ε) ∩ F , ε > 0. (2.10)

It should be noted that p(x) = ‖x‖1 − ‖x‖(K) is continuous, then there must exist ε̂ > 0

such that p(x) ≤ ε
2ρ for all x ∈ B(x, ε̂). By setting 0 < ε̃ ≤ min( ε

2 , ε̂), it holds that for any

x ∈ B(x, ε̃) ∩ Ω, ΠF (x) ∈ F and

dist(x,F) = ‖x− ΠF (x)‖ ≤ ρp(x) ≤ ε

2
, (2.11)

where the first inequality follows from Proposition 2.2. This implies that for any x ∈ B(x, ε̃)∩Ω,

‖x− ΠF(x)‖ ≤ ‖x− ΠF(x)‖ + ‖x− x‖ ≤ ε

2
+ ε̃ ≤ ε,

i.e., ΠF (x) ∈ B(x, ε) ∩ F . This, together with Proposition 2.2 and (2.10), yields that for any

x ∈ B(x, ε̃) ∩ Ω,

Fc(x) = F (x) ≤ F (ΠF (x))

≤ F (x) + L‖x− ΠF (x)‖
≤ F (x) + ρLp(x)

≤ F (x) + cp(x) = Fc(x),

where the second inequality follows from the Lipschitz continuity of F (x) on Ω, the last in-

equality is due to c > ρL. This implies that x is also a local minimizer of (1.3) with c > ρL.

For the second part, if x ∈ Ω is a local minimizer of (1.3) and ‖x‖0 ≤ K, then p(x) = 0

and x ∈ F . Consequently, it holds that ∀x ∈ B(x, ε) ∩ F ,

F (x) = Fc(x) ≤ Fc(x) = F (x),
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where the inequality follows from the local optimality of x for (1.3) with penalty parameter

c > 0, the last equality is due to p(x) = 0. This implies that x is also a local minimizer of

(1.1). This completes the proof. �

Remark 2.1. Notice that the constant ρ(z, ǫ) > 0 in Proposition 2.1, the upper bound s of

dist(x,F) with x ∈ Ω and the constant β in Proposition 2.2 are difficult to estimate, thus it

is impractical to directly compute the constant ρ in practical numerical experiment. Based on

Theorem 2.1, we employ a strategy of gradually increasing the penalty parameter c. When c is

large enough, i.e., c > ρL, the global optimal solution of (1.3) with penalty parameter c is also

a global optimal solution of (1.1).

3. An Inexact Proximal DC Algorithm with Sieving Strategy Based

on a Majorized Semismooth Newton Method

Since the variable x is required to satisfy 0 ≤ x ≤ b, then ‖x‖1 = e⊤x. Consequently, the

DC problem in (1.3) can be equivalently reformulated as follows:

min
x∈Rn

Jc(x) =
1

2
x⊤Qx + c(e⊤x− ‖x‖(K))

s.t. e⊤x− 1 = 0,

r −R⊤x ≤ 0,

0 ≤ x ≤ b.

(3.1)

Remark 3.1. Since e⊤x = 1, then it holds that (1.3) and (3.1) have the same optimal solution

as the following problem:

min
x∈Rn

1

2
x⊤Qx− c‖x‖(K)

s.t. e⊤x− 1 = 0,

r −R⊤x ≤ 0,

0 ≤ x ≤ b.

(3.2)

Hence, from the perspective of numerical experiments, there is no essential difference between

(3.1) and (3.2). However, from the perspective of the theoretical analysis, for the consistency

of later convergence analysis, we retain the term e⊤x in objective function of (3.1).

It should be noted that (3.1) can be easily rewritten as a standard unconstrained DC pro-

gramming by adding the indicator function of the feasible set Ω into its objective function.

However, the computational cost of the Euclidean projection ΠΩ(x) is expensive. To address

this issue, we divided the feasible set Ω into two parts: D =
{
x ∈ R

n : e⊤x− 1 = 0
}

and

C =
{
x ∈ R

n : r −R⊤x ≤ 0,0 ≤ x ≤ b
}

. As a result, the Euclidean projection on either the C
or the D can be efficiently computed. Evidently, the DC problem in (3.1) can be reformulated

into a standard DC programming:

min
x

f1(x) − gc(x), (3.3)

where

f1(x) = 1
2x

⊤Qx + ce⊤x + δC(x) + δD(x), gc(x) = c‖x‖(K).
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Let

fc(x) = 1
2x

⊤Qx + ce⊤x.

The DC programming (3.3) can be efficiently solved by a proximal DC algorithm (PDCA), the

details are shown in Algorithm 3.1.

Algorithm 3.1. Proximal DC algorithm for (3.3)

Step 0. Give c > 0, tolerance error ε ≥ 0 and proximal parameter α > 0. Initialize

x0 ∈ R
n. Choose ξ0 ∈ ∂gc(x

0). Set k = 0.

Step 1. Compute xk+1 by solving the following inner problem:

xk+1 = arg min
x∈D

Gk
c (x) = fc(x) + δC(x) − 〈x, ξk〉 +

α

2
‖x− xk‖2, (3.4)

Step 2. If ‖xk+1 − xk‖ ≤ ε, stop and return xk+1.

Step 3. Choose ξk+1 ∈ ∂gc(x
k+1). Set k := k + 1 and go to Step 1.

Remark 3.2. The subdifferential of Ky Fan K-norm at xk+1 can be expressed as

∂‖xk+1‖(K) = argmax
s

{
n∑

i=1

xk+1
i si :

n∑

i=1

|si| = K,−1 ≤ si ≤ 1, i = 1, . . . , n

}
,

see [33, 37, 38]. Let the elements of |xk+1| be sorted nonincreasing, i.e., |xk+1
(1) | ≥ · · · ≥ |xk+1

(n) |,
then the subgradient ξk+1 ∈ ∂gc(x

k+1) can be computed by

ξk+1
(i) =

{
c sign(xk+1

(i) ), if i = 1, · · · ,K
0, if i = K + 1, · · · , n

Since the convex inner problem in (3.4) has no closed-form solution, it is impossible and

unnecessary to solve this inner problem exactly by an iterative algorithm in practice. Gen-

erally, solving an optimization problem to a high precision is computationally expensive and

time-consuming. Therefore, it is unnecessary to solve all inner problems to a high precision.

Especially in the initial stage of PDCA, we only need to solve the inner problem to a low or

medium precision. In light of this, we take the inexactness of the solution of (3.4) into account.

Let xk+1 be an inexact solution of (3.4), equivalently, we say xk+1 is an optimal solution of

the following problem:

min
x∈Rn

fc(x) + δC(x) − 〈x, ξk〉 +
α

2
‖x− xk‖2 − 〈∆k+1

1 ,x〉

s.t. e⊤x− 1 = ∆k+1
2 ,

(3.5)

where ∆k+1
1 and ∆k+1

2 are the inexact terms.

Remark 3.3. The inexact terms (∆k+1
1 ,∆k+1

2 ) are unknown before computing the inexact

solution xk+1.

To introduce an efficient inexact proximal DC algorithm (iPDCA), we need to deal with the

following three issues: (1) designing an inexact strategy to ensure the theoretical convergence

of the iPDCA; (2) giving an efficient algorithm to solve the inner problem of the iPDCA; (3)

finding a strategy to compute or estimate (∆k+1
1 ,∆k+1

2 ) so that the inexact strategy can be

numerically implemented.
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3.1. An effective inexact strategy and algorithm framework

For a given ǫk+1 > 0, if max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ǫk+1, we say the point xk+1 is an ǫk+1-

inexact solution of (3.4). In common inexact algorithms [39, 40], the sequence {ǫk} is assumed

to satisfy the condition
∑∞

k=0 ǫk < ∞. Although this inexact strategy is numerically im-

plementable, it cannot guarantee the convergence of the corresponding iPDCA. Generally, to

ensure the convergence of iPDCA for (3.3), an inexact condition similar to that of [36, 41] can

be given as follows:

max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ηk‖xk+1 − xk‖, (3.6)

where 0 ≤ ηk ≤ α. The general iPDCA for (3.3) is shown in Algorithm 3.2.

It should be noted that the inexact terms (∆k+1
1 ,∆k+1

2 ) are implicitly related to the inexact

solution xk+1. Hence, the inexact condition in (3.6) may be unable to satisfy even if one solves

the inner problem in (3.4) to the higher precision. Consequently, the algorithm to solve (3.4)

may not be terminated. Thus, the condition in (3.6) is not a good choice of termination criterion

for inexactly solving (3.4).

By absorbing the merits of the above two inexact strategies, we first employ

max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ǫk+1 (3.7)

as the termination condition for inexactly solving (3.4), where {ǫk} satisfies limk→∞ ǫk = 0.

Evidently, for a suitable ǫk+1 > 0, this termination condition can ensure that the algorithm

for solving (3.4) is terminable. Notice that by only using this inexact strategy, it is difficult

to guarantee the convergence of the obtained inexact solution sequence {xk} and that the

decrement of the corresponding objective function value sequence
{
Jc(x

k)
}

, where Jc(x
k) is

the objective function value of (3.1) at xk, computed by

Jc(x
k) =

1

2
(xk)⊤Qxk + ce⊤xk − c‖xk‖(K).

To tackle this problem, we employ a ‘sieve’ to perform a post-processing on the inexact solution

satisfying (3.7). It should be noted that a suitable ‘sieve’ is crucial to the convergence of the

iPDCA. As discussed above, the condition in (3.6) can guarantee the convergence of the corre-

sponding iPDCA, although it is not a good termination condition for solving (3.4). Therefore,

we choose a sieving condition similar to (3.6) as the ‘sieve’ to perform a post-processing on the

obtained inexact solution rather than the termination criterion for solving (3.4). By applying

this post-processing technique, we retain the inexact solution satisfying the sieving conditions

and take the inexact solution not satisfying the sieving conditions as the initial point of the

next iteration. As a result, we present an inexact proximal DCA with sieving strategy (siPD-

CA) for solving (3.3). For efficiently solving the dual inner problem of siPDCA, we introduce

a majorized semismooth Newton method. Consequently, we give an algorithm framework for

solving (3.3), which is called siPDCA based on a mssN method (siPDCA-mssN), see Algorithm

3.3 for more details.
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Algorithm 3.2. Inexact proximal DCA for solving (3.3)

Step 0. Give penalty parameter c > 0, tolerance error ε ≥ 0, proximal parameter α > 0,

non-negative sequence {ηk} with 0 ≤ ηk ≤ α. Initialize x0 ∈ R
n. Choose ξ0 ∈ ∂gc(x

0).

Set k = 0.

Step 1. Compute xk+1 by inexactly solving (3.4),

xk+1 ≈ arg min
x∈D

Gk
c (x)

such that the inexact solution xk+1 and the inexact terms (∆k+1
1 ,∆k+1

2 ) satisfy the inexact

condition max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ηk‖xk+1 − xk‖.

Step 2. If ‖xk+1 − xk‖ ≤ ε holds, stop and return xk+1.

Step 3. Choose ξk+1 ∈ ∂gc(x
k+1). Set k := k + 1 and go to Step 1.

Remark 3.4. In Algorithm 3.3, the inexactness of the equality constraint is considered. Let

yk+1 be an ǫk+1-inexact solution. If yk+1 and (∆k+1
1 ,∆k+1

2 ) satisfy the sieving conditions in

(5.1), we say a serious step is performed, otherwise, we say a null step is performed. We call

the inexact solution satisfying sieving conditions the stability center. Notice that when the

sieving conditions in (5.1) do not hold, only the iteration counter k and ǫk+1 are changed, while

the stability center xk+1 and ξk+1 remain unchanged. The sieving parameter κ, as a tuning

parameter, can balance the efficiency of siPDCA-mssN and the inexactness of the solution for

(3.4).

Algorithm 3.3. Inexact proximal DCA with sieving strategy based on a majorized semis-

mooth Newton method for (3.3)

Step 0. Give penalty parameter c > 0, tolerance error ε ≥ 0, nonnegative nonincreasing

sequence {ǫk}, proximal parameter α > 0 and sieving parameter κ ∈ (0, 1). Initialize x0

∈ R
n. Choose ξ0 ∈ ∂gc(x

0). Set k = 0.

Step 1. Compute yk+1 and the corresponding multiplier ũk+1 of the equality constraint

by using a mssN method to inexactly solving the inner problem in (3.4) from the dual,

yk+1 ≈ arg min
x∈D

Gk
c (x),

such that inexact condition max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ǫk+1 holds.

condition max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ηk‖xk+1 − xk‖.

Step 2. If ‖yk+1 − xk‖ ≤ ε and max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ε hold, stop and return yk+1.

Step 3. If sieving conditions:

‖∆k+1
1 ‖ ≤ (1 − κ)

α

2
‖yk+1 − xk‖, |∆k+1

2 | ≤ ‖yk+1 − xk‖

and |(ũk+1 − uk)(e⊤xk − 1)| ≤ (1 − κ)
α

2
‖yk+1 − xk‖2

(3.8)

hold, set xk+1 := yk+1, uk+1 := ũk+1 and choose ξk+1 ∈ ∂gc(x
k+1); otherwise, set

xk+1 := xk, uk+1 := uk, ξk+1 := ξk. Set k := k + 1 and go to Step 1.
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Remark 3.5. When ε is set to 0, the following two situations would occur: (1) only finite

serious steps are performed in Algorithm 3.3, then infinite null steps are performed or Algorithm

3.3 terminates in finite steps; (2) infinite serious steps are performed in Algorithm 3.3. When

ε > 0, to ensure that as many serious steps as possible are performed in Algorithm 3.3, one can

adjust the sequence {ǫk}.

3.2. A majorized semismooth Newton method for (3.4)

The main computation of siPDCA-mssN is in solving the inner problem in (3.4). Thus, it is

essential to employ an efficient method to solve (3.4) for the effectiveness of the whole algorithm

framework. In CCMV model, the covariance matrix Q can be naturally rewritten as a factored

form, i.e., Q = SS⊤, where S = 1√
m−1

S̄ and each column of S̄ denotes the yield of the n asserts

during the same time period. Evidently, the inner problem in (3.4) can be reformulated as

follows:

min
x∈Rn

Gk
c (x) =

1

2
‖S⊤x‖2 + ce⊤x + δC(x) − 〈x, ξk〉 +

α

2
‖x− xk‖2

s.t. e⊤x− 1 = 0.

(3.9)

The equivalent minimization form of the dual problem of (3.9) can be formulated as

min
(u,v,w)∈R×Rm×Rn

hk
c (u,v,w) :=

1

2
‖v‖2 +

1

2α
‖ue + w + Sv −Φk

c‖2 + δ∗C(w) + u, (3.10)

where Φk
c = αxk + ξk − ce. The KKT conditions for solving (3.10) can be given as

1 − e⊤( 1
α

(Φk
c − ue− Sv −w)) = 0, (3.11)

v − S⊤( 1
α

(Φk
c − ue− Sv −w)) = 0, (3.12)

0 ∈ − 1
α

(Φk
c − ue− Sv −w) + ∂δ∗C(w). (3.13)

Let Θk
c (u,v) := infw hk

c (u,v,w) for any (u,v) ∈ R × R
m. Consequently, an optimal solution

(u∗,v∗,w∗) of (3.10) can be computed simultaneously by

(u∗,v∗) = arg min
(u,v)∈R×Rm

Θk
c (u,v), w∗ = Proxαδ∗C (tkc (u∗,v∗)),

where tkc (u,v) = Φk
c − ue− Sv. The Moreau Envelope of δ∗C at tkc (u,v) can be denoted as

Mα
δ∗C

(tkc (u,v)) = min
w∈Rn

1

2α
‖tkc (u,v) −w‖2 + δ∗C(w). (3.14)

Evidently,

Θk
c (u,v) =

1

2
‖v‖2 + u + Mα

δ∗C
(tkc (u,v)). (3.15)

From the extended Moreau decomposition x = λProxλ−1f∗(x
λ

) + Proxλf (x), it holds that

Proxαδ∗C (tkc (u,v)) = tkc (u,v) − αΠC( 1
α
tkc (u,v)).

From [42, Theorem 6.60 ], we obtain that the Moreau Envelope Mα
δ∗C

(tkc (u,v)) is a continuously

differentiable function with gradient

∇Mα
δ∗C

(tkc (u,v)) =
1

α
(tkc (u,v) − Proxαδ∗C (tkc (u,v))) = ΠC( 1

α
tkc (u,v)).
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Since ΠC is piecewise linear and strongly semismooth, then the KKT equations

∇Θk
c (u,v) =

[
1 − e⊤ΠC( 1

α
tkc (u,v))

v − S⊤ΠC( 1
α
tkc (u,v))

]
= 0 (3.16)

is strongly semismooth. Therefore, we can solve (3.10) under the framework of semismooth

Newton (ssN) method.

∀ (u,v) ∈ R× R
m, we define

∂̂2Θk
c (u,v) =

[
0 0

0 I

]
+

1

α
B∂ΠC( 1

α
tkc (u,v))B⊤, (3.17)

where B = [e,S]
⊤

and ∂ΠC( 1
α
tkc (u,v)) is the Clarke subdifferential of ΠC at 1

α
tkc (u,v). From

Hiriart-Urruty et al. [43], we have

∂̂2Θk
c (u,v)(du,dv) = ∂2Θk

c (u,v)(du,dv), ∀ (du,dv) ∈ R× R
m,

where ∂2Θk
c (u,v) is a generalized Hessian of Θk

c (u,v) at (u,v). By choosing U ∈ ∂ΠC(tkc (u,v)),

we can obtain a matrix

V :=

[
0 0

0 I

]
+

1

α
BUB⊤. (3.18)

Evidently, V ∈ ∂̂2Θk
c (u,v), then we have V ∈ ∂2Θk

c (u,v). Notice that the matrix V may not

be positive definite, then the semismooth Newton equations

V(du,dv) = −∇Θk
c (u,v)

is not well defined. To address this issue, we consider the majorized optimization problem of

(3.10):

min
(u,v,w)∈R×Rm×Rn

hk
c,ǫ(u,v,w;u′) := hk

c (u,v,w) +
ǫ

2
|u− u′|2. (3.19)

Let

Θk
c,ǫ(u,v;u′) := Θk

c (u,v) +
ǫ

2
|u− u′|2

=
1

2
‖v‖2 + u + Mα

δ∗C
(tkc (u,v)) +

ǫ

2
|u− u′|2.

(3.20)

Clearly, Θk
c,ǫ(u,v;u′) is strongly convex with parameter γ = min(1, ǫ) and its generalized

Hessian is positive definite. Consequently, the corresponding semismooth Newton equations

are well defined. It is noted that Θk
c,ǫ(u,v) → Θk

c (u,v) as ǫ → 0, then an approximate solution

of (3.10) can be obtained by solving (3.19) with a sufficiently small ǫ > 0. Thus we can solve

(3.10) by a majorized semismooth Newton (mssN) method, see Algorithm 3.4 for more details.
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Algorithm 3.4. Majorized semismooth Newton method for (3.10)

Step 0. Initialize (u0,v0) ∈ R×R
m. Give tolerance error χk+1 > 0, majorized parameter

τ1, τ2 ∈ (0, 1), line search parameter σ ∈ (0, 1), η ∈ (0, 1/2). Set j = 1.

Step 1. Choose Uj ∈ ∂ΠC( 1
α
tkc (uj−1,vj−1)). Let Vj be the matrix computed by (3.18)

and ǫj = τ1 min(τ2, ‖∇Θk
c (uj−1,vj−1)‖). Find the solution (dj

u,d
j
v) ∈ R× R

m of the

following linear system

(dj
u,0)ǫj + Vj(dj

u,d
j
v) + ∇Θk

c,ǫj
(uj−1,vj−1;uj−1) = 0. (3.21)

Step 2. (Line search) Find the first nonnegative integer t such that the following inequality

Θk
c,ǫj

(uj−1 + σtdj
u,v

j−1 + σtdj
v;uj−1)

≤Θk
c,ǫj

(uj−1,vj−1;uj−1) + ησt〈∇Θk
c,ǫj

(uj−1,vj−1;uj−1), (dj
u,d

j
v)〉

(3.22)

holds. Set the step size as lj = σt. Set uj = uj−1 + ljd
j
u and vj = vj−1 + ljd

j
v.

Step 3. If ‖∇Θk
c (uj ,vj)‖ < χk+1, stop and return (uj ,vj). Else, set j := j + 1 and go to

Step 1

From primal-dual relation, we can obtain a feasible solution of (3.9) at the j-th step of

Algorithm 3.4

xk,j =
1

α
(Φk

c − uje− Svj −wj) = ΠC( 1
α
tkc (uj ,vj)). (3.23)

We measure the accuracy of an approximate optimal solution (uj ,vj ,wj) for (3.10) by using

the residuals of the KKT conditions in (3.11)-(3.13):

β
j
1 := 1 − e⊤( 1

α
(Φk

c − uje− Svj −wj)), (3.24)

β
j
2 := vj − S⊤( 1

α
(Φk

c − uje− Svj −wj)), (3.25)

β
j
3 := wj − Proxαδ∗C (tkc (uj ,vj)).

For a given accuracy tolerance χk+1 > 0, we terminate Algorithm 3.4 when

max(|βj
1|, ‖βj

2‖, ‖βj
3‖) ≤ χk+1.

By noting that for any j > 0,

wj = Proxαδ∗C (tkc (uj ,vj)) = tkc (uj ,vj) − αΠC( 1
α
tkc (uj ,vj)),

then it follows that for any j > 0, βj
3 = 0 and ∇Θk

c (uj ,vj) = (βj
1,β

j
2). Evidently,

max(|βj
1|, ‖βj

2‖) ≤
√
|βj

1|2 + ‖βj
2‖2 = ‖∇Θk

c (uj ,vj)‖. (3.26)

Hence, we use ‖∇Θk
c (uj,vj)‖ < χk+1 as the termination condition of Algorithm 3.4.

Notice that mssN method is used to inexactly solve the inner problems of siPDCA-mssN from

the dual. Thus, we should find the tolerance error χk+1 that can ensure max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤
ǫk+1. In addition, in order to ensure that mssN method for (3.10) is numerically efficient,

the following issues need to be addressed: (1) finding an efficient algorithm to compute the

Euclidean projection on feasible set C; (2) giving a method to compute the HS-Jacobian matrix

of the Euclidean projection ΠC at a point t ∈ R
n; (3) giving an efficient method to solve the

linear system in (3.21) by making full use of the second-order sparsity of problem and the

sparsity of the solution.
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3.3. An efficient strategy for estimating the inexact terms

It should be noted that Algorithm 3.3 is a type of inexact method. Then we need to check

the inexact condition in (3.7) and the sieving conditions in (5.1) at each iteration of Algorithm

3.3. Thus it is important to give an efficient strategy to compute or estimate (∆k+1
1 ,∆k+1

2 ) for

the whole algorithm framework.

From (3.9), it follows that the smooth part of Gk
c (x) can be denoted as

F k
c (x) =

1

2
‖S⊤x‖2 + ce⊤x− 〈x, ξk〉 +

α

2
‖x− xk‖2.

Evidently, the gradient of F k
c (x) can be computed by

∇F k
c (x) = SS⊤x + ce− ξk + α(x− xk) = SS⊤x + αx−Φk

c .

Hence, (3.9) can be formulated as

min
x∈Rn

Gk
c (x) = F k

c (x) + δC(x)

s.t. e⊤x− 1 = 0.
(3.27)

If an inexact solution xin ∈ C and a multiplier u of the equality constraint for (3.27) are

obtained, then there must exist inexact terms (∆1,∆2) satisfying the following KKT conditions:

∆1 ∈ ∇F k
c (xin) + ∂δC(xin) + ue, (3.28)

e⊤xin − 1 = ∆2. (3.29)

According to the Second Prox Theorem [42, Theorem 6.39], it holds that (3.28) is equivalent to

xin = ΠC(xin − 1
α

(∇F k
c (xin) + ue) + 1

α
∆1). (3.30)

Due to the nonsmoothness of δC , it is impossible to directly obtain the inexact term ∆1 from

(3.28) and (3.30). To deal with this problem, we introduce an auxiliary variable x̃in ∈ C,

x̃in = ΠC(xin − 1
α

(∇F k
c (xin) + ue)). (3.31)

By rearranging the terms, (3.31) can be rewritten as

x̃in = ΠC(x̃in − 1
α

(∇F k
c (x̃in) + ue) + 1

α
∆̃1), (3.32)

where ∆̃1 is computed by

∆̃1 = α(xin − x̃in) + ∇F k
c (x̃in) −∇F k

c (xin). (3.33)

Clearly, the inexact term for the equality constraint can be computed by

∆̃2 = e⊤x̃in − 1. (3.34)

According to the Second Prox Theorem, we can obtain that (3.32) is equivalent to

∆̃1 ∈ ∇F k
c (x̃in) + ∂δC(x̃in) + ue.

This, together with (3.34), implies that x̃in is an inexact solution of (3.27) with inexact terms

(∆̃1, ∆̃2).
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Thus, for a given solution xin ∈ C, the inexact solution x̃in and the inexact terms (∆̃1, ∆̃2)

can be obtained by using the expressions in (3.31), (3.33) and (3.34), respectively. Based on

this approach, we can use the following two strategies to compute or estimate (∆k+1
1 ,∆k+1

2 ).

(1) At the j-th step of Algorithm 3.4, a feasible solution xk,j defined in (3.23) can be

obtained. Evidently, we can compute the inexact solution x̃k,j and inexact terms (∆̃k,j
1 , ∆̃k,j

2 )

by using the expressions in (3.31), (3.33) and (3.34), respectively. When max(‖∆̃k,j
1 ‖, |∆̃k,j

2 |) ≤
ǫk+1, we set yk+1 := x̃k,j and (∆k+1

1 ,∆k+1
2 ) = (∆̃k,j

1 , ∆̃k,j
2 ). This means that yk+1 is an ǫk+1-

inexact solution of (3.27). It should be noted that if this strategy is used to compute yk+1 and

(∆k+1
1 ,∆k+1

2 ), we need to compute the additional x̃k,j and (∆̃k,j
1 , ∆̃k,j

2 ) at each step of Algorithm

3.4. As a result, this strategy is not very efficient in practical numerical experiments.

(2) Notice that Algorithm 3.4 is a dual algorithm and the KKT residuals (βj
1,β

j
2) of the

dual problem is used to terminate Algorithm 3.4 in practical numerical experiments. Thus, if

an upper bound estimation of (‖∆̃k,j
1 ‖, |∆̃k,j

2 |) from (|βj
1|, ‖βj

2‖) according to the relationship

between (∆̃k,j
1 , ∆̃k,j

2 ) and (βj
1,β

j
2) is obtained, we just need to check that this upper bound is

smaller than ǫk+1, instead of directly computing (‖∆̃k,j
1 ‖, |∆̃k,j

2 |) at each iteration of Algorithm

3.4. This will further reduce the computational cost of the whole algorithm framework.

From the definitions of xk,j , βj
1 and β

j
2 in (3.23), (3.24) and (3.25), respectively, it holds

that

β
j
1 := 1 − e⊤xk,j , β

j
2 := vj − S⊤xk,j . (3.35)

Since x̃k,j is computed by using the expression in (3.31), then we have

x̃k,j = ΠC(xk,j − 1
α

(∇F k
c (xk,j) + uje))

= ΠC(xk,j − 1
α

(SS⊤xk,j + αxk,j −Φk
c + uje))

= ΠC( 1
α

(Φk
c + Sβj

2 − Svj + uje))

= ΠC( 1
α

(tk(uj ,vj) + Sβj
2)),

(3.36)

where the third equality follows from (3.35), the last equality holds from the definition of

tkc (uj ,vj). This, together with the non-expansiveness of the projection operator, implies that

‖x̃k,j − xk,j‖ = ‖ΠC( 1
α
tk(uj ,vj) + 1

α
Sβj

2) − ΠC( 1
α
tk(uj ,vj))‖ ≤ 1

α
‖Sβj

2‖. (3.37)

Let

χk+1 = ǫk+1

p
, p = max( 1

α
‖SS⊤‖‖S‖, 1 + 1

α

√
n‖S‖).

From (3.26) and (3.36), it holds that if max(|βj
1|, ‖βj

2‖) ≤ ‖∇Θk
c (uj,vj)‖ ≤ χk+1,

‖∆̃k,j
1 ‖ = ‖SS⊤(x̃k,j − xk,j)‖ ≤ 1

α
‖SS⊤‖‖S‖‖βj

2‖ ≤ ǫk+1

and
|∆̃k,j

2 | = ‖e⊤x̃k,j − 1‖ ≤ ‖e⊤xk,j − 1‖ + ‖e⊤(xk,j − x̃k,j)‖
≤ |βj

1| + 1
α

√
n‖S‖‖βj

2‖ ≤ ǫk+1.

This implies that we only need to check if ‖∇Θk
c (uj ,vj)‖ ≤ χk+1 holds at each iteration of

Algorithm 3.4. If ‖∇Θk
c (uj ,vj)‖ ≤ χk+1 holds, which yields that max(‖∆̃k,j‖, |∆̃k,j

2 |) ≤ ǫk+1,

then we set yk+1 := x̃k,j and (∆k+1
1 ,∆k+1

2 ) := (∆̃k,j
1 , ∆̃k,j

2 ). In this strategy, we only need

to compute x̃k,j and (∆̃k,j
1 , ∆̃k,j

2 ) once, which further reduces computational cost. Thus, it

is more efficient than the first strategy in practical numerical experiments, although it may

overestimate the inexactness of yk+1. Therefore, we adopt this strategy to compute the inexact

solution yk+1 and to estimate the inexact terms (∆k+1
1 ,∆k+1

2 ).
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3.4. Euclidean projection on the set C

At each iteration of mssN method, we need to compute the Euclidean projection ΠC . Thus, it

is important to efficiently compute ΠC for the efficiency of the whole algorithm framework. The

Euclidean projection of a point t on the set C can be formulated as the following optimization

problem:

min
z∈Rn

1

2
‖z − t‖2

s.t. r −R⊤z ≤ 0,

0 ≤ z ≤ b.

(3.38)

Evidently, (3.38) can be equivalently rewritten as

min
z∈Rn

1

2
‖z − t‖2 (3.39)

s.t. r −R⊤z ≤ 0 −→ λ, (3.40)

− z ≤ 0 −→ ν, (3.41)

z − b ≤ 0 −→ µ, (3.42)

where λ, ν and µ are the Lagrange multipliers of (3.40), (3.41) and (3.42), respectively. Then

the KKT conditions of (3.39)-(3.42) can be given as

z − t− λR − ν + µ = 0, (3.43)

λ(r −R⊤z) = 0, (3.44)

− ν⊤z = 0, (3.45)

µ⊤(z − b) = 0, (3.46)

µi ≥ 0, νi ≥ 0, i = 1, · · · , n, (3.47)

λ ≥ 0. (3.48)

To find the optimal solutions (z∗, λ∗,µ∗,ν∗) satisfying (3.40)-(3.48), we consider the following

equivalent minimization form of the dual of (3.38):

min
(λ,η)∈R×Rn

1

2
‖t + λR − η‖2 − rλ + δ∗[0,b](η) + δR+(λ). (3.49)

Let ϕ(λ) be defined as

ϕ(λ) = inf
η

1

2
‖t + λR − η‖2 − rλ + δ∗[0,b](η) + δR+(λ)

=
1

2
‖t + λR − Proxδ∗

[0,b]
(t + λ∗R)‖2 + δ∗[0,b](Proxδ∗

[0,b]
(t + λ∗R)) − rλ + δR+(λ). (3.50)

Then the optimal solutions (λ∗,η∗) of (3.49) can be simultaneously computed by

λ∗ = arg min
λ∈R

ϕ(λ), (3.51)

η∗ = Proxδ∗
[0,b]

(t + λ∗R) = t + λ∗R − Π[0,b](t + λ∗R), (3.52)

where the projection in (3.52) can be computed by Π[0,b](x) = max(min(x, b),0). The optimal

solution λ∗ of (3.51) satisfies the following KKT condition:

0 ∈ R⊤Π[0,b](t + λ∗R) − r + ∂δR+(λ∗),
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which is equivalent to 



λ∗ ≥ 0,

r −R⊤Π[0,b](t + λ∗R) ≤ 0,

λ∗(r −R⊤Π[0,b](t + λ∗R)) = 0.

(3.53)

Let ω(λ) = r − R⊤Π[0,b](t + λR). Since for any i ∈ {1, · · · , n}, max(min(ti + λRi, bi), 0) is

a piecewise linear function and −Ri max(min(ti + λRi, bi), 0) is nonincreasing, then it follows

that ω(λ) is a piecewise linear nonincreasing function with breakpoints in the following set:

H =
{

ti−bi

Ri
,− ti

Ri

∣∣Ri 6= 0, i = 1, . . . , n
}
.

In addition, the range of ω(λ) is a closed and bounded interval
[
r − [R]⊤+b, r − [R]⊤−b

]
. Thus,

we compute the optimal solution λ∗ satisfying the conditions in (3.53) by binary search among

the breakpoints in H ∪ {0}, see Algorithm 3.5 for more details.

Algorithm 3.5. Euclidean projection on set C
Step 0. Give r, R, b, t. If r − [R]⊤+b > 0, stop with no feasible solution.

Step 1. If ω(0) = r −R⊤Π[0,b](t) ≤ 0, return λ∗ = 0 and z∗ = Π[0,b](t).

Step 2. Let H+ = {hi ∈ H ∪ {0} : hi ≥ 0} and s = |H+|. Sort all break points in H+ in

ascending order, i.e., 0 = h(1) ≤ h(2) ≤ · · · ≤ h(s). If ω(h(s)) = 0, stop and return λ∗ = h(s)

and z∗ = Π[0,b](t + λ∗R).

Step 3. Let Il = 1, Ir = s, ωl = ω(0), ωr = ω(h(Ir)).

while Ir − Il > 1 and h(Ir) > h(Il) do

Im = ⌊ Il+Ir
2 ⌋, ωm = ω(h(Im)).

if ωm > 0 then

Ir = Im, ωr = ωm.

else if ωm = 0 then

Break.

else

Il = Im, ωl = ωm.

end if

end while

If ωm = 0, set λ∗ = h(Im). Else, set λ∗ = h(Il) − ωl

ωr−ωl
(h(Ir) − h(Il)). Return λ∗ and

z∗ = Π[0,b](t + λ∗R).

From primal-dual relation, we can obtain the optimal solution z∗ of (3.38):

z∗ = t + λ∗R− η∗ = Π[0,b](t + λ∗R). (3.54)

By using (3.43), (3.45), (3.47) and (3.54), it holds that for each i ∈ {1, · · · , n}, if (t+λ∗R)i ≤ 0,

ν∗
i = −ti − λ∗Ri, otherwise, νi = 0. Thus, it holds that

ν∗ = max(−t− λ∗R,0). (3.55)

From (3.43), (3.46), (3.47) and (3.54), it follows that for each i ∈ {1, · · · , n}, (t+λ∗R−b)i ≥ 0,

µ∗
i = (t + λ∗R − b)i, otherwise, µ∗

i = 0. This implies that

µ∗ = max(t + λ∗R − b,0). (3.56)

Therefore, we obtain the optimal solutions (z∗, λ∗,µ∗,ν∗) satisfying KKT conditions (3.39)-

(3.48).
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3.5. HS-Jacobian matrix of ΠC

At each iteration of mssN method, we need to compute U ∈ ∂ΠC( 1
α
tkc (u,v)). Hence, it

is crucial to efficiently compute the HS-Jacobian matrix of ΠC for the effectiveness of mssN

method. The optimization problem in (3.38) can be reformulated as

min
z∈Rn

1

2
‖z − t‖2

s.t.R⊤z ≥ r,

Az ≥ g,

where A = [In,−In]⊤ ∈ R
2n×n , g = [0⊤,−b⊤]⊤ ∈ R

2n. Let I(t) be the index set defined as

I(t) = {i|AiΠC(t) = gi, i = 1, · · · , 2n} , (3.57)

where Ai is the i-th raw of matrix A. Let s = |I(t)| be the cardinality of I(t). We compute

the HS-Jacobian matrix U ∈ ∂ΠC(t) by the following results.

Proposition 3.1. For any t ∈ R
n, let

Σ := In − Diag(θ) ∈ R
n×n,

where θ ∈ R
n can be computed by

θj =

{
1, j ∈ I(t) or 2j ∈ I(t),

0, otherwise ,
j = 1, · · · , n,

then the HS-Jacobian matrix U ∈ ∂ΠC(t) can be computed as the follows:

(1) If R⊤ΠC(t) > r, U = Σ.

(2) If R⊤ΠC(t) = r,

U =

{
Σ(In − 1

R⊤ΣR
RR⊤)Σ, if R⊤ΣR 6= 0,

Σ, otherwise.
(3.58)

Proof. For statement (1), according to [44], the HS-Jacobian of ΠC at t can be computed

by

U = In −A⊤
I(t)(AI(t)A

⊤
I(t))

†AI(t),

where † denotes the matrix Moore-Penrose pseudoinverse. From the definition of AI(t), it holds

that AI(t)A
⊤
I(t) = Is, A

⊤
I(t)AI(t) = In −Σ and

U = In −A⊤
I(t)IsAI(t) = In − In + Σ = Σ.

For statement (2), the HS-Jacobian matrix of ΠC at t can be computed by

U = In − [A⊤
I(t),R]M†

[
AI(t)
R⊤

]
, (3.59)

where M :=

[
AI(t)
R⊤

] [
A⊤

I(t),R
]
. Notice that the determinant of M can be computed by

det(M) = det

([
AI(t)
R⊤

] [
A⊤

I(t),R
])

= R⊤ΣR. (3.60)
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When R⊤ΣR 6= 0, it holds that M† = M−1 and

U = In − [A⊤
I(t),R]M−1

[
AI(t)
R⊤

]

= In −
[
A⊤

I(t),R
] [ Is + 1

R⊤ΣR
AI(t)RR⊤A⊤

I(t) − 1
R⊤ΣR

AI(t)R

− 1
R⊤ΣR

R⊤A⊤
I(t)

1
R⊤ΣR

][
AI(t)
R⊤

]

= Σ
(
In − 1

R⊤ΣR
RR⊤)Σ.

When R⊤ΣR = (RΣ)⊤ΣR = 0, we can compute a full rank decomposition M = FG, where

F =

[
Is

R⊤A⊤
I(t)

]
, G =

[
Is,AI(t)R

]
.

Consequently, the Moore-Penrose pseudoinverse of M can be computed by

M† = G⊤(GG⊤)−1(F⊤F)−1F⊤.

Thus the HS-Jacobian matrix U ∈ ∂ΠC(t) can be computed by

U = In −
[
A⊤

I(t),R
]

 Is −

(‖R‖2+2)AI(t)RR
⊤
A

⊤
I(t)

(1+‖R‖2)2
AI(t)R

(1+‖R‖2)2

A
⊤
I(t)R

⊤

(1+‖R‖2)2
‖R‖2

(1+‖R‖2)2



[

AI(t)
R⊤

]
= Σ.

This completes the proof. �

3.6. Efficiently solving the linear system (3.21)

It should be noted that the main computation of mssN method is in solving linear system

(3.21). Hence, it is important to reduce the computational cost of solving (3.21) by making full

use of the second-order sparsity of the problem in (3.19) for whole algorithm framework. The

linear system (3.21) can be reformulated as

(Hj + 1
α
BUjB⊤)d = −∇Θk

c,ǫj
(uj−1,vj−1;uj−1), (3.61)

where Hj is a positive diagonal matrix, given as

Hj =

[
ǫj 0

0 Im

]
.

Notice that the Cholesky decomposition Hj = LL⊤ can be easily computed. Consequently,

(3.61) can be reformulated as

(Im+1 + 1
α

(L−1B)Uj(L−1B)⊤)L⊤d = −L−1∇Θk
c,ǫj

(uj−1,vj−1;uj−1). (3.62)

Without loss of generality, we consider simplifying the linear system as the following formula-

tion:

(Im+1 + 1
α
BUjB⊤)d = −∇Θk

c,ǫj
(uj−1,vj−1;uj−1). (3.63)

Let J = {j ∈ {1, · · · , n} : j /∈ I(t), 2j /∈ I(t)} with I(t) defined in (3.57). From Proposition

3.1, we solve (3.63) by distinguishing the following two cases.
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(1) When Uj = Σ, notice that Σ is a diagonal matrix with the element 0 or 1, then it holds

that Σ = ΣΣ. If |J | is small, the inverse of Im+1 + 1
α
BUjB⊤ can be efficiently computed by

the SMW formulation, i.e.,

(Im+1 + 1
α
BUjB⊤)−1 = (Im+1 + 1

α
BJB⊤

J )−1 = Im+1 −BJ (αI|J | + B⊤
JBJ )−1B⊤

J ,

where BJ is the submatrix of B indexed by J . Hence, (3.63) can be solved by efficient matrix-

vector multiplication.

(2) When Uj = Σ(In − 1
R⊤ΣR

RR⊤)Σ, it holds that

BΣ(In − 1
R⊤ΣR

RR⊤)ΣB⊤ = BΣΣ(In − 1
R⊤ΣR

RR⊤)ΣΣB⊤

= BΣ(Σ− 1
R⊤ΣR

ΣR(ΣR)⊤)(BΣ)⊤

= BJ (I|J | − 1
R⊤ΣR

RJR⊤
J )B⊤

J ,

where RJ denotes the subvector of R with respect to J . We consider the following eigenvalue

decomposition: I|J | − 1
R⊤ΣR

RJR⊤
J = QΛQ⊤ with the orthogonal matrix Q and the diagonal

matrix Λ. Notice that the diagonal elements of matrix Λ are all 1 except for one 0. Moreover,

the orthogonal matrix Q can be efficiently computed by performing QR-decomposition on RJ

‖RJ ‖ ,

which takes quite low computational cost, especially when |J | ≪ m. By setting Q̄ = Q
√
Λ, it

holds that I|J |− 1
R⊤ΣR

RJR⊤
J = Q̄Q̄⊤. Consequently, the SMW formulation can be employed

to compute the inverse of Im+1 + 1
α
BQ̄Q̄⊤B⊤, i.e.,

(Im+1 + 1
α
BUjB⊤)−1 = (Im+1 + 1

α
BJ Q̄(BJ Q̄)⊤)−1

= Im+1 −BJ Q̄(αI|J | + (BJ Q̄)⊤BJ Q̄)−1(BJ Q̄)⊤.

Remark 3.6. When |J | ≪ m, the inverse of matrix of size |J | can be efficiently computed

and (3.63) can be solved directly by matrix-vector multiplication. For the practical numerical

experiments of sparse optimization problems, |J | ≪ m holds in most cases.

4. The Convergence of siPDCA-mssN

In this section, we prove the convergence of siPDCA-mssN for solving (3.3). A feasible point

x ∈ D ∩ C is said to be a stationary point of the DC problem (3.3) if

(∇fc(x) + ∂δC(x) + ND(x)) ∩ ∂gc(x) 6= ∅, (4.1)

where ND(x) is the normal cone of the convex set D at x. The following results on the

convergence of siPDCA-mssN for solving (3.3) follows from the basic convergence theorem of

the classical DCA [45] and that of proximal DCA with extrapolation [49].

Lemma 4.1. For any ǫ > 0, the function Θk
c,ǫ(u,v;u′) in (3.20) is level-bounded.
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Proof. Since Θk
c,ǫ(u,v;u′) is a strongly convex function with parameter γ = min(1, ǫ), then

we have ∀ (u,v), (ū, v̄) ∈ R× R
m with ‖(ū, v̄)‖ < ∞

Θk
c,ǫ(u,v;u′) ≥ Θk

c,ǫ(ū, v̄;u′) + ∇Θk
c,ǫ(ū, v̄;u′)⊤((u,v) − (ū, v̄)) +

γ

2
‖(u,v) − (ū, v̄)‖2

≥ Θk
c,ǫ(ū, v̄;u′) −∇Θk

c,ǫ(ū, v̄;u′)⊤(ū, v̄) +
γ

2
‖(ū, v̄)‖2

+ (∇Θk
c,ǫ(ū, v̄;u′) − γ(ū, v̄))⊤(u,v) +

γ

2
‖(u,v)‖2

≥ Θk
c,ǫ(ū, v̄;u′) −∇Θk

c,ǫ(ū, v̄;u′)⊤(ū, v̄) +
γ

2
‖(ū, v̄)‖2

+
γ

2
‖(u,v)‖2 − ‖∇Θk

c,ǫ(ū, v̄;u′) − γ(ū, v̄)‖‖(u,v)‖. (4.2)

From these inequalities, it holds that for any ρ ∈ R, {(u,v) ∈ R × R
m : Θk

c,ǫ(u,v;u′) ≤ ρ} is

bounded, which implies that Θk
c,ǫ(u,v;u′) is level-bounded. This completes the proof. �

Proposition 4.1. Let {xk} be the sequence of stability centers generated by siPDCA-mssN

for solving (3.3) and {(ũk,vk)} be the sequence of the corresponding multipliers generated by

Algorithm 3.4, then
{
xk

}
and {(ũk,vk)} are bounded.

Proof. Since xk+1 is an ǫk+1-inexact solution of (3.4), then ‖e⊤xk+1 − 1‖ ≤ ǫk+1 ≤ ǫ1
and 0 ≤ xk+1 ≤ b. Evidently, 1 − ǫ1 ≤ e⊤xk+1 ≤ 1 + ǫ1 holds, which implies that ‖xk+1‖ ≤
‖xk+1‖1 = e⊤xk+1 ≤ 1 + ǫ1. Thus

{
xk

}
is bounded.

To display the boundedness of
{

(ũk,vk)
}

, we suppose that xk+1 is computed at the j∗-th

step of Algorithm 3.4, i.e., xk+1 := x̃k,j∗ , ũk+1 := uj∗ and vk+1 := vj∗ . From Algorithm 3.4,

it holds that ∀ j ∈ {1, · · · , j∗}

Θk
c,ǫj

(uj ,vj ;uj−1) ≤ Θk
c,ǫj

(uj−1,vj−1;uj−1) + ρlj〈∇Θk
c,ǫj

(uj−1,vj−1;uj−1), (dj
u,d

j
v)〉.

Since Θk
c,ǫj

(u,v;u′) is strongly convex, then it follows that H ∈ ∂2Θk
c,ǫj

(uj−1,vj−1;uj−1) is

positive definite and

〈∇Θk
c,ǫj

(uj−1,vj−1;uj−1), (dj
u,d

j
v)〉

= −∇Θk
c,ǫj

(uj−1,vj−1;uj−1)⊤H−1∇Θk
c,ǫj

(uj−1,vj−1;uj−1) ≤ 0,

which implies Θk
c,ǫj

(uj ,vj ;uj−1) ≤ Θk
c,ǫj

(uj−1,vj−1;uj−1), ∀ j ∈ {1, · · · , j∗}. This, together

with

Θk
c,ǫj+1

(uj ,vj ;uj) = Θk
c (uj ,vj) ≤ Θk

c,ǫj
(uj ,vj ;uj−1),

implies that

Θk
c,ǫj∗

(uj∗ ,vj∗ ;uj∗−1) ≤ · · · ≤ Θk
c,ǫ1

(u1,v1;u0) ≤ Θk
c (u0,v0) ≤ +∞.

This, together with the level-boundedness of Θk
c,ǫj

∗ (u,v;u′) in Lemma 4.1, implies that (uj∗,vj∗)

is bounded, i.e.,
{

(ũk,vk)
}

is bounded. This completes the proof. �

x When the tolerance error is set as ε = 0, our convergence analysis involves two cases. In

the first case, only finite serious steps are performed in siPDCA-mssN for solving (3.3). In the

second case, infinite serious steps are performed in siPDCA-mssN for solving (3.3).
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4.1. Finite serious steps in siPDCA-mssN

For the first case that only finite serious steps are performed in siPDCA-mssN for solving

(3.3), we have the following convergence results.

Theorem 4.1. Set the tolerance error ε = 0. Suppose that only finite serious steps are per-

formed in siPDCA-mssN for solving (3.3). Then the following statements hold.

(1) If siPDCA-mssN terminates at k̄-th step, then xk̄ is a stationary point of (3.3).

(2) If only null step is performed in siPDCA-mssN after k̂-th iteration, i.e., for any k > k̂,

xk = xk̂+1 and ξk = ξk̂+1, then the stability center xk̂+1 generated in the last serious step is a

stationary point of (3.3).

Proof. For statement (1), since yk̄+1 satisfies the termination condition of siPDCA-mssN

with tolerance error ε = 0, then it holds that yk̄+1 = xk̄, ∆k̄+1
1 = 0 and ∆k̄+1

2 = 0. This,

together with the optimality of yk̄+1 and ũk̄+1 for solving minx∈D Gk̄
c (x), yields that xk̄ solves

min
x∈D

Gk̄
c (x) = fc(x) + δC(x) − 〈x, ξk̄〉 +

α

2
‖x− xk̄‖2

and ũk̄+1 is the multiplier of e⊤xk̄ = 1. Consequently, it follows that:

0 ∈ ∇fc(x
k̄) + ∂δC(xk̄) − ξk̄ + ũk̄+1e,

e⊤xk̄ − 1 = 0.

Evidently, we have xk̄ ∈ D and ũk̄+1e ∈ ND(xk̄). Thus, it holds that

0 ∈ ∇fc(x
k̄) + ∂δC(xk̄) − ∂gc(x

k̄) + ND(xk̄)

and xk̄ is a stationary point of (3.3).

For statement (2), we first prove limk→∞ yk+1 = xk̂+1. Since only null step is performed

after k̂-th iteration of siPDCA-mssN, i.e., ∀ k > k̂, the sieving conditions in (5.1) do not hold.

We just prove the case that ∀ k > k̂, the test ‖∆k+1
1 ‖ ≤ (1 − κ)α2 ‖yk+1 − xk‖ does not hold,

i.e., ∀ k > k̂,

(1 − κ)
α

2
‖yk+1 − xk̂+1‖ ≤ ‖∆k+1

1 ‖ ≤ ǫk+1. (4.3)

Since limk→∞ ǫk+1 = 0, by taking limit on both sides of inequality (4.3), we have

lim
k→∞

(1 − κ)
α

2
‖yk+1 − xk̂+1‖ = 0,

which implies that limk→∞ yk+1 = xk̂+1. The proof for the cases that the other sieving condi-

tions do not hold is similar, then we omit it. Next, we prove that xk̂+1 is a stationary point of

(3.3). From |e⊤yk+1 − 1| < ǫk+1, we have

|e⊤xk̂+1 − 1| ≤ |e⊤yk+1 − 1| +
√
n‖yk+1 − xk̂+1‖ ≤ ǫk+1 +

√
n‖yk+1 − xk̂+1‖ (4.4)

From the fact that the right-hand side of (4.4) goes to 0 as k → ∞, it holds that

e⊤xk̂+1 − 1 = 0. (4.5)

Since xk̂+1 is the stability center generated in the last serious step of Algorithm 3.3, then

∀ k > k̂, xk = xk̂+1 and ξk = ξk̂+1 hold. This, together with the optimality of yk+1 for solving

(3.5), yields that ∀ k > k̂,

0 ∈ ∇fc(y
k+1) + ∂δC(yk+1) − ξk̂+1 + α(yk+1 − xk̂+1) + ũk+1e− ∆k+1

1 .
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Consequently, ∀ k > k̂, there exists ςk+1 ∈ ∂δC(yk+1) such that

∇fc(y
k+1) + ςk+1 − ξk̂+1 + α(yk+1 − xk̂+1) + ũk+1e− ∆k+1

1 = 0.

Then it follows that ∀ k > k̂,

‖∇fc(y
k+1) + ςk+1 − ξk̂+1 + ũk+1e‖

≤α‖yk+1 − xk̂+1‖ + ‖∆k+1
1 ‖ ≤ α‖yk+1 − xk̂+1‖ + ǫk+1. (4.6)

According to proposition 4.1, we obtain that
{
xk

}
and

{
ũk

}
are bounded. Since gc(x) is

a finite-valued convex function, then
{
ξk

}
is also bounded. Then the boundedness of

{
ςk
}

follows from (4.6). Thus, without loss of generality, we can suppose that there exists a subset

K′ ⊂ K = {0, 1, · · · } such that limk∈K′ ũk+1 = û and limk∈K′ ςk+1 = ς̂. Since δC(x) is lower

semicontinuous, from [46, Proposition 4.1.1], it holds that ς̂ ∈ ∂δC(xk̂+1). From limk∈K′ ǫk+1 =

0, taking limit on both sides of inequality (4.6), we have

lim
k∈K′

‖∇fc(y
k+1) + ςk+1 − ξk̂+1 + ũk+1e‖ = ‖∇fc(x

k̂+1) + ς̂ − ξk̂+1 + ûe‖ = 0,

which implies that

0 ∈ ∇fc(x
k̂+1) + ∂δC(xk̂+1) − ∂gc(x

k̂+1) + ûe.

From (4.5), we have that xk̂+1 ∈ D and ûe ∈ ND(xk̂+1). This implies that

0 ∈ ∇fc(x
k̂+1) + ∂δC(xk̂+1) − ∂gc(x

k̂+1) + ND(xk̂+1)

and xk̂+1 is a stationary point of (3.3). This completes the proof. �

4.2. Infinite serious steps in siPDCA-mssN

In this subsection, we consider the case that infinite serious steps are performed in siPDCA-

mssN for solving (3.3) when tolerance error ε is set to 0. Consequently,
{
xk

}
can be expressed

as 


· · · ,xk−Nl︸ ︷︷ ︸

xkl

,xk−Nl+1, · · · ,xk

︸ ︷︷ ︸
Nl null steps

,xk+1
︸ ︷︷ ︸
x

kl+1

,xk+2, · · · ,xk+Nl+1+1

︸ ︷︷ ︸
Nl+1 null steps

,xk+Nl+1+2
︸ ︷︷ ︸

x
kl+2

, · · ·





,

where xkl denotes the stability center generated in the l-th serious step. The subsequence

{xk−Nl+1, · · · ,xk}

is the collection of the stability centers in null steps between the l-th serious step and the

(l + 1)-st serious step, then xkl = xk−Nl = xk−Nl+1 = · · · = xk. From the assumption

that infinite serious steps are performed in siPDCA-mssN for solving (3.3), we obtain that the

stability centers in null steps between two adjacent serious steps are the finite repetitions of that

generated in the previous serious step. By removing the xk generated in null steps from {xk}, a

subsequence {xkl} is obtained. Consequently, we can obtain subsequences {ξkl}, {(∆kl

1 ,∆kl

2 )}
and

{
ukl

}
. For {xkl}, we have the following global subsequential convergence results.
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Theorem 4.2 (Global subsequential convergence of siPDCA-mssN). Set the tolerance

error ε = 0. Suppose that infinite serious steps are performed in siPDCA-mssN for solving

(3.3). Let {xkl} be the stability center sequence generated in serious steps of siPDCA-mssN for

solving (3.3). Then the following statements hold:

(1) liml→∞ ‖xkl+1 − xkl‖ = 0.

(2) Any accumulation point x ∈
{
xkl

}
is a stationary point of (3.3).

Proof. We display the proof of statement (1)-(2) in Appendix A.1. �

In order to prove that when infinite serious steps are performed in Algorithm 3.3, the

sequence {xk} actually converges to a stationary point of (3.3), we construct the following

auxiliary function:

E(x,y, z,u,v)

=fc(x) − 〈x,y〉 + g∗c (y) + δC(x) + α‖x− z‖2 + u(e⊤x− 1) − 〈v,x− z〉, (4.7)

where g∗c (y) is convex conjugate of gc(x), given as

g∗c (y) = sup
x∈Rn

{〈y,x〉 − gc(x)} .

Then it holds that fc(x) − gc(x) ≤ fc(x) − 〈x,y〉 + g∗c (y). Since gc(x) = c‖x‖(K) is a proper

closed convex function, it follows that g∗c (ξ) is also a proper closed convex function and the

Youngs inequality holds:

g∗c (y) + gc(x) ≥ 〈x,y〉,

where the equality holds if and only if y ∈ ∂gc(x). Moreover, for any x and y, y ∈ ∂gc(x) if

and only if x ∈ ∂g∗c (y). According to [24,47,48], we obtain that semialgebraic functions satisfy

the Kurdyka- Lojaziewicz (K L) property. Notice that E is a semialgebraic function, then E

satisfies K L property.

Based on the auxiliary function E defined in (4.7), we have the following conclusions on the

sequence {E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )}.

Proposition 4.2. Let E be defined in (4.7). Suppose that infinite serious steps are performed

in siPDCA-mssN for solving (3.3). Let
{
xkl

}
,
{

∆kl

1

}
,
{
ukl

}
and

{
ξkl

}
be the subsequences

generated in the serious steps of siPDCA-mssN. Then the following statements hold.

(1) For any l ≥ 0,

fc(x
kl+1) − gc(x

kl+1) + ukl+1(e⊤xkl+1 − 1) ≤ E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ). (4.8)

(2) For any l ≥ 1,

E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1
1 )− E(xkl , ξkl−1 ,xkl−1 ,ukl ,∆kl

1 ) ≤ −
κα

2
‖xkl − x

kl−1‖2. (4.9)

(3) The set of accumulation points of the sequence
{

(xkl+1 , ξkl ,xkl ,ukl+1,∆
kl+1

1 )
}
, denoted

by Γ, is a nonempty compact set.

(4) The limit Υ = liml→∞ E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ) exists and E ≡ Υ on Γ.
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(5) There exists a constant ρ > 0 such that for any l ≥ 0, we have

dist(0, ∂E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )) ≤ ρ‖xkl+1 − xkl‖. (4.10)

Proof. We present the proof of statements (1)-(5) in Appendix A.2. �

For simplicity of notation, we set Ekl+1 = E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ) for each l ≥ 0. Based

on the K L property of E, we give the global convergence of {xkl} as follows.

Theorem 4.3. Set the tolerance error ε = 0. Suppose that infinite serious steps are performed

in siPDCA-mssN for solving (3.3). Let {xkl} be the stability center sequence generated in the

serious steps of siPDCA-mssN for solving (3.3). Then {xkl} converges to a stationary point of

(3.3). Moreover,
∑∞

l=0 ‖xkl+1 − xkl‖ < ∞.

Proof. From Proposition 4.2, we have that
{
Ekl

}
is nonincreasing and its limitation Υ

exists. Consequently, it holds that Ekl ≥ Υ, ∀ l > 0. Next, we display that Ekl > Υ, ∀ l > 0.

To this end, we suppose that ∃ L̂ > 0 such that Ek
L̂ = Υ. Then we can get that Ekl = Υ

for all l > L̂. From (4.9), we have xkl = xkL , ∀ l ≥ L̂. This implies that only finite steps are

performed in siPDCA-mssN, which is contrary to the assumption that infinite serious steps are

performed in siPDCA-mssN.

Since E satisfies the K L property at each point in the compact set Γ ⊂ domE and E ≡ Υ

on Γ, then it satisfies the uniform K L property [24]. Hence, there exist ǫ > 0 and a continuous

concave function ϕ : [0, a) → R+ being continuously differentiable and monotonically increasing

on (0, a) and satisfying ϕ(0) = 0 with a > 0 such that ∀ (x,y, z,u,v) ∈ Θ,

ϕ′(E(x,y, z,u,v) − Υ) · dist(0, ∂E(x,y, z,u,v)) ≥ 1,

where
Θ = {(x,y, z,u,v) : dist((x,y, z,u,v),Γ) < ǫ}

∩ {(x,y, z,u,v) : Υ < E(x,y, z,u,v) < Υ + a} .

Since Γ is the set of accumulation points of the
{

(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )
}

, then

lim
l→∞

dist((xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ),Γ) = 0.

Consequently, there exists a L̄ > 0 such that

dist((xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ),Γ) < ǫ, ∀ l > L̄− 2.

From Proposition 4.2, it holds that
{
Ekl+1

}
converges to Υ. Hence, there exists a ¯̄L > 0 such

that

Υ < Ekl+1 < Υ + a, ∀ l > ¯̄L− 2.

Let L̃ = max(L̄, ¯̄L), then we have ∀ l > L̃, (xkl−1 , ξkl−2 ,xkl−2 , ukl−1 ,∆
kl−1

1 ) ∈ Θ and

ϕ′(Ekl−1 − Υ) · dist(0, ∂Ekl−1) ≥ 1. (4.11)

From the concavity of ϕ and the fact that {Ekl} is nonincreasing, it holds that ∀ l > L̃,

[
ϕ(Ekl−1 − Υ) − ϕ(Ekl+1 − Υ)

]
· dist(0, ∂Ekl−1)

≥ϕ′(Ekl−1 − Υ) · dist(0, ∂Ekl−1) · (Ekl−1 − Ekl+1) ≥ Ekl−1 − Ekl+1 , (4.12)
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where the last inequality is due to (4.11). Let πkl = ϕ(Ekl − Υ), ∀ l > L̃. Since ϕ is monotone

increasing on (0, a) and {Ekl} is nonincreasing, then {πkl} is nonincreasing. This, together

with (4.9)–(4.12), yields that there exists a constant ρ > 0 such that for any l > L̃

‖xkl − xkl−1‖2 + ‖xkl−1 − xkl−2‖2 ≤ 2ρ

κα
(πkl−1 − πkl+1)‖xkl−1 − xkl−2‖. (4.13)

By using the arithmetic mean-geometric mean inequality, we have

‖xkl − xkl−1‖ ≤
√

ρ

κα
(πkl−1 − πkl+1) − 1

2
‖xkl−1 − xkl−2‖ ·

√
2‖xkl−1 − xkl−2‖

≤ ρ

2κα
(πkl−1 − πkl+1) − 1

4
‖xkl−1 − xkl−2‖ + ‖xkl−1 − xkl−2‖.

This implies that

1

4
‖xkl − xkl−1‖ ≤ ρ

2κα
(πkl−1 − πkl+1) +

3

4
(‖xkl−1 − xkl−2‖ − ‖xkl − xkl−1‖). (4.14)

Summing both sides of (4.14) from l = L̃ to ∞, we obtain that

1

4

∞∑

l=L̃

‖xkl − xkl−1‖ ≤ ρ

2κα
(πk

L̃−1 + πk
L̃) − lim

l→∞

ρ

2κα
(πkl + πkl+1)

+
3

4
(‖xk

L̃−1 − xk
L̃−2‖ − lim

l→∞
‖xkl − xkl−1‖).

From liml→∞
ρ

2κα (πkl + πkl+1) = 0 and liml→∞ ‖xkl − xkl−1‖ = 0, it holds that

1

4

∞∑

l=L̃

‖xkl − xkl−1‖ ≤ ρ

2κα
(πk

L̃−1 + πk
L̃) +

3

4
‖xk

L̃−1 − xk
L̃−2‖ < ∞, (4.15)

which implies that
{
xkl

}
is convergent and

∑∞
l=0 ‖xkl+1 − xkl‖ < ∞. This, together with the

sieving conditions in (5.1), yields that liml→∞ |e⊤xkl − 1| = 0. Combining this with the results

of Theorem 4.2, we obtain that the sequence
{
xkl

}
converges to a stationary point of (3.3).

This completes the proof. �

By using Theorem 4.3, we give the following global convergence of {xk}.

Theorem 4.4 (Global sequential convergence of siPDCA-mssN). Set the tolerance er-

ror ε = 0. Suppose that infinite serious steps are performed in siPDCA-mssN for solving (3.3).

Let {xk} be the stability center sequence generated by siPDCA-mssN for solving (3.3). Then

{xk} converges to a stationary point of (3.3). Moreover,
∑∞

k=0 ‖xk+1 − xk‖ < ∞.

Proof. From assumption of infinite serious steps in this subsection, we obtain that {xkl} is

the subsequence of {xk} removing the finite repeated points in null steps. This, together with

Theorem 4.3, implies that the sequence
{
xk

}
converges to a stationary point of (3.3) and

∞∑

k=0

‖xk+1 − xk‖ =

∞∑

l=0

‖xkl+1 − xkl‖ < ∞.

This completes the proof. �
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4.3. Local convergence of siPDCA-mssN

Proposition 4.3. If x∗ is a local minimizer of (1.1). Suppose that I∗ ⊂ {1, · · · , n} is an index

set satisfying |I∗| = K and ∀ i ∈ I∗, the x∗
i = 0 holds, where I∗ = {1, · · · , n} \ I∗. Suppose

that the Mangasarian-Fromowitz Constraint Qualification (MFCQ) conditions hold at x∗, i.e.,

there exists a point x ∈ R
n such that

−R⊤(x− x∗) < 0, if R⊤x∗ = r,

e⊤i (x− x∗) < 0, if x∗
i = bi,

− e⊤i (x− x∗) < 0, if x∗
i = 0, i ∈ I∗,

e⊤i (x− x∗) = 0, if i ∈ I∗,

e⊤(x− x∗) = 0

(4.16)

hold. Then there exist (λ∗,u∗,η∗, ζ∗,γ∗) ∈ R
3n+2 together with x∗ satisfy the following opti-

mality conditions

Qx∗ − λ∗R + u∗e + η∗ − ζ∗ + γ∗ = 0,

λ∗ ≤ 0, η∗, ζ∗ ≥ 0, λ∗(r −R⊤x∗) = 0,

η∗
i (x∗

i − b∗i ) = 0, ζ∗
i x

∗
i = 0, i = 1, · · · , n,

R⊤x∗ ≥ r, e⊤x∗ = 1, 0 ≤ x∗ ≤ b,

(ζ∗)i = 0, i ∈ I∗, (γ∗)i = 0, i ∈ I∗.

(4.17)

Proof. Notice that if x∗ is a local minimizer of problem (1.1), then x∗ is a global minimizer

of the problem:

min
x∈Rn

{
1

2
x⊤Qx : R⊤x ≥ r, e⊤x = 1, 0 ≤ xI∗ ≤ bI∗ ,xI∗ = 0

}
(4.18)

This, together with the MFCQ condition, implies that the optimality conditions in (4.16)

hold. �

Proposition 4.4. Let x∗ be a feasible point of (1.1). Let

J ∗ = {I∗ ⊂ {1, · · · , n} : x∗
i = 0, |I∗| = K, ∀ i ∈ {1, · · · , n} \ I∗}.

If ∀ I∗ ∈ J ∗, there exist (λ∗,u∗,η∗, ζ∗,γ∗) ∈ R
3n+2 together with x∗ satisfying (4.17), then x∗

is a local minimizer of (1.1).

Proof. For the details of proof, one can refer to [25, Theorem 2.3]. �

Theorem 4.5. Set the tolerance error ε = 0. Let {xk} be the sequence generated by Algorithm

3.3 for solving (3.3) with penalty parameter c̄ > 0. Let x∗ be an accumulation point of {xk}
satisfying ‖x∗‖0 ≤ K and

J ∗ =
{
I∗ ⊂ {1, · · · , n} : |I∗| = K,x∗

i = 0, ∀ i ∈ I∗ = {1, · · · , n} \ I∗} .

Then ∀ I∗ ∈ J ∗, there exist (λ∗,u∗,η∗, ζ∗,γ∗) ∈ R
3n+2 together with x∗ satisfying (4.17), and

x∗ is a local minimizer of (1.1).
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Proof. From Theorems 4.1 and x4.4, we obtain that x∗ is a stationary point of (3.3), then

there exists u∗ such that the following KKT conditions hold:

x∗ = ΠC(x∗ + ξ∗ − c̄e− SS⊤x∗ − u∗e),

e⊤x∗ − 1 = 0,
(4.19)

where ξ∗ ∈ ∂gc̄(x
∗). By using (4.19) and the results in Subsection 3.4, we obtain that there

exist (λ∗,ν∗,µ∗) together with x∗ and t = x∗ + ξ∗ − c̄e− SS⊤x∗ − u∗e satisfy (3.43), i.e.,

x∗ − (x∗ + ξ∗ − c̄e− SS⊤x∗ − u∗e) − λ∗R− ν∗ + µ∗ = 0.

Consequently, it follows that

Qx∗ − λ∗R + u∗e + c̄e− ξ∗ − ν∗ + µ∗ = 0,

where Q = SS⊤. For any i ∈ {1, · · · , n}, let ζ∗
i , η∗

i and γ∗
i be computed by

ζ∗
i =

{
ν∗
i , if i ∈ I∗,

0, if i ∈ I∗,
η∗
i =

{
µ∗

i , if i ∈ I∗,

0, if i ∈ I∗,

and

γ∗
i =

{
(c̄e− ξ∗ + µ∗ − ν∗)i, if i ∈ I∗,

(c̄e− ξ∗)i, if i ∈ I∗.

Consequently, it holds that

Qx∗ − λ∗R + u∗e + η∗ − ζ∗ + γ∗ = 0.

Due to ‖x∗‖0 ≤ K, it follows that ∀ I∗ ∈ J ∗, (λ∗,u∗,η∗, ζ∗,γ∗) ∈ R
3n+2 together with x∗

satisfy the conditions in (4.17). This, together with Proposition 4.4, yields that x∗ is a local

minimizer of (1.1). This completes the proof. �

5. A Decomposed siPDCA-mssN for Large-Scale CCMV Problem

5.1. The algorithm framework of decomposed siPDCA-mssN

The computational cost and storage cost of siPDCA-mssN for (1.1) will be expensive when

the scale of the CCMV problem is large. As discussed in Section 1, Wang et al. [50] proposed

a decomposed strategy based on the violation of the first-order optimality conditions to reduce

a large-scale problem into a small problem. Inspired by their work, we use the violation of

first-order optimality conditions defined in (4.17) as the decomposition criterion to reduce (1.1)

into a small-scale problem.

Let xq ∈ C∩D be an inexact solution of (3.3) with penalty cq−1 > 0 and Iq be the index set

of the nonzero elements of xq. By using Q = SS⊤, it follows that there exists an inexact term

∆q ∈ R
n and a multiplier uq ∈ R of the equality constraint such that the following optimality

conditions hold:
∆q ∈ SS⊤xq + cq−1e + ∂δC(xq) + uqe− ∂gc(x

q),

e⊤xq = 1.
(5.1)

Let ξq ∈ ∂gc(x
q), then it holds that

xq = ΠC(xq + ξq − SS⊤xq − cq−1e− uqe + ∆q),
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which means that xq is an optimal solution of (3.38) with t = xq+ξq−SS⊤xq−cq−1e−uqe+∆q.

This implies that there exist (λq ,µq,νq) together with xq satisfying the KKT conditions in

(3.40)-(3.48). Consequently, it holds that

xq − (xq + ξq − SS⊤xq − cq−1e− uqe + ∆q) − λqR− νq + µq = 0,

which can be simplified as

SS⊤xq + cq−1e + uqe− ξq − λqR − νq + µq = ∆q, (5.2)

Let (ηq, ζq,γq) be defined as follows:

η
q
i :=

{
µ

q
i , if i ∈ Iq

0, if i ∈ Iq
i ∈ {1, · · · , n}, (5.3)

ζ
q
i :=

{
ν
q
i , if i ∈ Iq

0, if i ∈ Iq
i ∈ {1, · · · , n}, (5.4)

γ
q
i :=

{
(cq−1e− ξq + µq − νq)i, if i ∈ Iq

(cq−1e− ξq)i, if i ∈ Iq i ∈ {1, · · · , n}. (5.5)

As a result, (5.2) can be reformulated as

SS⊤xq − ξq − λqR + ηq − ζq + γq = ∆q. (5.6)

This implies that when ‖xq‖0 ≤ K, (xq, λq,uq,ηq, ζq,γq) satisfy the KKT conditions in (4.17)

except the first one. Therefore, we define the violation of the first-order optimality conditions

of xq as follows:

V (xq;λq,uq,ηq, ζq,γq)i := |SS⊤xq − λqR + uqe + ηq − ζq + γq|i, xi ∈ {1, · · · , n}. (5.7)

Evidently, for each i ∈ {1, · · · , n},

V (xq;λq,uq,ηq, ζq,γq)i = |SS⊤xq + cq−1e + uqe− ξq − λqR− νq + µq|i. (5.8)

From Proposition 4.4, it follows that when ‖V (xq;λq,uq,ηq, ζq,γq)‖ = 0 and ‖xq‖0 ≤ K,

xq is a local minimizer of (1.1). Based on (5.7), the violation of the first-order optimality

conditions of xq can naturally be used as the decomposition criterion. As a result, we choose

an index set Bq = Iq ∪ Bq
1, where Bq

1 is the index set of the components those satisfying

V (xq;λq,uq,ηq, ζq,γq)i > ǭ with ǭ > 0. Based on the index set Bq, we decompose the original

objective function in (1.1) as

1

2
x⊤Qx =

1

2

[
xBq

xBq

]⊤ [
QBqBq QBqBq

QBqBq QBqBq

] [
xBq

xBq

]

=
1

2
x⊤
BqQBqBqxBq + x⊤

BqQBqBqxBq +
1

2
x⊤
BqQBqBqxBq .

(5.9)

According to Q = SS⊤, (5.9) can be rewritten as

1

2
‖S⊤x‖2 =

1

2
‖S⊤

BqxBq + S⊤
BqxBq‖2

=
1

2
‖S⊤

BqxBq‖2 +
1

2
‖S⊤

BqxBq‖2 + x⊤
BqSBqS⊤

BqxBq .

(5.10)
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Let

Cq =
{
xBq ∈ R

|Bq| : R⊤
BqxBq ≥ r,0 ≤ xBq ≤ bBq

}
,

Dq =
{
xBq ∈ R

|Bq| : e⊤BqxBq − 1 = 0
}
.

Based the decomposed form (5.3) of objective of (1.1), we fix the xBq and update the xBq only.

Consequently, we only need to solve the following problem of scale |Bq|:

min
xBq∈R|Bq|

1

2
‖S⊤

BqxBq‖2 + δCq (x) + δDq(x)

s.t.‖xBq‖0 ≤ K.

(5.11)

For a given penalty parameter cq > 0, we transfer (5.11) into the following DC problem:

min
xBq∈R|Bq|

1

2
‖S⊤

BqxBq‖2 + δCq (x) + δDq(x) + cqe
⊤
BqxBq − cq‖xBq‖(K). (5.12)

Evidently, (5.12) can be efficiently solved by siPDCA-mssN. Therefore, we give an efficient

decomposed siPDCA-mssN (DsiPDCA-mssN) for solving (1.1), see Algorithm 5.1 for more

details.

When the solutions (xq+1
Bq ,uq+1

Bq ) are obtained by Algorithm 3.3 for solving inner problem

(5.12) with penalty parameter cq, (xq+1,uq+1, ξq+1) can be computed as follows:

x
q+1
i :=

{
(xq+1

Bq )i, if i ∈ Bq

0, if i ∈ Bq
i = 1, · · · , n, (5.13)

uq+1 := u
q+1
Bq , (5.14)

ξ
q+1
i :=

{
(ξq+1

Bq )i, if i ∈ Bq

0, if i ∈ Bq
i = 1, · · · , n, (5.15)

where ξ
q+1
Bq ∈ ∂gc(x

q+1) and Bq = Bq \ {1, · · · , n}. Let

tq+1 := xq+1 + ξq+1 − SS⊤xq+1 − cqe− uq+1e (5.16)

Algorithm 5.1. Decomposed siPDCA-mssN for (1.1)

Step 0. Give c0 > 0, K > 0, M > 0, σ > 1, R ∈ R
n, S ∈ R

n×m, b ∈ R
n and ǫ̂ > ǭ > 0.

Initialize x0 ∈ R
n. Choose B0 randomly without repetition from {1, · · · , n} such that

|B0| = M . Let q = 0.

Step 1. Compute x
q+1
Bq ,uq+1

Bq by solving the inner problem (5.12) with Algorithm 3.3.

Update xq+1, λq+1, uq+1, ηq+1, ζq+1 and γq+1 by (5.13), Algorithm 3.5, (5.14),

and (5.19)-(5.21), respectively.

Step 2. If ‖V (xq+1;λq+1,uq+1,ηq+1, ζq+1,γq+1)‖∞ ≤ ǫ̂ and ‖xq+1‖0 ≤ K hold, stop and

x

return xq+1.

Step 3. Update Bq+1 by Bq+1 = Iq+1
⋃Bq+1

1 , where Iq+1 =
{
i ∈ {1, · · · , n} : xq+1

i 6= 0
}

and

Bq+1
1 =

{
i ∈ {1, · · · , n} : V (xq+1;λq+1,uq+1,ηq+1, ζq+1,γq+1)i > ǭ

}
.

If ‖xq+1‖0 > K, set cq+1 = σcq. Else, set cq+1 = cq . Let q := q + 1 and go to Step 1.
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and λq+1 be computed by using Algorithm (??) with t = tq+1. Based on xq+1 and λq+1,

(νq+1,µq+1, ζq+1,ηq+1,γq+1) can be computed by

νq+1 := max(−tq+1 − λq+1R, 0), (5.17)

µq+1 := max(tq+1 + λq+1R− b, 0), (5.18)

ζ
q+1
i :=

{
ν
q+1
i , if i ∈ Iq+1,

0, if i ∈ Iq+1,
i = 1, · · · , n, (5.19)

η
q+1
i :=

{
µ

q+1
i , if i ∈ Iq+1,

0, if i ∈ Iq+1,
i = 1, · · · , n, (5.20)

γ
q+1
i :=

{
(cqe− ξq+1 + µq+1 − νq+1)i, if i ∈ Iq+1,

(cqe− ξq+1)i, if i ∈ Iq+1,
i = 1, · · · , n. (5.21)

As a result, the violation of the first-order optimality conditions of xq+1 can be computed by

V (xq+1;λq+1,uq+1,ηq+1, ζq+1,γq+1)i

=|SS⊤xq+1 − λq+1R + uq+1e + ηq+1 − ζq+1 + γq+1|i, i ∈ {1, · · · , n}. (5.22)

5.2. The convergence analysis of DsiPDCA-mssN

Let {xq} be the sequence generated by Algorithm 5.1. Under a mild assumption about the

subsequence of {xq}, we display that {xq} subsequentially converges to a local minimizer of

(1.1).

Theorem 5.1. Let {(xq, λq,uq,ηq, ζq,γq)} be the sequence generated by DsiPDCA-mssN. Then

the following statements hold.

(1) The sequence {(xq, λq,uq,ηq, ζq,γq)} is bounded and there exists a subsequence such that

lim
j→∞

(xqj , λqj ,uqj ,ηqj , ζqj ,γqj ) = (x∗, λ∗,u∗,η∗, ζ∗,γ∗),

where (x∗, λ∗,u∗,η∗, ζ∗,γ∗) is an accumulation point of {(xq, λq,uq,ηq, ζq,γq)}.
(2) Let ǭ be any given constant satisfying 0 < ǭ < min(b). For any ǫ > 0, let

ǫ̂ = ǭ + (2 + 2 max
1≤i≤n

‖SiS‖ + 2‖R‖∞)ǫ.

Then ∃M > 0, ∀ j > M such that ‖xqj − xqj+1‖ ≤ ǫ, |λqj − λqj+1 | ≤ ǫ and |uqj − uqj+1 | ≤ ǫ

hold. If exists a j̄ such that j̄ > M , qj̄+1 = qj̄ + 1, ‖xqj̄+1‖0 ≤ K and cqj̄ = cqj̄−1, then xqj̄+1

is an ǫ̂-inexact solution of (1.1) and x∗ is a local minimizer of (1.1).

Proof. For statement (1), since x
q+1
Bq is the solution generated by Algorithm 3.3 for solving

the inner problem in (5.12), then x
q+1
Bq satisfies 0 ≤ x

q+1
Bq ≤ bBq and e⊤xq+1

Bq = 1. This, together

with the definition of xq+1 in (5.13), yields that

‖xq+1‖ = ‖xq+1
Bq ‖ ≤ ‖xq+1

Bq ‖1 = e⊤Bqx
q+1
Bq = 1.

This implies that {xq} is bounded. Consequently, we can immediately obtain that {ξq} is also

bounded because gc(x) is a finite-valued convex function. From Proposition 4.1, it follows that

{uq} and {vq} are bounded. From Algorithm 3.5, we have λq+1 ∈
[
0,max(Hq+1)

]
, where

Hq+1 =
{

t
q+1
i

−bi

Ri
,− t

q+1
i

Ri

∣∣Ri 6= 0, i ∈ {1, · · · , n}
}
∪ {0}
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and tq+1 is defined in (5.16). This implies that {λq} is bounded. As a result, the boundedness of

{µq} and {νq} can be obtained from their definitions, see (5.17) and (5.18). Consequently, the

boundedness of {ζq}, {ηq} and {γq} can be obtained from their definitions, see (5.19)-(5.21).

Hence, it holds that {(xq, λq,uq,ηq, ζq,γq)}∞q=1 is bounded and there exists a subsequence

{(xqj , λqj ,uqj ,ηqj , ζqj ,γqj )}∞j=1 such that

lim
j→∞

(xqj , λqj ,uqj ,ηqj , ζqj ,γqj ) = (x∗, λ∗,u∗,η∗, ζ∗,γ∗).

For statement (2), the result of statement (1) implies that ∀ ǫ > 0, ∃M such that ∀ j > M ,

‖xqj − xqj+1‖ ≤ ǫ, |λqj − λqj+1 | ≤ ǫ and |uqj − uqj+1 | ≤ ǫ. Since j̄ > M and cqj̄ = cqj̄−1,

qj̄+1 = qj̄ + 1, we have ‖xqj̄ − xqj̄+1‖ ≤ ǫ, |λqj̄ − λqj̄+1 | ≤ ǫ and |uqj̄ − uqj̄+1 | ≤ ǫ. Let Bqj̄ be

the work set of Algorithm 5.1 at the qj̄-th step such that

V (xqj̄ ;λqj̄ ,uqj̄ ,ηqj̄ , ζqj̄ ,γqj̄ )i > ǭ, ∀ i ∈ Bqj̄ \ Iqj̄ ,

V (xqj̄ ;λqj̄ ,uqj̄ ,ηqj̄ , ζqj̄ ,γqj̄ )i ≤ ǭ, ∀ i ∈ Bqj̄ ,

where Iqj̄ is the index set of nonzero elements of xqj̄ . Due to qj̄+1 = qj̄ + 1, we can obtain that

xqj̄+1 is generated at the qj̄-th step of Algorithm 5.1 and that the entries of x
qj̄

Bq
j̄
, x

qj̄+1

Bq
j̄

, ξ
qj̄

Bq
j̄

and ξ
qj̄+1

Bq
j̄

are all zero. Hence, it holds that

S⊤xqj̄ = S⊤
Bq

j̄ x
qj̄

Bq
j̄
, S⊤xqj̄+1 = S⊤

Bq
j̄ x

qj̄+1

Bq
j̄

and ∀ i ∈ Bqj̄ ,

t
qj̄
i = −cqj̄−1 − uqj̄ − SiS

⊤
Bq

j̄ x
qj̄

Bq
j̄
, t

qj̄+1

i = −cqj̄ − uqj̄+1 − SiS
⊤
Bq

j̄ x
qj̄+1

Bq
j̄
,

where tqj̄ and tqj̄+1 can be computed by using the expression in (5.16). This, together with

(5.8) and the definition of νqj̄ and µqj̄ , yields that ∀ i ∈ Bqj̄ ,

V (xqj̄ ;λqj̄ ,uqj̄ ,ηqj̄ , ζqj̄ ,γqj̄ ))i

=|SS⊤xqj̄ − λqj̄R + uqj̄e + cqj̄−1e− ξqj̄ − νqj̄ + µqj̄ |i
=| − t

qj̄
i − λqj̄Ri + max(t

qj̄
i + λqj̄Ri − bi, 0) − max(−t

qj̄
i − λqj̄Ri, 0)|.

and

V (xqj̄+1 ;λqj̄+1 ,uqj̄+1 ,µqj̄+1 , ζqj̄+1 ,γqj̄+1)i

=| − t
qj̄+1

i − λqj̄+1Ri + max(t
qj̄+1

i + λqj̄+1Ri − bi, 0) − max(−t
qj̄+1

i − λqj̄+1Ri, 0)|.

Next, we prove that ∀ i ∈ Bqj̄ ,

V (xqj̄+1 ;λqj̄+1 ,uqj̄+1 ,ηqj̄+1 , ζqj̄+1 ,γqj̄+1)i ≤ ǫ̂.

For simplicity of notation, we set

V qj̄ = V (xqj̄ ;λqj̄ ,uqj̄ ,ηqj̄ , ζqj̄ ,γqj̄ , V qj̄+1 = V (xqj̄+1 ;λqj̄+1 ,uqj̄+1 ,ηqj̄+1 , ζqj̄+1 ,γqj̄+1).

Suppose that ∃ i ∈ Bqj̄ , t
qj̄
i +λqj̄Ri > bi, then V

qj̄
i = bi ≥ min(b) > ǫ̂ > ǭ, which is contrary to

V
qj̄
i ≤ ǭ, ∀ i ∈ Bqj̄ . Thus, we have t

qj̄
i + λqj̄Ri ≤ bi, ∀ i ∈ Bqj̄ . As a result, we divide the proof
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into the following two cases.

Case 1. When t
qj̄
i + λqj̄Ri ≤ 0, it holds that

V
qj̄
i = −2t

qj̄
i − 2λqj̄Ri = 2(cqj̄−1

+ uqj̄ + SiS
⊤
Bq

j̄ x
qj̄

Bq
j̄
) − 2λqj̄Ri ≤ 0.

Consequently,

t
qj̄+1

i + λqj̄+1Ri = (−cqj̄ − uqj̄+1 − SiS
⊤
Bq

j̄ x
qj̄+1

Bq
j̄

) + λqj̄+1Ri

= (−cqj̄−1 − uqj̄ − SiS
⊤
Bq

j̄ x
qj̄

Bq
j̄
) + λqj̄Ri

+ ((uqj̄ − uqj̄+1) − SiS
⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
)) + (λqj̄+1 − λqj̄ )Ri

≤ ((uqj̄ − uqj̄+1) − SiS
⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
) + (λqj̄+1 − λqj̄ )Ri)

≤ (1 + ‖SiS‖ + |Ri|)ǫ ≤
ǫ̂− ǭ

2
,

where the first equality is due to cqj̄ = cqj̄−1, the first inequality is due to t
qj̄
i + λqj̄Ri ≤ 0,

the last inequality is due to the definition of ǫ̂. This, together with V
qj̄
i ≤ ǭ, implies that when

t
qj̄+1

i + λqj̄+1Ri ≤ 0,

V
qj̄+1

i = −2t
qj̄+1

i − 2λqj̄+1Ri

= V
qj̄
i − 2((uqj̄ − uqj̄+1) − SiS

⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
) + (λqj̄+1 − λqj̄ )Ri)

≤ ǭ− 2((uqj̄ − uqj̄+1) − SiS
⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
) + (λqj̄+1 − λqj̄ )Ri)

≤ ǭ + 2(1 + ‖SiS‖ + |Ri|)ǫ ≤ ǫ̂

and when 0 < t
qj̄+1

i + λqj̄+1Ri <
ǫ̂−ǭ
2 , V

qj̄+1

i = t
qj̄+1

i + λqj̄+1Ri ≤ ǫ̂−ǭ
2 < ǫ̂.

Case 2. When 0 < t
qj̄
i + λqj̄Ri < bi, it holds that V

qj̄
i = t

qj̄
i + λqj̄Ri ≤ ǭ. This implies that

t
qj̄+1

i + λqj̄+1Ri = V
qj̄
i + (uqj̄ − uqj̄+1) − SiS

⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
) + (λqj̄+1 − λqj̄ )Ri

≤ ǭ + ((uqj̄ − uqj̄+1) − SiS
⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
) + (λqj̄+1 − λqj̄ )Ri)

≤ ǭ + (1 + ‖SiS‖ + |Ri|)ǫ ≤
ǫ̂ + ǭ

2
< ǫ̂.

Consequently, it follows that when t
qj̄+1

i + λqj̄+1Ri ≤ 0,

V
qj̄+1

i = −2t
qj̄+1

i − 2λqj̄+1Ri

= −2V
qj̄
i − 2((uqj̄ − uqj̄+1) − SiS

⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
) + (λqj̄+1 − λqj̄ )Ri)

≤ −2((uqj̄ − uqj̄+1) − SiS
⊤
Bq

j̄ (x
qj̄+1

Bq
j̄
− x

qj̄

Bq
j̄
) + (λqj̄+1 − λqj̄ )Ri)

≤ 2(1 + ‖SiS‖ + |Ri|)ǫ < ǫ̂

and when 0 < t
qj̄+1

i + λqj̄+1Ri < ǫ̂, V
qj̄+1

i = t
qj̄+1

i + λqj̄+1Ri < ǫ̂. Therefore, we have

V (xqj̄+1 , λqj̄+1 ,uqj̄+1 ,ηqj̄+1 , ζqj̄+1 ,γqj̄+1)i ≤ ǫ̂, ∀ i ∈ Bqj̄ .

The optimality of x
qj̄+1

Bq
j̄

for solving the Bqj̄ -subproblem in (5.12) yields that

V (x
qj̄+1

Bq
j̄
, λ

qj̄+1

i ,u
qj̄+1

i ,η
qj̄+1

i , ζ
qj̄+1

i ,γ
qj̄+1

i )i = 0, ∀ i ∈ Bqj̄ .

This, together with ‖xqj̄+1‖0 ≤ K and definition of (xqj̄+1 , λqj̄+1 ,uqj̄+1 ,ηqj̄+1 , ζqj̄+1 ,γqj̄+1) in

(5.13), (5.14) and (5.19)-(5.21), implies that (xqj̄+1 , λqj̄+1 ,uqj̄+1 ,ηqj̄+1 , ζqj̄+1 ,γqj̄+1) satisfies all
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the conditions defined in (4.17) except the first one. Consequently, it follows that xqj̄+1 is an ǫ̂-

local minimizer of the CCMV problem (1.1). From the arbitrariness of ǫ > 0 and 0 ≤ ǭ ≤ min(b),

we can obtain that

V (x∗, λ∗,u∗,η∗, ζ∗,γ∗)i = 0, i ∈ {1, · · · , n}

and ‖x∗‖0 ≤ K. This implies that (x∗, λ∗,u∗,η∗, ζ∗,γ∗) satisfy the first-order optimality

conditions in (4.17) exactly. By noting that MFCQ conditions hold at x∗, then it follows that

x∗ is a local minimizer of (1.1). This completes the proof. �

6. Numerical Experiments

In order to demonstrate the effectiveness of the proposed siPDCA-mssN and DsiPDCA-

mssN for solving (1.1), we perform comparison numerical experiments with other methods on

both real-world market data set and simulated data set. In addition, to illustrate the out-of-

sample performance of the CCMV model, we compare the Sharp ratio of the solutions generated

by siPDCA-mssN for solving the CCMV model in (1.1) with those of other portfolio selection

models.

Computational environment. All experiments are performed in Matlab 2020a on a 64-

bit PC with an Intel(R) Xeon(R) CPU E5-2609 v2 (2.50GHz) x(2 processor) and 56GB of

RAM.

6.1. Numerical performance on real-world market data

Experimental data. The real-world market data used in this paper are the index tracking

problem data selected from OR-Library, which is also described in [51, 52]. The selected data

groups include weekly return of constituents on Nikkei 225 (Japan), Standard & Poors (S&P)

500 (US), Russell 2000 (US) and Russell 3000 (US) from the year 1992 to 1997 with the variable

dimensions n = 225, 457, 1319 and 2152, respectively. In each group, we use the data between

1992 and 1996 as the training set (m = 240) to estimate mean return vector R and matrix S,

and use the data of 1997 as the test set. For more information about this database, we refer to

the homepage of OR-Library 1) .

Comparing algorithms. To display the numerical performance of siPDCA-mssN, we

compare it with the standard CPLEX(12.9) solver and the penalty proximal alternating lin-

earized minimization (PPALM) method for solving the CCMV problem in (1.1) by perform-

ing experiments on real-world market data. In order to use the CPLEX solver, we reformu-

late the CCMV problem (1.1) into a standard mixed-integer quadratic programming (MIQP)

by introducing 0 − 1 variables. To employ PPALM method [25], we divide the feasible set

of (1.1) into the following two parts: C1 =
{
x ∈ R

n : e⊤x− 1 = 0,R⊤x ≥ r
}

and D1 =

{x ∈ R
n : ‖x‖0 ≤ K,0 ≤ x ≤ b}. The PPALM method for solving (1.1) is presented in Al-

gorithm 6.1.

1) http://people.brunel.ac.uk/ mastjjb/jeb/info.html
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Algorithm 6.1. PPALM method [25] for solving (1.1)

Step 0. Give ρ0 > 0, K > 0, σ > 1, γ1, γ2 > 1, R ∈ R
n, Q ∈ R

n×n, b ∈ R
n, εI ≥ 0, εO ≥ 0.

Initialize (x0,y0) ∈ R
n × R

n. Set k = 0.

Step 1. Set l = 0, Lk
1 = ‖Q‖ + ρk, Lk

2 = ρk, tk1 = γ1L
k
1 , tk2 = γ2L

k
2 and apply the

proximal alternating linearized minimization method [24] to find an approximate critical

point (xk,yk) ∈ C1 ×D1 of the penalty subproblem

min
x,y∈Rn

Ψρk
(x,y) = δC1(x) +

1

2
x⊤Qx +

ρk
2
‖x− y‖2 + δD1(y) (6.1)

by performing steps (1.1)-(1.3):

(1.1) Let w1 = xk
l − 1/tk1(Qxk

l + ρk(xk
l − yk

l )), compute xk
l+1 = ΠC1(w1).

(1.2) Let w2 = yk
l − 1/tk2ρk(yk

l − xk
l+1), compute yk

l+1 = ΠD1(w2).

(1.3) If max
{ ‖xk

l+1−xk
l ‖∞

max(‖xk
l
‖∞,1)

,
‖yk

l+1−yk
l ‖∞

max(‖yk
l
‖∞,1)

}
≤ εI holds, set (xk+1,yk+1) = (xk

l+1,y
k
l+1)

and go to Step 2. Else, set l := l + 1 and go to step (1.1).

Step 2. Set ρk+1 = σρk, (xk+1
0 ,yk+1

0 ) = (xk+1,yk+1) and k := k + 1, go to Step 1.

Parameter setting for model. The upper limit on the number of stocks included in the

portfolio is set as K = 5, 10, 20, 30, 40. The upper bound vector of investment proportion of

assets is set as bi = 0.3, 1 ≤ i ≤ n, which also can be set as different value for each asset under

Assumption 2.1. The vector R is set as the expected return of n assets in the training set. The

minimum profit target r is set as r = (
∑n

i=1 Ri − max(R))/n.

Parameter setting for siPDCA-mssN. To guarantee that the solution satisfies the car-

dinality constraint and the penalized problem in (1.3) can be relatively easily solved, we set the

penalty parameter c by a gradually increasing strategy. In addition, we start siPDCA-mssN

with a small penalty parameter c0 for each group data: c0 = 5× 10−6(n = 225), c0 = 10−5(n =

457), c0 = 5×10−5(n = 1319), c0 = 10−4(n = 2152). For siPDCA-mssN, it is essential to choose

the appropriate and effective proximal parameter for both theory analysis and numerical effi-

ciency. The general rule is to choose the proximal parameter as small as possible so that the

algorithm can take a large step and the inner problem still can be solved relatively easily. Then

we choose the values of α through a 5-fold cross-validation procedure from the set of candidates

{
10−4, 2 × 10−4, 4 × 10−4, 6 × 10−4, 8 × 10−4, 10−3

}
.

Notice that the sieving parameter κ ∈ (0, 1) is used to balance the efficiency of siPDCA-

mssN and the inexactness of solution. Large κ requires the new stability center to be more

accurate, which results in fewer serious steps being performed. Hence, to obtain more serious

steps, the sieving parameter should be set as small as possible. In this experiment, we set the

sieving parameter as κ = 0.01. In addition, we use an adaptive strategy to set the sequence

{ǫk}: if the sieving conditions in (5.1) hold, set ǫk+1 = max( k
1+k

, ρ1)ǫk, otherwise, set ǫk+1 =

max( k
1+k

, ρ2)ǫk. Then we set ǫ1 = 10−1, ρ1 = 0.99 and ρ2 = 0.9.

Parameter setting for PPALM and CPLEX. The parameters for PPALM method are

set as: ρ0 = 0.1, σ =
√

10, εI = 5 × 10−5, γ1 = γ2 = 1.01. The parameters of CPLEX solver

are set as the default value of software.
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Initialization. The initial solutions of siPDCA-mssN and PPALM method are randomly

generated from a uniform distribution with range [0, 0.3]. We use the default initial solution of

the software for the CPLEX solver.

Termination criterion. The termination criterion of siPDCA-mssN is set as: ‖yk+1−xk‖
max(1,‖xk‖) ≤

ε and max(‖∆k+1
1 ‖, |∆k+1

2 |) ≤ ε with ε = 10−3. We set the termination conditions of PPALM

method as
‖xk+1 − xk‖∞
max(‖xk‖, 1)

≤ εO and ‖xk+1
Iǫ

‖0 ≤ K, (6.2)

where Iǫ =
{
i ∈ {1, 2, · · ·n} : |xk+1

i | > ǫ
}

. Then we set ǫ = 10−5 and εO = 10−3. For CPLEX

solver, we use the default termination criterion of software.

As a comparison, numerical results for the solving time (time/s) and optimal value (F ) of

the objective function F (x) = 1
2x

⊤Qx across 50 run of tests of siPDCA-mssN, PPALM method

and CPLEX solver are presented in Table 6.1. As a result from Table 6.1, one can see that our

siPDCA-mssN outperforms PPALM method and the CPLEX solver from the solving time and

optimal objective function value. The optimal value of siPDCA-mssN is smaller than that of

other methods in most cases. The solving time of siPDCA-mssN is less than that of PPALM

method and the CPLEX solver for all the situations. In most cases, for the same data group,

the larger the values of K is, the less the solving time is taken and the small the optimal value

is obtained.

6.2. Numerical performance on large-scale simulated data

To demonstrate the effectiveness of siPDCA-mssN and DsiPDCA-mssN for solving the large-

scale CCMV portfolio selection problem, we compare siPDCA-mssN and DsiPDCA-mssN with

PPALM method for solving (1.1) by performing numerical experiments on the large-scale sim-

ulated data set.

Experimental data. The simulated data sets with the variable dimensions n = 10000,

20000, 40000 and 80000 are used, which are obtained by adding Gaussian noise on the data set

Russell 3000 mentioned above. The Gaussian noise vectors are generated from the zero-mean

multivariate Gaussian distribution, whose standard deviation is 0.01.

Parameter setting for model. The upper limit on the number of stocks included in the

portfolio is set as K = 10, 20, 30, 40, 50, 60. The upper bound vector of investment proportion

of assets is set as bi = 0.5, 1 ≤ i ≤ n. We set R and r in the same way as in Subsection 6.1.

Parameter setting for Algorithms. For siPDCA-mssN and DsiPDCA-mssN, we set the

same initial penalty parameter c0 = 6×10−5. The other parameters for siPDCA-mssN are set as

the same as in Subsection 6.1. For DsiPDCA-mssN, the proximal parameter, sieving parameter

and the sequence {ǫk} are set the same as that of siPDCA-mssN. The other parameters for

DsiPDCA-mssN are set as: ǭ = 10−12, M = 500. The parameters for PPALM method are set

as: ρ0 = 0.1, σ =
√

10, εI = 10−5 and γ1 = γ2 = 1.01.

Initialization. The initial solutions of siPDCA-mssN, DsiPDCA-mssN and PPALM method

are randomly generated from a uniform distribution with range [0, 0.5].

Termination criterion. The termination criterion of siPDCA-mssN and PPALM method

is set the same as in Subsection 6.1. For DsiPDCA-mssN, the outer iteration termination

condition is set as:

‖V (xq+1;λq+1,uq+1,ηq+1, ζq+1,γq+1)‖∞ < ǫ̂ and ‖xq+1‖0 ≤ K
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Table 6.1: The performance of siPDCA-mssN, PPALM method and the CPLEX solver for solving the

CCMV problem on real-world market data.

n K
siPDCA-mssN PPALM CPLEX

time/s F time/s F time/s F

224

5 0.0349 1.6063e-04 0.0488 1.8473e-04 0.5725 1.6063e-04

10 0.0730 1.6859e-04 0.0592 2.3819e-04 0.5462 1.5365e-04

15 0.0287 1.5312e-04 0.0655 1.6671e-04 0.1729 1.5312e-04

Nikkei 225 20 0.0280 1.5312e-04 0.0665 1.6062e-04 0.1813 1.5312e-04

30 0.0290 1.5312e-04 0.0608 1.5950e-04 0.1754 1.5312e-04

40 0.0274 1.5312e-04 0.0515 1.5971e-04 0.1602 1.5312e-04

457

5 0.1893 1.4332e-04 0.1989 1.8587e-04 1.1910 1.6716e-04

10 0.1537 1.1309e-04 0.1544 1.4337e-04 1.1233 1.5065e-04

15 0.0662 1.0520e-04 0.0922 1.4390e-04 1.1176 1.2812e-04

S&P 500 20 0.0589 9.9833e-05 0.0923 1.4164e-04 1.1310 1.1335e-04

30 0.0653 9.6891e-05 0.0786 1.0948e-04 2.0211 1.0323e-04

40 0.0670 9.4487e-05 0.1014 1.0421e-04 2.1381 1.0323e-04

1319

5 0.3497 7.0892e-05 1.3323 9.8059e-05 45.3173 7.2938e-05

10 0.2058 4.1415e-05 0.7418 5.3995e-05 17.8707 3.6303e-05

15 0.2371 3.4325e-05 0.3535 5.9514e-05 21.4397 2.9927e-05

Russell 2000 20 0.1889 2.9781e-05 0.3197 5.4707e-05 17.6860 2.6558e-05

30 0.1759 2.5470e-05 0.2262 5.5459e-05 22.1888 2.7010e-05

40 0.1353 2.4746e-05 0.2765 5.1579e-05 18.6160 2.7010e-05

2152

5 0.6726 7.7102e-05 5.4425 1.2629e-04 76.8841 6.5720e-05

10 0.4753 4.5418e-05 2.7726 8.7698e-05 25.4944 3.6787e-05

15 0.3913 3.2468e-05 1.4684 7.2732e-05 20.6647 4.9539e-05

Russell 3000 20 0.2837 3.0435e-05 0.7577 6.5346e-05 20.4594 3.7563e-05

30 0.2725 2.6626e-05 0.9214 5.9099e-05 20.3108 3.0495e-05

40 0.2561 2.3898e-05 1.1170 5.8800e-05 20.2162 2.7310e-05

with ǫ̂ = 10−7 and the inner iteration tolerance error is set as ε = 10−5.

As a comparison, the numerical results for solving time (time/s) and optimal value (F )

of objective function F (x) = 1
2x

⊤Qx of siPDCA-mssN, DsiPDCA-mssN and PPALM method

for solving (1.1) are presented in Table 6.2. The solving time and optimal value of these three

algorithms are obtained from the average of 20 run tests. As a result from Table 6.2, one can see

that siPDCA-mssN and DsiPDCA-mssN outperform PPALM method from solving time and

optimal value. With the dimension growing from n = 10000 to n = 80000, the computation

time of siPDCA-mssN and PPALM method increases significantly, but that of DsiPDCA-mssN

increases slowly. When n = 80 000, the time consumption of the PPALM method is longer

than half an hour, but that of the DsiPDCA-mssN is less than 1 second.

6.3. Out-of-sample performance of the CCMV model

To illustrate the out-of-sample performance of the CCMV model, we compare the Sharp

ratio of the solution generated by siPDCA-mssN for solving CCMV model in (1.1).

Comparing models. The shorting-prohibited Markowitz (Non-Shortsale mean-variance,
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Table 6.2: The performance of siPDCA-mssN, DsiPDCA-mssN and PPALM method for solving the

large-scale CCMV problem on simulated data.

n K
siPDCA-mssN DsiPDCA-mssN PPALM

time/s F time/s F time/s F

10000

10 2.1978 8.2918e-05 0.4110 3.8213e-05 73.6205 2.6319e-4

20 2.7305 3.8103e-05 0.3089 2.6377e-05 44.7699 7.5173e-05

30 2.1143 2.8244e-05 0.3028 2.2996e-05 33.9316 6.2616e-05

40 3.0821 2.2531e-05 0.2903 2.1722e-05 36.3180 6.1816e-05

50 5.0259 1.9253e-05 0.2758 2.0789e-05 38.0101 5.7869e-05

60 9.3288 1.6421e-05 0.2509 2.0706e-05 39.3867 5.5792e-05

20000

10 9.1212 8.1761e-05 0.4838 4.1265e-05 350.0777 5.1797e-04

20 6.0668 3.608e-05 0.3696 2.4762e-05 201.6345 1.5315e-04

30 5.8608 2.8873e-05 0.3532 2.0181e-05 161.6800 1.2390e-04

40 8.8727 2.1757e-05 0.3213 1.8388e-05 176.8079 1.0653e-04

50 17.7093 1.7854e-05 0.2983 1.8606e-05 173.9438 9.9564e-05

60 37.1613 1.5978e-05 0.2768 1.9695e-05 169.6886 9.2651e-05

40000

10 30.8615 7.7861e-05 0.5367 3.8369e-05 1062.8312 3.6329e-04

20 17.9685 3.5676e-05 0.4016 2.3554e-05 590.5480 2.4785e-04

30 13.1156 2.7229e-05 0.3999 2.0377e-05 532.5221 2.3005e-04

40 49.7563 2.0232e-05 0.3865 1.7835e-05 682.3270 3.2856e-04

50 77.4470 1.6606e-05 0.3540 1.7278e-05 726.4977 3.1768e-04

60 171.0652 1.4098e-05 0.3148 1.7286e-05 719.4106 3.1519e-04

80000

10 179.5655 7.3305e-05 0.6617 3.9505e-05 2003.9333 2.2406e-4

20 314.7783 3.7089e-05 0.5122 2.4819e-05 2294.6601 5.2259e-4

30 349.6836 2.8916e-05 0.4872 2.1345e-05 2529.7857 7.8469e-4

40 453.4198 2.1484e-05 0.4455 1.9437e-05 2616.7341 9.5967e-4

50 439.1101 1.8558e-05 0.4213 1.7986e-05 2879.4293 1.0081e-3

60 530.3158 1.4834e-05 0.4127 1.5731e-05 3083.2883 1.0973e-3

NSMV) model

min
x∈Rn

{
1

2
x⊤Qx : R⊤x ≥ r, e⊤x = 1,x ≥ 0

}
(6.3)

is a classical model in portfolio selection. In addition, as evaluated by DeMiguel et al. [53], the

performance of naive 1/N (equal proportion of every asset) portfolio is often better than that

of the standard Markowitz model. The l1 regularized mean-variance (l1-MV) model

min
x∈Rn

{
1

2
x⊤Qx + λ‖x‖1 : R⊤x ≥ r, e⊤x = 1

}
(6.4)

and l0 regularized mean-variance (l0-MV) model

min
x∈Rn

{
1

2
x⊤Qx + λ‖x‖0 : R⊤x ≥ r, e⊤x = 1,0 ≤ x ≤ b

}
(6.5)

are two popular sparse portfolio selection models, see [25]. The NSMV model, l1-MV and l0-MV

are solved by the CPLEX solver.

Experimental data. This numerical experiment is also performed on the real-world market

data described in Subsection 6.1.
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Table 6.3: Comparison of the Sharpe ratio (Sr) and sparsity (Spa) of the solutions of problem (1.1)

and that of other methods.

n
CCMV 1/N NSMV l1 −MV l0 −MV

K Sr Spa Sr Spa Sr Spa λ Spa Sr λ Spa Sr

224

5 0.0315 5 -0.2362 224 0.0399 12 5.00e-4 12 0.404 5.00e-5 5 0.0315

10 0.0392 10 -0.2362 0.0399 2.50e-4 12 0.0404 4.90e-7 8 0.0374

15 0.0404 12 -0.2362 0.0399 1.50e-4 15 0.0990 4.00e-7 12 0.0404

Nikkei 225 20 0.0404 12 -0.2362 0.0399 1.11e-4 20 0.1560 2.50e-7 12 0.0404

30 0.0404 12 -0.2362 0.0399 1.96e-5 30 0.2186 1.50e-7 12 0.0404

40 0.0404 12 -0.2362 0.0399 5.90e-5 40 0.2437 5.00e-8 12 0.0404

457

5 0.0841 5 -0.0507 457 -0.1094 52 5.00e-4 50 -0.1090 2.00e-5 5 0.0011

10 0.0810 10 -0.0507 -0.1094 4.00e-4 50 -0.1090 2.65e-6 10 -0.0697

15 0.0295 15 -0.0507 -0.1094 3.00e-4 50 -0.1090 1.25e-6 15 -0.0710

S&P 500 20 -0.0484 20 -0.0507 -0.1094 2.00e-4 50 -0.1090 5.00e-7 20 -0.0889

30 -0.0965 30 -0.0507 -0.1094 1.00e-4 61 -0.0998 1.53e-7 30 -0.1073

40 -0.0981 40 -0.0507 -0.1094 5.00e-5 91 -0.0573 5.45e-8 40 -0.1146

1319

5 0.1518 5 0.0568 1319 0.2547 83 5.00e-4 74 0.2552 5.75e-6 5 0.1317

10 0.1732 10 0.0568 0.2547 4.00e-4 74 0.2552 2.23e-6 10 0.1448

15 0.1968 15 0.0568 0.2547 3.00e-4 74 0.2552 1.00e-6 15 0.1922

Russell 2000 20 0.2239 20 0.0568 0.2547 2.00e-4 74 0.2552 5.00e-7 20 0.1991

30 0.2654 30 0.0568 0.2547 1.00e-4 78 0.2645 2.50e-7 30 0.2462

40 0.3187 40 0.0568 0.2547 5.00e-5 105 0.2691 1.53e-7 40 0.2556

2152

5 0.1180 5 0.0355 2152 0.2432 92 5.00e-4 83 0.2422 5.00e-6 5 0.1889

10 0.1784 10 0.0355 0.2432 4.00e-4 83 0.2422 2.50e-6 10 0.1965

15 0.2151 15 0.0355 0.2432 3.00e-4 83 0.2422 1.20e-6 15 0.1650

Russell 3000 20 0.2483 20 0.0355 0.2432 2.00e-4 83 0.2424 6.25e-7 20 0.1787

30 0.3113 30 0.0355 0.2432 1.00e-4 86 0.2552 2.75e-7 30 0.2421

40 0.3021 40 0.0355 0.2432 5.00e-5 105 0.2662 1.50e-7 40 0.2758

Parameter setting. The parameters for siPDCA-mssN are set as the same as in Subsection

6.1. The parameters of CPLEX solver is set as the default of the software. For l1-MV and l0-

MV, choosing a suitable regularization parameter λ is essential to sparsity of its solutions. We

choose the values of λ for l1-MV and l0-MV through a 5-fold cross-validation procedure from

the set of candidates

{5×10−7, 10−6, 5×10−6, 10−5, 5×10−5, 10−4, 5×10−4}, {10−7, 5×10−7, 10−6, 5×10−6, 10−5},

respectively.

As a comparison, the Sharpe ratio (Sr) and sparsity (Spa) of the solutions of the CCMV

problem in (1.1), the shorting-prohibited Markowitz model in (6.3), the naive 1/N portfolio

model, the l1-MV model in (6.4) and the l0-MV model in (6.5) are presented in Table 6.3. As

a result from Table 6.3, one can see that the Sharp ratio of the solution of siPDCA-mssN for

solving (1.1) is larger than that of the naive 1/N portfolios model, NSMV model, l1-MV model

and l0-MV model for most cases. In addition, the solutions of CCMV model and l0-MV model

are more sparse than those of the other portfolio selection models. The solution of the l1-MV

model cannot become more sparse even if the penalty parameter is increased. Therefore, when

the transaction costs and other costs are taken into account, the solutions of CCMV model are
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better than those of the other portfolio selection models.

7. Conclusions

In this paper, we considered the optimization problem of the cardinality constrained mean-

variance (CCMV) model for sparse portfolio selection. To address the difficulties caused by the

cardinality constraint, the cardinality constraint was equivalently transferred to a difference-

of-convex functions (DC) constraint and a penalty approach was used to penalize to the DC

constraint into objective function. We proved that there exists a penalty parameter such that

the penalty approach is exact. To solving the gained DC problem, an efficient inexact proximal

DC algorithm with sieving strategy (siPDCA) was proposed. By making full use of the semis-

mooth properties of the dual inner problems of siPDCA and the superlinear convergence of

semismooth Newton (ssN) method, an efficient majorized ssN (mssN) method was introduced

to solve the inner problems of siPDCA from the dual. As a result, an algorithm framework,

siPDCA based on a mssN method (siPDCA-mssN), was proposed to solve the DC problem. We

proved that the sequence generated by siPDCA-mssN globally converges to a stationary point

of the DC problem and the stationary point is also a local minimizer of the CCMV model when

it satisfies the cardinality constraint.

For the large-scale CCMV problem, based on the violation of the first-order optimality con-

ditions, a decomposed strategy was introduced into siPDCA-mssN, and the resulting algorithm

was called decomposed siPDCA-mssN (DsiPDCA-mssN). In each iteration of DsiPDCA-mssN,

siPDCA-mssN was used to solve a small-scale CCMV model. Under some mild assumption, we

proved that the solution sequence generated by DsiPDCA-mssN subsequentially converges to a

local minimizer of the original CCMV problem.

The results of the numerical experiments performed on the real-world market data demon-

strated that siPDCA-mssN outperforms the standard CPLEX(12.9) solver and the penalty prox-

imal alternating linearized minimization (PPALM) method for solving the CCMV model from

the computation time and optimal value. In addition, by performing numerical experiments on

large-scale simulated data, it was illustrated that DsiPDCA-mssN and siPDCA-mssN are more

efficient than PPALM method for solving large-scale CCMV problem. Moreover, the out-of-

sample performance experiments displayed that the solutions generated by siPDCA-mssN for

solving CCMV model are better than those of native 1/N portfolio model, shorting-prohibited

Markowitz model, l1 regularization mean-variance model and l0 regularization mean-variance

model in terms of Sharp ratio and sparsity.

Appendix

A.1. The proof of Theorem 4.2

Proof. For statement (1), since xkl+1 ∈ C is the stability center generated in the serious

step, then from the optimality of xkl+1 for solving strongly convex problem in (3.5) and the

feasibility of xkl ∈ C, it holds that

fc(x
kl+1) − 〈xkl+1 , ξkl〉 +

α

2
‖xkl+1 − xkl‖2 + ukl+1(e⊤xkl+1 − 1) − 〈xkl+1 ,∆

kl+1

1 〉

≤fc(x
kl) − 〈xkl , ξkl〉 + ukl+1(e⊤xkl − 1) − 〈xkl ,∆

kl+1

1 〉 − α

2
‖xkl+1 − xkl‖2. (A.1)
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From the convexity of gc(x), we have

gc(x
kl+1) ≥ gc(x

kl) + 〈xkl+1 − xkl , ξkl〉.

Combining this with (A.1), we have

α‖xkl+1 − xkl‖2 − 〈xkl+1 − xkl ,∆kl+1〉 − (ukl+1 − ukl)(e⊤xkl − 1)

≤[fc(x
kl) − gc(x

kl) + ukl(e⊤xkl − 1)] − [fc(x
kl+1) − gc(x

kl+1) + ukl+1(e⊤xkl+1 − 1)]. (A.2)

Since xkl+1 is generated in the serious step of siPDCA-mssN, then the sieving conditions in

(5.1) holds, i.e.,

‖∆k+1
1 ‖ ≤ (1 − κ)

α

2
‖xkl+1 − xkl‖,

and

|(ukl+1 − ukl)(e⊤xkl − 1)| ≤ (1 − κ)
α

2
‖xkl+1 − xkl‖2.

Consequently,

α‖xkl+1 − xkl‖2 − 〈xkl+1 − xkl ,∆
kl+1

1 〉 − (ukl+1 − ukl)(e⊤xkl − 1)

≥κα‖xkl+1 − xkl‖2. (A.3)

By applying this to (A.2), we have

κα‖xkl+1 − xkl‖2

≤[fc(x
kl) − gc(x

kl) + ukl(e⊤xkl − 1)]

− [fc(x
kl+1) − gc(x

kl+1) + ukl+1(e⊤xkl+1 − 1)]. (A.4)

Thus the sequence
{
f(xkl) − gc(x

kl) + ukl(e⊤xkl − 1)
}

is nonincreasing. From Proposition

4.1, we get that
{
xk

}
and

{
ũk

}
are bounded, then

{
xkl

}
and

{
ukl

}
are also bounded. Since

fc(x)−gc(x) is lower bounded, we can obtain that
{
fc(x

kl) − gc(x
kl) + ukl(e⊤xkl − 1)

}
is lower

bounded. Consequently, the limit s = lim inf l→∞[fc(x
kl+1) − gc(x

kl+1) + ukl+1(e⊤xkl+1 − 1)]

exists. By summing both sides of (A.4) from l = 0 to ∞, we have

∞∑

l=0

κα‖xkl+1 − xkl‖2 ≤ [fc(x
0) − gc(x

0) + u0(e⊤x0 − 1)] − s < ∞ (A.5)

and liml→∞ ‖xkl+1 − xkl‖ = 0.

For statement (2), since xkl+1 is the stability center generated in the serious step of siPDCA-

mssN, then the following optimality conditions for solving (3.5) hold:

∆
kl+1

1 ∈ ∇fc(x
kl+1) + ∂δC(xkl+1) − ξkl + ukl+1e + α(xkl+1 − xkl),

e⊤xkl+1 − 1 = ∆
kl+1

2 .
(A.6)

Then there exists ςkl+1 ∈ ∂δC(xkl+1) such that

∇fc(x
kl+1) + ςkl+1 − ξkl + ukl+1e + α(xkl+1 − xkl) − ∆

kl+1

1 = 0.

Consequently, we have

‖∇fc(x
kl+1) + ςkl+1 − ξkl + ukl+1e‖ ≤ α‖xkl+1 − xkl‖ + ǫkl+1

. (A.7)
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From Proposition 4.1, we have that
{
xkl

}
and

{
ukl

}
are bounded. Then there exists subsets

L′ ⊂ L = {0, 1, 2 . . .} such that
{
xkl

}
L′ converges to an accumulation point x ∈

{
xkl

}
L. Com-

bining the boundedness of
{
xkl

}
L′ with the fact that gc(x) is a finite-valued convex function,

it follows that the subsequence
{
ξkl

}
L′ is bounded. Consequently, it holds that

{
ςkl

}
L′ is

bounded from (A.7). By the fact that the nonnegative sequence {ǫk} monotonically decreases

to zero, we may assume that, without loss of generality, there exists a subset L′′ ⊂ L′ such that

liml∈L′′ ξkl = ξ̄, liml∈L′′ ςkl = ζ̄, liml∈L′′ ukl = ū and liml∈L′′ ǫkl
= 0. Taking the limit on the

two sides of inequality in (A.7) with l ∈ L′′, we have

‖∇fc(x) + ς̄ − ξ̄ + ūe‖ = lim
l∈L′′

‖∇fc(x
kl+1) + ςkl+1 − ξkl + ukl+1e‖

≤ lim
l∈L′′

α‖xkl+1 − xkl‖ + lim
l∈L′′

ǫkl+1
= 0,

which implies that ‖∇fc(x) + ς̄ − ξ̄ + ūe‖ = 0. In addition,

|e⊤x− 1| = lim
l∈L′′

|e⊤xkl+1 − 1| ≤ lim
l∈L′′

ǫkl+1
= 0,

which implies that x ∈ D and ūe ∈ ND(x). Since δC(x) and gc(x) are all lower semicontinuous,

then the accumulation points ζ̄ and ξ̄ satisfy ζ̄ ∈ ∂δC(x) and ξ̄ ∈ ∂gc(x), respectively, as a

consequence of [46, Proposition 4.1.1]. Therefore, it holds that

0 ∈ ∂f(x) − ∂gc(x) + ND(x). (A.8)

This implies that any accumulation point x of
{
xkl

}
is a stationary point of (3.3). This

completes the proof. �

A.2. The proof of Proposition 4.2

Proof. For statement (1), since xkl+1 = yk+1 ∈ C is the stability center generated in the

serious step, then the sieving conditions in (5.1) hold. Consequently, it holds that

‖∆
kl+1

1 ‖ ≤ (1 − κ)
α

2
‖xkl+1 − xkl‖ (A.9)

and
κα

2
‖xkl+1 − xkl‖2 ≤ α

2
‖xkl+1 − xkl‖2 − 〈∆kl+1

1 ,xkl+1 − xkl〉. (A.10)

Thus, we have

E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )

= fc(x
kl+1) − 〈xkl+1 , ξkl〉 + g∗c (ξkl) + α‖xkl+1 − xkl‖2

+ ukl+1(e⊤xkl+1 − 1) − 〈∆kl+1

1 ,xkl+1 − xkl〉
= fc(x

kl+1) − 〈xkl+1 − xkl , ξkl〉 − gc(x
kl) + α‖xkl+1 − xkl‖2

+ ukl+1(e⊤xkl+1 − 1) − 〈∆kl+1

1 ,xkl+1 − xkl〉
≥ fc(x

kl+1) − gc(x
kl+1) + α‖xkl+1 − xkl‖2

+ ukl+1(e⊤xkl+1 − 1) − 〈∆kl+1

1 ,xkl+1 − xkl〉
≥ fc(x

kl+1) − gc(x
kl+1) + ukl+1(e⊤xkl+1 − 1) + (1 + κ)

α

2
‖xkl+1 − xkl‖2

≥ fc(x
kl+1) − gc(x

kl+1) + ukl+1(e⊤xkl+1 − 1),
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where the second equality is due to the convexity of gc and the fact that ξkl ∈ ∂gc(x
kl), the

first inequality follows from the convexity of gc.

For statement (2), since xkl+1 = yk+1 ∈ C is the optimal solution of strongly convex inner
problem (3.5), then the following inequality follows from the feasibility of xkl ∈ C:

fc(x
kl+1)− 〈xkl+1 , ξkl〉+ δC(x

kl+1) +
α

2
‖xkl+1 − x

kl‖2 + u
kl+1(e⊤

x
kl+1 − 1)− 〈∆

kl+1
1 ,xkl+1〉

≤fc(x
kl)− 〈xkl , ξkl〉+ δC(x

kl) + u
kl+1(e⊤

x
kl − 1) − 〈∆

kl+1

1 ,xkl〉 −
α

2
‖xkl+1 − x

kl‖2. (A.11)

This impiles that

E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )

=fc(x
kl+1) − 〈xkl+1 , ξkl〉 + g∗c (ξkl) + δC(xkl+1) + α‖xkl+1 − xkl‖2

+ ukl+1(e⊤xkl+1 − 1) − 〈∆kl+1

1 ,xkl+1 − xkl〉
≤fc(x

kl) − 〈xkl , ξkl〉 + δC(xkl) + ukl+1(e⊤xkl − 1) + g∗c (ξkl).

From (A.3), we have

E(xkl+1 , ξkl ,xkl ,ukl+1,∆
kl+1

1 )

≤fc(x
kl) − 〈xkl , ξkl〉 + g∗c (ξkl) + δC(xkl) + ukl+1(e⊤xkl − 1)

=fc(x
kl) − gc(x

kl) + δC(xkl) + ukl+1(e⊤xkl − 1)

≤fc(x
kl) − 〈xkl , ξkl−1〉 + g∗c (ξkl−1) + δC(xkl) + ukl+1(e⊤xkl − 1)

=E(xkl , ξkl−1 ,xkl−1 ,ukl ,∆kl

1 ) − α‖xkl − xkl−1‖2

+ 〈∆kl

1 ,xkl − xkl−1〉 + (ukl+1 − ukl)(e⊤xkl − 1)

≤E(xkl , ξkl−1 ,xkl−1 ,ukl ,∆kl

1 ) − κα‖xkl − xkl−1‖2,

where the first equality follows from the convexity of gc and the fact that ξkl ∈ ∂gc(x
kl), the

second inequality follows from the convexity of gc and the Youngs inequality applied to gc.

For statement (3), from Proposition 4.1, we can obtain that
{
xkl

}
and

{
ukl

}
are bound-

ed. Since gc(x) is a finite-valued convex function, then it holds that
{
ξkl

}
is bounded. The

boundedness of
{

∆kl

1

}
follows from the fact that ‖∆kl

1 ‖ ≤ ǫkl
and liml→∞ ǫkl

= 0. Hence,
{

(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )
}

has nonempty accumulation point set Γ.

For statement (4), the lower boundedness of
{
fc(x

kl) − gc(x
kl) + ukl(e⊤xkl − 1)

}
, together

with (4.8), yields that the sequence
{
E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆

kl+1

1 )
}

is bounded below . The

inequality (4.9) implies that
{
E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆

kl+1

1 )
}

is nonincreasing and the limit

Υ = lim
l→∞

E(xkl+1 , ξkl ,xkl ,ukl+1,∆
kl+1

1 )

exists. Next, we will prove that E ≡ Υ on Γ. Take any (x̂, ξ̂, x̂, û, ∆̂1) ∈ Γ. Since the above

limit exists, then there exists a subset L′ ⊂ L = {1, 2, · · · ,∞} such that

lim
l∈L′

(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ) = (x̂, ξ̂, x̂, û, ∆̂1).

Evidently, liml∈L′ ǫkl
= 0, which implies that e⊤x̂ − 1 = 0. From the optimality of xkl+1 and
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ukl+1 for solving (3.5), it follows that

fc(x
kl+1) − 〈xkl+1 , ξkl〉 + δC(xkl+1) +

α

2
‖xkl+1 − xkl‖2 + ukl+1(e⊤xkl+1 − 1) − 〈xkl+1 ,∆

kl+1

1 〉

≤fc(x̂) − 〈x̂, ξkl〉 + δC(x̂) +
α

2
‖x̂− xkl‖2 + ukl+1(e⊤x̂− 1) − 〈x̂,∆kl+1

1 〉. (A.12)

Rearranging the terms in the above inequality, we can obtain that

fc(x
kl+1) − 〈xkl+1 − x̂, ξkl〉 + δC(xkl+1) +

α

2
‖xkl+1 − xkl‖2

− 〈∆kl+1

1 ,xkl+1 − x̂〉 + ukl+1e⊤(xkl+1 − x̂)

≤fc(x̂) + δC(x̂) +
α

2
‖x̂− xkl‖2. (A.13)

From the boundedness of
{
xkl

}
,
{
ξkl

}
and

{
∆kl

}
in statement (3), it holds that

lim
l∈L′

〈xkl+1 − x̂, ξkl〉 = 0,

lim
l∈L′

〈xkl+1 − x̂,∆
kl+1

1 〉 = 0.

This, together with (A.13), yields that

Υ = lim
l∈L′

E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )

= lim
l∈L′

fc(x
kl+1) − 〈xkl+1 , ξkl〉 + g∗c (ξkl) + δC(xkl+1) + α‖xkl+1 − xkl‖2

+ ukl+1(e⊤xkl+1 − 1) − 〈∆kl+1

1 ,xkl+1 − xkl〉
= lim

l∈L′
fc(x

kl+1) − 〈xkl+1 − x̂, ξkl〉 + δC(xkl+1) + α‖xkl+1 − xkl‖2

+ ukl+1e⊤(xkl+1 − x̂) − 〈∆kl+1

1 ,xkl+1 − x̂〉 − 〈x̂, ξkl〉
+ g∗c (ξkl) − 〈∆kl+1

1 , x̂− xkl〉 + ukl+1(e⊤x̂− 1)

≤ lim sup
l∈L′

fc(x̂) + δC(x̂) +
α

2
‖x̂− xkl‖2 +

α

2
‖xkl+1 − xkl‖2 − 〈x̂, ξkl〉

+ g∗c (ξkl) − 〈∆kl+1

1 , x̂− xkl〉 + ukl+1(e⊤x̂− 1)

= lim sup
l∈L′

fc(x̂) + δC(x̂) + α‖x̂− xkl‖2 − 〈x̂− xkl , ξkl〉

− gc(x
kl) − 〈∆kl+1

1 , x̂− xkl〉 + ukl+1(e⊤x̂− 1)

= fc(x̂) − gc(x̂) + û(e⊤x̂− 1) ≤ E(x̂, ξ̂, x̂, û, ∆̂1),

where the fourth equality follows from the convexity of gc and the fact that ξkl ∈ ∂gc(x
kl), the

last equality is due to x̂ ∈ C, the last inequality comes from (4.8) with l trending to infinity.

Since E is lower semicontinuous, it follows that

E(x̂, ξ̂, x̂, û, ∆̂1) = lim inf
l∈L′

E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ) = Υ

and E ≡ Υ on Γ.

For statement (5), the subdifferential of E at (xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 ) can be computed
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by

∂E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )

=




∇fc(x
kl+1) − ξkl + ∂δC(xkl+1) + 2α(xkl+1 − xkl) + ukl+1e− ∆

kl+1

1

−xkl+1 + ∂g∗(ξkl)

−α(xkl+1 − xkl) + ∆
kl+1

1

xkl − xkl+1

e⊤xkl+1 − 1



.

Since xkl+1 = yk+1 is the optimal solution of (3.5), we have

∆
kl+1

1 ∈ ∇fc(x
kl+1) − ξkl + ∂δC(xkl+1) + α(xkl+1 − xkl) + ukl+1e.

This, together with xkl ∈ ∂g∗c (ξkl), yields that




α(xkl+1 − xkl)

xkl − xkl+1

−α(xkl+1 − xkl) + ∆
kl+1

1

xkl − xkl+1

e⊤xkl+1 − 1



∈ ∂E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆

kl+1

1 ). (A.14)

Since xkl+1 satisfies the sieving conditions in (5.1), then we have

‖∆
kl+1

1 ‖ < (1 − κ)
α

2
‖xkl+1 − xkl‖ and |e⊤xkl+1 − 1| < ‖xkl+1 − xkl‖.

Consequently, it holds that there exists a constant ρ such that

dist(0, ∂E(xkl+1 , ξkl ,xkl ,ukl+1 ,∆
kl+1

1 )) ≤ ρ‖xkl+1 − xkl‖. (A.15)

This completes the proof. �
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