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Abstract

We propose a simple iterative (SI) algorithm for the maxcut problem through fully using

an equivalent continuous formulation. It does not need rounding at all and has advantages

that all subproblems have explicit analytic solutions, the cut values are monotonically up-

dated and the iteration points converge to a local optima in finite steps via an appropriate

subgradient selection. Numerical experiments on G-set demonstrate the performance. In

particular, the ratios between the best cut values achieved by SI and those by some ad-

vanced combinatorial algorithms in [Ann. Oper. Res., 248 (2017), 365–403] are at least

0.986 and can be further improved to at least 0.997 by a preliminary attempt to break out

of local optima.

Mathematics subject classification: 90C27, 05C85, 65K10, 90C26, 90C32.
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1. Introduction

Given an undirected simple graph G = (V,E) of order n with the vertex set V and the

edge set E, a set pair (S, S′) is called a cut of G if S ∩ S′ = ∅ and S ∪ S′ = V . The maxcut

problem, one of Karp’s 21 NP-complete problems [10], aims at finding a specific cut (S, S′) of

G to maximize the cut value

cut(S) =
∑

{i,j}∈E(S,S′)

wij , (1.1)

where E(S, S′) collects all edges cross between S and S′ in E, and wij denotes the nonnegative

weight on the edge {i, j} ∈ E.

Due to its widespread applications in various areas [1,2,4], several maxcut algorithms have

been proposed to search for approximate solutions and usually fall into two distinct categories:

discrete algorithms and continuous ones. The former mainly refer to the combinatorial algo-

rithms for maxcut, which directly deal with the discrete objective function (1.1) and usually

adopt both complicated techniques to break out of local optima and advanced heuristics im-

proving the solution quality, such as the scatter search [12], the tabu search [15] and hybrid
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strategies within the framework of evolutionary algorithms [11, 13]. In contrast, the objective

functions for the latter, often obtained from the relaxation of the discrete objective function

(1.1), are continuous, and thus standard continuous optimization algorithms can be applied

into the relaxed problems in a straightforward manner, for instance, the Goemans-Williamson

(GW) algorithm [9], the CirCut algorithm resulted from the rank-two relaxation heuristics [3],

the spectral cut (SC) algorithm [8, 16] and its recursive implementation (RSC) [5, 14, 18]. For

all these continuous algorithms, rounding is essential and indispensable in obtaining a cut from

a solution of the corresponding relaxed problem. The GW algorithm rounds the solution of

a relaxing semidefinite programming via randomly selecting the hyperplanes until it achieves

an expected cut value. A deterministic strategy, named Procedure-CUT, is adopted by CirCut

to round the angle-vector solution to get a best possible associated cut. The SC algorithm ob-

tains a cut by rounding the maximal eigenvector of graph Laplacian by a threshold, while the

RSC algorithm recursively distributes part of unabsorbed points into two sets corresponding to

a cut where the selection and assignment are determined by rounding the approximate solution

of the dual Cheeger cut problem.

In this work, we propose a novel continuous algorithm for the maxcut problem, i.e. a simple

iterative (SI) algorithm. Compared with the above-mentioned continuous maxcut algorithms,

the proposed SI algorithm has the following distinct advantages. First, our inner subproblem

can be solved analytically (see Theorem 3.1), whereas no matter the GW algorithm or the RSC

algorithm needs call other optimization solvers for the inner subproblems. This constitutes the

main reason why we use the adjunct word simple for the proposed algorithm. Second, our con-

tinuous optimization problem is directly equivalent to the maxcut problem (see Theorem 2.1),

and the corresponding cut is updated in an iterative manner and converges to the local maxi-

mum (see Theorem 3.4). That is, the SI algorithm does not need any rounding at all. Finally,

as an iterative algorithm, SI may select the cut by SC to be the initial point (see Section 4). In

other words, it can also be used to improve the quality of the solution obtained from any other

algorithms.

The rest is organized as follows. Section 2 establishes an equivalent continuous formulation

of the maxcut problem (1.1) and a Dinkelbach-type iterative algorithm with global convergence.

However, the solvability of the related inner subproblem can not be assured due to both the

NP-hardness and the lack of convexity. To this end, in Section 3, we propose our simple

iterative algorithm with an analytical solution to the inner problem. Both cost analysis and

quality check are performed through numerical experiments on G-set in Section 4. Besides, in

order to further improve the quality, a preliminary attempt to break out of local optima is also

implemented there. We are concluded with a few remarks in Section 5.

2. Equivalent Continuous Problems

Given an undirected graph G = (V,E) with nonnegative weights, let

I(x) =
∑

{i,j}∈E

wij |xi − xj |, (2.1)

‖x‖∞ = max{|x1|, · · · , |xn|}, (2.2)

F (x) =
I(x)

‖x‖∞
. (2.3)
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It can be readily verified that the nonnegative function F (x) can achieve its maximum on

R
n \ {0} provided by its homogeneity of degree zero.

Let

S±(x) = {i ∈ V : xi = ±‖x‖∞}, (2.4)

S<(x) = {i ∈ V : |xi| < ‖x‖∞}. (2.5)

Then for any x∗ ∈ R
n \ {0}, we have

M(x∗) :=
{

x | ‖x‖∞ = ‖x∗‖∞, S±(x∗) ⊂ S±(x)
}

(2.6)

is a convex polytope. In fact, the convexity of I(x) directly implies that, if x∗ ∈ M(x∗) is

a maximizer of F (x) on R
n \ {0}, so does any x ∈M(x∗).

For any nonempty subset S ⊂ V , we define an indicative vector 1S

(1S)i =

{

1, i ∈ S,

0, i /∈ S,

and then

x = 1S − 1V \S ,

which satisfies
1

2
F (x) =

1

2
I(x) =

∑

{i,j}∈E

wij

|xi − xj |

2
= cut(S). (2.7)

Theorem 2.1. The maxcut problem (1.1) can be rewritten into

max
S⊂V

cut(S) =
1

2
max

x∈Rn\{0}
F (x), (2.8)

and any vector x∗ reaching the maximum of F (x) produces a maxcut (S, S′) where the subset

S satisfies S+(x∗) ⊂ S ⊂ (S−(x∗))c.

Proof. Combining cut(∅) = 0 and Eq. (2.7) for the nonempty set situation together leads

directly to
1

2
max

x∈Rn\{0}
F (x) ≥ max

S⊂V
cut(S). (2.9)

On the other hand, suppose x∗ is a maximizer of F (x) on R
n \ {0}, i.e.

1

2
F (x∗) =

1

2
max

x∈Rn\{0}
F (x). (2.10)

For any S∗ satisfying S+(x∗) ⊂ S∗ ⊂ (S−(x∗))c, there exists x̂ ∈ M(x∗) defined in Eq. (2.6)

such that
x̂

‖x̂‖∞
= 1S∗ − 1V \S∗ (2.11)

also maximizes F (x) on R
n \ {0} thanks to the zeroth-order homogeneousness of F (x). That

is, we have
1

2
max

x∈Rn\{0}
F (x) =

1

2
F

(

x̂

‖x̂‖∞

)

= cut(S∗) ≤ max
S⊂V

cut(S), (2.12)

where Eq. (2.7) has been applied. The proof is finished as a result of Eqs. (2.9) and (2.12). �
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Theorem 2.1 establishes an equivalent continuous optimization for the maxcut problem

which will serve as the cornerstone of the subsequent design of an iterative algorithm. Now we

only need to consider

rmax = max
x∈Rn\{0}

F (x). (2.13)

As shown in Theorem 2.2, it can be solved via the following so-called Dinkelbach iterative

scheme [7]:







xk+1 = argmin
‖x‖p=1

{

rk‖x‖∞ − I(x)
}

, p ∈ [1,∞], (2.14a)

rk+1 = F (xk+1), (2.14b)

where ‖ · ‖p denotes the standard p-norm in R
n, i.e.

‖x‖p =
(

|x1|
p + |x2|

p + · · ·+ |xn|
p
)

1

p . (2.15)

Theorem 2.2 (Global Convergence). The sequence {rk} generated by the iterative scheme

(2.14) from any initial point x0 ∈ R
n\{0} increases monotonically to the global maximum rmax.

Proof. The definition of xk+1 (see Eq. (2.14a)) implies

rk‖x‖∞ − I(x) ≥ rk‖xk+1‖∞ − I(xk+1), ∀x s.t. ‖x‖p = 1,

and substituting x = xk into the above inequality yields

0 = rk‖xk‖∞ − I(xk) ≥ rk‖xk+1‖∞ − I(xk+1),

which means

rk ≤ rk+1 ≤ rmax, ∀k ∈ N
+.

Therefore,

∃ r∗ ∈ [0, rmax] s.t. lim
k→+∞

rk = r∗,

and it suffices to show rmax ≤ r∗. To this end, we denote

f(r) = min
‖x‖p=1

(

r‖x‖∞ − I(x)
)

,

which must be continuous on R by the compactness of the unit closed sphere

Sp = {x ∈ R
n : ‖x‖p = 1}.

Note that

f(rk) = rk‖xk+1‖∞ − I(xk+1)

= rk‖xk+1‖∞ − rk+1‖xk+1‖∞

= ‖xk+1‖∞(rk − rk+1) → 0 as k → +∞,

then we have

f(r∗) = lim
k→+∞

f(rk) = 0,

which implies

r∗‖x‖∞ − I(x) ≥ 0, ∀x with ‖x‖p = 1.
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Hence, ∀x ∈ R
n \ {0},

F (x) =
I(x)

‖x‖∞
=

I(x)/‖x‖p
‖x‖∞/‖x‖p

=
I(x̂)

‖x̂‖∞
≤ r∗,

where x̂ = x/‖x‖p. �

Although the inner subproblem (2.14a) is not only non-convex but also non-solvable in

polynomial time due to the NP-hardness of the maxcut problem, the Dinkelbach scheme (2.14)

provides us a good starting point to a feasible iterative algorithm for the maxcut problem.

Remark 2.1. Obviously, the equivalent continuous optimization (2.13) has a fractional form,

i.e. a ratio between two convex functions, but such kind of fractions have been hardly touched in

the field of fractional programming [17], where concave optimization problems, like optimizing

the ratio of a concave function to a convex one, are usually considered.

3. A Simple Iterative Algorithm

The non-convex subproblem (2.14a) brings us a significant insight to deal with a relaxed

subproblem alternatively, though it can not be solved in polynomial time.

Denote the subgradient of I(x) by [6]

∂I(x) =

{

s = (s1, · · · , sn) | si =
∑

j:{i,j}∈E

wijzij , zij ∈ Sgn(xi − xj) and zij = −zji

}

, (3.1)

where we have extended the sign function (note that sign(0) = 1 here)

sign(t) =

{

1, if t ≥ 0,

−1, if t < 0,
(3.2)

into a set-valued function

Sgn(t) =















{1}, if t > 0,

{−1}, if t < 0,

[−1, 1], if t = 0.

(3.3)

For x = (x1, x2, · · · , xn) ∈ R
n, we are able to define corresponding vectorized versions in

an element-wise manner

sign(x) = (s1, s2, · · · , sn), si = sign(xi), i = 1, 2, . . . , n, (3.4)

Sgn(x) = {(s1, s2, · · · , sn) | si ∈ Sgn(xi), i = 1, 2, . . . , n}. (3.5)

Since the function I(·) is convex, it holds

I(x) ≥ I(y) + (x− y, s), ∀s ∈ ∂I(y), ∀x,y ∈ R
n, (3.6)

where (·, ·) denotes the standard inner product in R
n. Further considering the fact that I(·) is

homogeneous of degree one, we have

I(y) = (y, s), ∀s ∈ ∂I(y), ∀y ∈ R
n, (3.7)
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and

I(x) ≥ I(y) + (x− y, s) = (x, s), ∀s ∈ ∂I(y), ∀x,y ∈ R
n. (3.8)

Plugging the relaxation (3.8) into the subproblem (2.14a) modifies the two-step Dinkelbach

iterative scheme into the following three-step one:



















xk+1 = argmin
‖x‖p=1

{rk‖x‖∞ − (x, sk)}, p ∈ [1,∞], (3.9a)

rk+1 = F (xk+1), (3.9b)

sk+1 ∈ ∂I(xk+1) (3.9c)

with an initial data x0 ∈ R
n \ {0}, r0 = F (x0) and s0 ∈ ∂I(x0).

It can be readily verified that the subproblem (3.9a) is convex via the relaxation (3.8) from

Eq. (2.14a). More importantly, we can write down a solution to the inner subproblem (3.9a) in

an analytical manner (see Theorem 3.1). That is, no any other optimization solver is needed

in (3.9) and so that a simple iterative algorithm we name it. Actually, we are able to prove

that such iterative scheme (3.9) still keeps the monotonicity (see Theorem 3.2) and has local

convergence (see Theorem 3.4).

3.1. Exact solution to the inner subproblem

Let

L(r,v) := min
‖x‖p=1

{r‖x‖∞ − (x,v)}, r ∈ R, v ∈ R
n, (3.10)

denote the minimal value in Eq. (3.9a). In order to obtain the exact solution, we need to show

first a property of the simple iteration (3.9) (see Lemma 3.1), and use it to narrow the scope

of discussion.

Lemma 3.1. Suppose xk, rk and sk are generated by the simple iteration (3.9). Then, for

k ≥ 1, we always have rk ≤ ‖sk‖1. In particular,

(1) rk = ‖sk‖1 if and only if xk/‖xk‖∞ ∈ Sgn(sk).

(2) rk < ‖sk‖1 if and only if L(rk, sk) < 0.

Proof. From Hölder’s inequality,

rk‖x‖∞ − (x, sk) ≥ rk‖x‖∞ − ‖s
k‖1‖x‖∞ =

(

rk − ‖sk‖1
)

‖x‖∞, (3.11)

where the equality holds if and only if x ∈ ‖x‖∞Sgn(sk). Plugging x = xk into Eq. (3.11) and

using Eq. (3.7) lead to

(

rk − ‖sk‖1
)

‖xk‖∞ ≤ rk‖xk‖∞ − (xk, sk) = rk‖xk‖∞ − I(xk) = 0,

and thus rk ≤ ‖sk‖1.

Meanwhile, the statement (1) corresponds to the situation in which the equality holds.

Next we will show the statement (2) is true. On one hand, if L(rk, sk) < 0, then there exists

a vector xk+1 satisfying

L(rk, sk) = rk‖xk+1‖∞ − (xk+1, sk) < 0. (3.12)
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Substituting x = xk+1 into Eq. (3.11) and using Eq. (3.12) yield

(

rk − ‖sk‖1
)

‖xk+1‖∞ ≤ rk‖xk+1‖∞ − (xk+1, sk) = L(rk, sk) < 0,

and thus rk < ‖sk‖1.

On the other hand, assume rk < ‖sk‖1 holds. Choose y ∈ Sgn(sk) and let x∗ = y/‖y‖p. It

is obvious that ‖y‖∞ = 1, ‖x∗‖p = 1 and (y, sk) = ‖sk‖1. In consequence, we have

L(rk, sk) ≤ rk‖x∗‖∞ − (x∗, sk)

= rk
∥

∥

∥

∥

y

‖y‖p

∥

∥

∥

∥

∞

−

(

y

‖y‖p
, sk

)

=
1

‖y‖p

(

rk − ‖sk‖1
)

< 0.

The proof is complete. �

Given a real number r > 0 and a vector v = (v1, · · · , vn) ∈ R
n, in view of Lemma 3.1 and

the subproblem (3.9a), we only need to consider the minimization problem

x∗ = argmin
‖x‖p=1

{r‖x‖∞ − (x,v)} (3.13)

under the condition

0 < r ≤ ‖v‖1. (3.14)

Without loss of generality, it suffices to discuss an ordered situation

|v1| ≥ |v2| ≥ · · · ≥ |vn| ≥ |vn+1| = 0, (3.15)

where we have extended the index set into {1, . . . , n+ 1} and introduced an auxiliary element

vn+1 = 0 for convenience. Consider the accumulation of increment

A(m) =
m
∑

j=1

(|vj | − |vm+1|), m ∈ {1, 2, . . . , n}, (3.16)

and then from Eq. (3.15) we have

0 = A(0) ≤ A(1) ≤ A(2) ≤ · · · ≤ A(n) = ‖v‖1. (3.17)

Meanwhile, we need a key step to increase the regularity for p ∈ (1,∞) through rewriting the

minimization problem (3.13) into

min
‖x‖p=1

{r‖x‖∞ − (x,v)} = min
‖u‖p=1

{r‖u‖∞ − (u, |v|)} (3.18)

= min
w 6=0

r‖w‖∞ − (w, |v|)

‖w‖p
(3.19)

= min
‖z‖∞=1

r − (z, |v|)

‖z‖p
(3.20)

= min
z∈B∞

G(z), (3.21)



8 S.H. SHAO, D. ZHANG AND W.X. ZHANG

where

G(z) =
r − (z, |v|)

‖z‖p
, (3.22)

B∞ = {z ∈ R
n : ‖z‖∞ ≤ 1}, (3.23)

and the absolute value is taken in an element-wise manner, e.g., |v| = (|v1|, |v2|, · · · , |vn|). Here

we have used extensively the fact that ‖ · ‖p, ‖ · ‖∞ and (·, |v|) are all homogeneous of degree

one, and in Eq. (3.21) the fact that G(z) achieves its minimum on the boundary of the feasible

region B∞ due to

G(λz)−G(z) =

(

1

λ
− 1

)

r

‖z‖p
< 0 for λ > 1. (3.24)

If one denotes the corresponding minimizers in Eqs. (3.18)-(3.21) by x∗,u∗,w∗, and z∗, respec-

tively, then we have

u∗ = sign(v) · x∗, (3.25)

w∗ = ‖w∗‖pu
∗, (3.26)

z∗ =
w∗

‖w∗‖∞
, (3.27)

where x · y in Eq. (3.25) denotes element-by-element multiplication of vectors x and y. It is

obvious that we only need to search for the minimizer z∗ to the minimization problem (3.21),

with which we are able to reach our target

x∗ =
sign(v) · z∗

‖z∗‖p
(3.28)

by virtue of the one-to-one mappings (3.25)-(3.27).

According to the condition (3.14), the rest of the discussion falls into the following three

scenarios. Before that, we need the following lemma to characterize the minimizer of G(z) on

B∞, denoted by z∗ = (z∗1 , z
∗
2 , · · · , z

∗
n).

Lemma 3.2. Let z∗ = (z∗1 , z
∗
2 , · · · , z

∗
n) be the minimizer of G(z) on B∞. If r < ‖v‖1 and

1 ≤ p <∞, then z∗ has not only nonnegative elements, but also the same order as |v|.

Proof. Since z∗ = (z∗1 , z
∗
2 , · · · , z

∗
n) is the minimizer of G(z) on B∞, it holds

G(z∗) ≤ G(z), ∀z ∈ B∞.

In the following, the proof is by contradiction and split into three steps.

First, the condition r < ‖v‖1 directly implies that z∗ satisfies

r − (z∗, |v|) = G(z∗)‖z∗‖p ≤ G(1)‖z∗‖p =
‖z∗‖p
‖1‖p

(r − ‖v‖1) < 0, (3.29)

where 1 ∈ B∞.

Second, if there exists some i ∈ {1, . . . , n} such that z∗i < 0, and let ẑ = {ẑ1, · · · , ẑn} be

a vector satisfying: ẑi = 0 and ẑj = z∗j for j 6= i, then we have ẑ ∈ B∞ and

G(ẑ) =
r − (ẑ, |v|)

‖ẑ‖p
≤

r − (z∗, |v|)

‖ẑ‖p
<

r − (z∗, |v|)

‖z∗‖p
= G(z∗) (3.30)

from (3.29). This contradicts to the fact that z∗ is the minimizer of G(z) on B∞.
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Third, if there exists i, j ∈ {1, . . . , n} such that (z∗i − z∗j )(|vi| − |vj |) < 0, let ẑ be a vector

obtained by exchanging the i-th and the j-th elements of z, then ẑ ∈ B∞, ‖ẑ‖p = ‖z∗‖p, and

G(ẑ)−G(z∗) =
(z∗i − z∗j )(|vi| − |vj |)

‖z‖p
< 0. (3.31)

This also contradicts with the fact that z∗ achieves the minimum of G(z) on B∞. �

More importantly, under the conditions of Lemma 3.2, the objective function G(z) is now

differentiable with the i-th partial derivative being

∂G(z∗)

∂zi
= −
|vi|‖z

∗‖p +
(

r − (z∗, |v|)
)

‖z∗‖1−p
p (z∗i )

p−1

‖z∗‖2p
. (3.32)

• Scenario 1:

r < ‖v‖1 and 1 < p <∞. (3.33)

In view of Lemma 3.2 and the decreasing order of |v| described in Eq. (3.15), we may assume

that there exists an integer m0 ∈ {1, 2, . . . , n} such that z∗ satisfies

1 = z∗1 = z∗2 = · · · = z∗m0
> z∗m0+1 ≥ · · · ≥ z∗n ≥ 0. (3.34)

Let

T =
{

t ∈ R
n : z∗ + ǫt ∈ B∞ for sufficiently small ǫ > 0

}

(3.35)

denote the tangent cone of B∞ at z∗.

From Eq. (3.34), the tangent cone can be readily rewritten into

T =
{

t = (t1, t2, · · · , tn) ∈ R
n : ti ≤ 0, i = 1, 2, . . . ,m0

}

. (3.36)

Since the minimizer z∗ achieves a local minimum of G(z) on B∞, according to Eq. (3.36), we

have

∂G(z∗)

∂t
≥ 0, ∀t ∈ T (3.37)

⇔











∂G(z∗)

∂zi
≤ 0, i = 1, 2, . . . ,m0,

∂G(z∗)

∂zi
= 0, i = m0 + 1, . . . , n.

(3.38)

For the sake of subsequent discussion, it is convenient to introduce the following three

auxiliary quantities:

α =

m0
∑

i=1

|vi| − r, (3.39)

β =

n
∑

i=m0+1

z∗i |vi|, (3.40)

γ =
n
∑

i=m0+1

(z∗i )
p, (3.41)
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and then

α+ β = (z∗, |v|)− r > 0, (3.42)

m0 + γ = ‖z∗‖pp > 0. (3.43)

Therefore, the partial derivative (3.32) becomes

∂G(z∗)

∂zi
=

1

‖z∗‖p

(

α+ β

m0 + γ
(z∗i )

p−1 − |vi|

)

, (3.44)

and then Eq. (3.38) directly implies










(z∗i )
p−1 ≤

m0 + γ

α+ β
|vi|, i = 1, 2, . . . ,m0,

(z∗i )
p−1 =

m0 + γ

α+ β
|vi|, i = m0 + 1, . . . , n.

(3.45)

Substituting Eq. (3.45) into Eq. (3.41) and using Eq. (3.40) yields

γ =

n
∑

i=m0+1

(z∗i )
p−1z∗i =

n
∑

i=m0+1

m0 + γ

α+ β
|vi|z

∗
i =

m0 + γ

α+ β
β, (3.46)

and then, from m0 > 0, we have

m0 + γ

α+ β
=

m0

α
, α > 0. (3.47)

That is, the condition for local minimizers, Eq. (3.38) or Eq. (3.45), can be further simplified

into
{

(z∗i )
p−1 ≤ ai, i = 1, 2, . . . ,m0,

(z∗i )
p−1 = ai, i = m0 + 1, . . . , n,

(3.48)

where

ai =
m0

α
|vi| =

m0|vi|
∑m0

j=1 |vj | − r
, i = 1, 2, . . . , n. (3.49)

Combining Eqs. (3.34) and (3.48) determines the minimizer z∗ = (z∗1 , z
∗
2 , · · · , z

∗
n)

z∗i = min
{

1, ai
1

p−1

}

, i = 1, 2, . . . , n, (3.50)

and then we are able to reach our target x∗ by Eq. (3.28).

Therefore the exact solution to the inner subproblem for Scenario 1 has been obtained.

The only remaining thing is how to determine m0 efficiently used in Eq. (3.49). This can be

achieved with the help of the accumulation function A(m) defined in Eq. (3.16). Namely, m0

is the smallest integer m satisfying A(m) > r

m0 = min
{

m ∈ {1, 2, . . . , n} : A(m) > r
}

, (3.51)

which can be readily verified as follows:

am0
≥

(

z∗m0

)p−1
= 1 >

(

z∗m0+1

)p−1
= am0+1

⇔
m0|vm0

|
∑m0

j=1 |vj | − r
≥ 1 >

m0|vm0+1|
∑m0

j=1 |vj | − r

⇔

m0
∑

j=1

(|vj | − |vm0+1|) > r ≥

m0−1
∑

j=1

(|vj | − |vm0
|)

⇔ A(m0) > r ≥ A(m0 − 1).
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• Scenario 2:

r < ‖v‖1 and p = 1. (3.52)

In this scenario, we still have the minimizer z∗ = (z∗1 , z
∗
2 , · · · , z

∗
n) has nonnegative elements

according to Lemma 3.2, namely, ∀i ∈ {1, 2, . . . , n}, 0 ≤ z∗i ≤ 1.

Let m1 be the largest integer satisfying A(m− 1) < r, i.e.

m1 = max
{

m ∈ {1, 2, . . . , n} : A(m− 1) < r
}

, (3.53)

where A(m) is the accumulation function defined by Eq. (3.16). Comparing Eq. (3.53) with

Eq. (3.51), we have m1 ≤ m0 where m0 is defined by Eq. (3.51), and specifically

A(m1 − 1) < r = A(m1) = A(m1 + 1) = · · · = A(m0 − 1) < A(m0), (3.54)

thereby indicating

|vm1
| > |vm1+1| = · · · = |vm0

| > |vm0+1|. (3.55)

For i ∈ {1, 2, . . . , n}, consider a continuous function on [0, 1]

Gi(t) = G(z∗1 , · · · , z
∗
i−1, t, z

∗
i+1, · · · z

∗
n) = −|vi|+

r −
∑

j 6=i z
∗
j (|vj | − |vi|)

∑

j 6=i |z
∗
j |+ t

. (3.56)

Since z∗ is a minimizer of G(z) on B∞, it can be readily verified that mint∈[0,1]Gi(t)=G(z∗), i.e.

z∗i ∈ argmin
t∈[0,1]

Gi(t), ∀i ∈ {1, 2, . . . , n}, (3.57)

from which we are able to determine z∗i . The related discussion needs to split the index set into

the following three cases:

(1) For 1 ≤ i ≤ m1, we claim that Gi(t) is a strictly monotonically decreasing function due

to r −
∑

j 6=i z
∗
j (|vj | − |vi|) > 0 and thus z∗i = 1. The verification shown below is in

a straightforward manner

r −
∑

j 6=i

z∗j (|vj | − |vi|) ≥ r −

i−1
∑

j=1

z∗j (|vj | − |vi|)

≥ r −

i−1
∑

j=1

(|vj | − |vi|)

= r − A(i− 1) > 0.

(2) For m0 < i ≤ n, we claim that z∗i = 0. Suppose the contrary that z∗i0 > 0 is the positive

element with the largest index and i0 > m0. Then the order given in Eqs. (3.15) and

(3.55) directly implies

r −
∑

j 6=i0

z∗j (|vj | − |vi0 |) = r −

m1
∑

j=1

(|vj | − |vi0 |)−

i0−1
∑

j=m1+1

z∗j (|vj | − |vi0 |)

≤ r −

m1
∑

j=1

(|vj | − |vi0 |)
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< r −

m1
∑

j=1

(|vj | − |vm1+1|) = r −A(m1) = 0, if m1 < m0,

≤ r −

m1
∑

j=1

(|vj | − |vm1+1|) = r −A(m0) < 0, if m1 = m0,

and thus we have Gi0(t) is a strictly monotonically increasing function. That is, the

minimizer of Gi0(t) on [0, 1] is 0, i.e. z∗i0 = 0, which is obviously a contradiction.

(3) For m1 < i ≤ m0, using the results for above two cases and the order (3.55) yields

r −
∑

j 6=i

z∗j (|vj | − |vi|) = r −

m1
∑

j=1

(|vj | − |vi|)−

m0
∑

j=m1+1

z∗j (|vj | − |vi|)

= r −

m1
∑

j=1

(|vj | − |vm1+1|) = r −A(m1) = 0,

and thus we have Gi(t) is a constant function on [0, 1], i.e. Gi(t) ≡ −|vi|. That is, the

minimizer z∗i can take any value in [0, 1].

In a word, the minimizers z∗ = (z∗1 , · · · , z
∗
n) for Scenario 2 constitute the following set:

{

(z∗1 , · · · , z
∗
n) ∈ [0, 1]n | z∗i = 1, i = 1, . . . ,m1, and z∗i = 0, i = m0 + 1, . . . , n

}

, (3.58)

and thus x∗ can be also obtained through Eq. (3.28).

• Scenario 3:

r = ‖v‖1 or p =∞. (3.59)

For r = ‖v‖1, according to Lemma 3.1, we have that x∗ is a minimizer of problem (3.13) if

and only if
x∗

‖x∗‖∞
∈ Sgn(v), ‖x∗‖p = 1. (3.60)

For p =∞, the minimization problem Eq. (3.13) becomes a linear optimization problem

x∗ = argmin
‖x‖∞=1

{r − (x,v)}, (3.61)

the solution of which can be still represented by Eq. (3.60). Hence, the solution Eq. (3.60)

solves the minimization problem (3.13) for Scenario 3.

Summarizing the above analysis for three scenarios, we have figured out the exact solution

to the inner subproblem (3.9a), as stated in the following theorem.

Theorem 3.1 (Exact Solution). The solution of the minimization problem (3.13) under the

condition (3.14) can be expressed analytically in Eqs. (3.28) and (3.50) for r < ‖v‖1, and

1 < p <∞, Eqs. (3.28) and (3.58) for r < ‖v‖1, and p = 1, and Eq. (3.60) otherwise.

Hereafter we use a set denoted by Xk+1
p to collect all those analytical solutions of the inner

subproblem (3.9a), i.e. xk+1 ∈ Xk+1
p . Obviously, Xk+1

p is closed.

Using the above analytical solution, we are able to get a lower bound for F (x) below, which

will be useful in the subsequent convergence analysis.
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Corollary 3.1. Under the condition (3.14) the minimizer x∗ to the problem (3.13) satisfies

(x∗,v)

‖x∗‖∞
≥

m
∑

i=1

|vi|, (3.62)

where m = m0 for both Scenario 1 and Scenario 2, and m = n for Scenario 3.

Proof. For both Scenario 1 and Scenario 2, there exists a minimizer z∗ = (z∗1 , z
∗
2 , · · · , z

∗
n) ∈

B∞ ∩ R
n
+ to the equivalent problem (3.21), which satisfies

z∗1 = · · · = z∗m0
= 1,

according to Eqs. (3.50) and (3.58), respectively. Then, from Eq. (3.28), we have

(x∗,v)

‖x∗‖∞
=

(

sign(v) · z∗,v
)

= (z∗, |v|) ≥

m0
∑

i=1

|vi|. (3.63)

As for Scenario 3, using Eq. (3.60), it can be easily verified that

(x∗,v)

‖x∗‖∞
=

(

x∗

‖x∗‖∞
,v

)

=
(

Sgn(v),v
)

= ‖v‖1 =

n
∑

i=1

|vi|. (3.64)

Thus the proof is finished. �

3.2. Subgradient selection and convergence analysis

Besides the inner subproblem (3.9a), another key issue to implement the simple iteration

(3.9) is how to choose the subgradient (see Eq. (3.9c)). For a general selection, according to

Eqs. (3.7)-(3.9), we are able to obtain rk ≤ rk+1, because

0 = rk‖xk‖∞ − I(xk) = rk‖xk‖∞ − (xk, sk)

≥ rk‖xk+1‖∞ − (xk+1, sk) ≥ rk‖xk+1‖∞ − I(xk+1)

= ‖xk+1‖∞(rk − rk+1).

Theorem 3.2 (Monotonicity). The sequence {rk} generated by the iterative scheme (3.9)

from any initial point x0 ∈ R
n \ {0} increases monotonically.

The monotone increasing in Theorem 3.2 is also a direct consequence of Lemma 3.1 and

Corollary 3.1 because there exists an index set ι ⊂ {1, 2, . . . , n}, the size of which should be m

in Eq. (3.62) (the upper bound of summation index) such that

rk+1 =
I(xk+1)

‖xk+1‖∞
≥

(xk+1, sk)

‖xk+1‖∞
≥

∑

i∈ι

|ski | ≥ rk, (3.65)

where the subgradient sk is not required to be ordered like Eq. (3.15). In particular, such

monotone increasing could be strict, i.e. rk+1 > rk via improving the last “≥” in Eq. (3.65)

into “>”, if ‖sk‖1 > rk holds in each step. To this end, we only need to determine a subgradient

sσ ∈ ∂I(xk) such that ‖sσ‖1 > rk if there exists s ∈ ∂I(xk) such that ‖s‖1 > rk.
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Suppose xk = (xk
1 , · · · , x

k
n), s = (s1, · · · , sn), and then we have

λi(t) = |t| −
xk
i

‖xk‖∞
t ≥ 0, ∀i ∈ {1, . . . , n}, (3.66)

‖s‖1 − rk = ‖s‖1 −
(xk, s)

‖xk‖∞
=

n
∑

i=1

λi(si), (3.67)

which yields

‖s‖1 − rk > 0 ⇔ ∃ i ∈ {1, . . . , n}, s.t. λi(si) > 0. (3.68)

Given x ∈ R
n \ {0}, let

q = (q1, · · · , qn) ∈ (R+)n, qi =
∑

j:{i,j}∈E

wij1xi=xj
, (3.69)

p = (p1, · · · , pn), pi =
∑

j:{i,j}∈E

wijsign(xi − xj)− qi. (3.70)

It can be readily verified that p ∈ ∂I(x), and

si ∈
(

∂I(x)
)

i
= [pi − qi, pi + qi], ∀s = (s1, · · · , sn) ∈ ∂I(x). (3.71)

Here (∂I(x))i denotes the projected interval of the convex domain ∂I(x) onto the i-th coordi-

nate.

Denote p̄ = (p̄1, · · · , p̄n) by

p̄i =

{

pi ∓ qi, if i ∈ S±(x),

pi + sign(pi)qi, if i ∈ S<(x),
(3.72)

which is located on the boundary of (∂I(x))i = [pi − qi, pi + qi].

Accordingly, combining Eqs. (3.68), (3.71) and the convexity of λi(t) given in Eq. (3.66)

leads to

∃ s ∈ ∂I(xk), s.t. ‖s‖1 > rk

⇔ ∃ i ∈ {1, . . . , n}, s.t. max
si∈(∂I(x))i

λi(si) > 0

⇔ ∃ i ∈ {1, . . . , n}, s.t. λi(p̄i) > 0.

That is, if there exists i ∈ {1, . . . , n} such that λi(p̄i) > 0, then there should exist a subgradient

s ∈ ∂I(xk) satisfying si = p̄i and ‖s‖1 > rk. Hence, if p̄ ∈ ∂I(x) (but hardly holds in general),

then we may directly select p̄; otherwise we are able to use p̄ as an indicator for the subgradient

selection.

Define a partial order relation “≤” on R
2 by (x1, y1) ≤ (x2, y2) if and only if either x1 < x2

or x1 = x2, y1 ≤ y2 holds. Let Σ(x) be a collection of permutations of {1, 2, . . . , n} such that

for any σ ∈ Σ(x), it holds
(

xσ(1), p̄σ(1)
)

≤
(

xσ(2), p̄σ(2)
)

≤ · · · ≤
(

xσ(n), p̄σ(n)
)

. (3.73)

For any σ ∈ Σ(x), we select

sσ =
(

sσ1 , s
σ
2 , · · · , s

σ
n

)

∈ ∂I(x), (3.74)

sσi =
∑

j:{i,j}∈E

wijzij , i = 1, 2, . . . , n, (3.75)

zij = sign
(

σ−1(i)− σ−1(j)
)

∈ Sgn(xi − xj), i, j = 1, 2, . . . , n. (3.76)
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The following theorem demonstrates that such subgradient selection is sufficient to guarantee

the strict monotonicity rk+1 > rk (if any) with the help of the statement (1) of Lemma 3.1.

Theorem 3.3. For any permutation σ ∈ Σ(xk), we have ‖sσ‖ > rk if and only if there exists

s ∈ ∂I(xk) such that ‖s‖ > rk.

Proof. The necessity is obvious, we only need to prove the sufficiency. Suppose s =

(s1, · · · , sn) ∈ ∂I(xk) satisfies ‖s‖ > rk. Then it can be derived that xk/‖xk‖∞ /∈ Sgn(s)

using the statement (1) of Lemma 3.1, i.e. there exists an i0 ∈ {1, 2, . . . , n} such that

xk
i0

‖xk‖∞
/∈ Sgn(si0 ). (3.77)

Denote J = {j | xk
j = xk

i0
}. Let j1, j2 ∈ J be the indexes minimizing and maximizing function

σ−1(·) over J , respectively. Then we have

sσj1 =
∑

t:{t,j1}∈E

wj1tsign
(

σ−1(j1)− σ−1(t)
)

= pj1 − qj1 ,

sσj2 =
∑

t:{t,j2}∈E

wj2tsign
(

σ−1(j2)− σ−1(t)
)

= pj2 + qj2 .

We claim that either j1 or j2 is an integer j such that xk
j /∈ ‖xk‖∞Sgn(sσj ). This directly yields

‖sσ‖ > rk according to the statement (1) of Lemma 3.1 and thus completes the proof. Suppose

the contrary

xk
i0

= xk
j ∈ ‖x

k‖∞Sgn(sσj ), j = j1, j2, (3.78)

and split the discussion into the following two cases:

(1) i0 ∈ S<(xk). Eq. (3.78) implies that

sσj1 = sσj2 = 0 ⇔ pj1 = qj1 ≥ 0, pj2 = −qj2 ≤ 0,

and thus, from Eq. (3.72), we have

p̄j1 = pj1 + sign(pj1)qj1 = pj1 + sign(pj1)pj1 ≥ 0,

p̄j2 = pj2 + sign(pj2)qj2 = pj2 − sign(pj2)pj2 ≤ 0.

Since

(xj1 , p̄j1) ≤ (xi0 , p̄i0) ≤ (xj2 , p̄j2), xj1 = xi0 = xj2 ,

it yields

0 ≥ p̄j2 ≥ p̄i0 ≥ p̄j1 ≥ 0 ⇒ p̄i0 = 0 ⇒ pi0 = qi0 = 0 ⇒ si0 = 0,

which contradicts Eq. (3.77).

(2) i0 ∈ S±(xk). Eq. (3.78) implies that

{

si0 ≥ pi0 − qi0 = p̄i0 ≥ p̄j1 = sσj1 ≥ 0, if i0 ∈ S+(xk),

si0 ≤ pi0 + qi0 = p̄i0 ≤ p̄j2 = sσj2 ≤ 0, if i0 ∈ S−(xk),
(3.79)

both of which contradict Eq. (3.77). �
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In a word, we choose sk = sσ ∈ ∂I(xk) with σ ∈ Σ(xk) in the simple iterative scheme (3.9).

Besides the above-mentioned strict increasing, we are able to show below that such subgradient

selection assures finite-step local convergence. Before that, we would like to further specify

the choice of xk+1 from the closed solution set Xk+1
p at the first step. There is a natural

isomorphism h by a central projection between Sp and S∞ which are the unit spheres in norms

p and ∞, respectively. Denote ∂Xk+1
p ∈ Xk+1

p be the collection of points corresponding to the

vertices of h(Xk+1
p ) which is a convex polytope, in view of the fact that the convex function

I(x) achieves its maximum values on vertices among h(Xk+1
p ). Hence, the three-step iterative

scheme (3.9) can be crystallized into











xk+1 ∈ ∂Xk+1
p , (3.80a)

rk+1 = F (xk+1), (3.80b)

sk+1 = sσ, σ ∈ Σ(xk+1). (3.80c)

Let

C =
{

x ∈ R
n |F (y) ≤ F (x), ∀y ∈

{

Tix : i ∈ {1, . . . , n}
}

}

, (3.81)

where Tix is defined as

(Tix)j =

{

xj , j 6= i,

−xj , j = i.
(3.82)

Theorem 3.4 (Finite-Step Local Convergence). Assume the sequences {xk} and {rk}

are generated by the simple iterative scheme (3.80) from any initial point x0 ∈ R
n \ {0}. There

must exist N ∈ Z
+ and r∗ ∈ R such that, for any k > N , rk = r∗, and xk+1 ∈ C are local

maximizers.

Proof. According to Eq. (3.65), for any integer k > 0, there exists ι ⊂ {1, . . . , n} such that

rk ≤
∑

i∈ι |s
k
i | ≤ rk+1, which means the sequence {rk} can only take finite values because the

set
{

∑

i∈ι

|si|
∣

∣ sσ = (s1, · · · , sn), ∀σ ∈ Σ(x), ∀x, ι

}

is finite. Thus there exist N ∈ Z
+ and r∗ ∈ R such that rk = r∗ for any k > N , thereby

implying that

rk = ‖sk‖1,

Xk+1
p =

{

x

∣

∣

∣

∣

x

‖x‖∞
∈ Sgn(sk), ‖x‖p = 1

}

by virtue of Lemma 3.1. That is, ∀xk+1 ∈ ∂Xk+1
p , we have

xk+1

‖xk+1‖∞
∈ Sgn(s), ∀s ∈ ∂I(xk+1), (3.83)

S<(xk+1) = ∅. (3.84)

Now we will show xk+1 ∈ C and neglect the superscript k+1 hereafter for simplicity. Suppose

the contrary that there exists i ∈ S±(x) satisfying F (Tix) > F (x), and then we have

‖Tix‖∞ = ‖x‖∞, I(Tix)− I(x) = ±
∑

j:{j,i}∈E

wij2xj > 0. (3.85)
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Let s = (s1, · · · , sn) ∈ ∂I(x) be generated by

zij = −
xj

‖x‖∞
∈ Sgn(xi − xj),

and thus

xisi = xi

∑

j:{j,i}∈E

wijzij = −
∑

j:{j,i}∈E

wijxixj

‖x‖∞
= −

1

2

(

I(Tix)− I(x)
)

< 0,

which contradicts Eq. (3.83).

Finally, we want to show x is a local maximizer of F (·) on R
n\{0}. Let U be a neighborhood

of x such that
∥

∥

∥

∥

y

‖y‖∞
−

x

‖x‖∞

∥

∥

∥

∥

∞

<
1

2
, ∀y ∈ U,

y′ =
‖x‖∞
‖y‖∞

y, g(t) = I
(

t(y′ − x) + x
)

, ∀y ∈ U.

We claim

g(t)− g(0) ≤ 0, ∀t ∈ [0, 1], (3.86)

with which we are able to verify x is a local maximizer as follows:

F (y)− F (x) = F (y′)− F (x) =
1

‖x‖∞

(

I(y′)− I(x)
)

=
1

‖x‖∞

(

g(1)− g(0)
)

≤ 0, ∀y ∈ U.

The only remaining thing is to prove Eq. (3.86). First, it can be easily shown that g(t) is linear

on [0, 1], and there exists s = (s1, · · · , sn)∈∂I(x) such that its slope can be determined by

g(t)− g(0) = t(s,y′ − x).

Then, the verification of Eq. (3.86) can be completed by

xj

(

y′j − xj

)

≤ 0 ⇒ sj
(

y′j − xj

)

≤ 0, j = 1, 2, . . . , n,

where we have used ‖y′‖∞ = ‖x‖∞ as well as Eqs. (3.83) and (3.84). �

Remark 3.1. Notice that {Ti}
n
i=1 can generate a commutative group T on R

n. If we further

restrict its domain to be {x |S<(x) = ∅}, then x is a global maximizer of F (·) on R
n \ {0}

if and only if F (y) ≤ F (x) holds for any y = Tx, ∀T ∈ T . In such sense, the set C given in

(3.81) is the first order approximation to global maximizers.

4. Numerical Experiments

In this section, we conduct performance evaluation of the proposed SI algorithm (3.80) on

the graphs with positive weight in G-set (https://web.stanford.edu/ yyye/yyye/Gset/),

and always set the initial data x0 to be the maximal eigenvector of the graph Laplacian [8,16].

The three bipartite graphs G48, G49, G50 will not be considered because their optima cuts can

be achieved at the initial step. The recently updated cut values achieved by a multiple search

operator heuristic are chosen to be the reference [13]. SI is capable of producing approximate

cuts with high quality: the ratios between the resulting cut values and the reference ones are

at least 0.986 (see Table 4.2), and can be improved to 0.997 (see Table 4.3) after introducing

a straightforward perturbation to break out of local optima.
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4.1. Implementation and cost analysis

We begin with the algorithm implementation plus a preliminary cost analysis. Algorithm 4.1

gives the pseudo-code of the SI algorithm (3.80), where xk+1, rk+1 and sk+1 are generated in

Line 4, Line 5 and Lines 6-9, respectively. In Line 4, the function exact solution randomly

selects the iteration point xk+1 ∈ ∂Xk+1
p where the exact solution set Xk+1

p is given in Theo-

rem 3.1. After p̄ is obtained in Line 8 using Eq. (3.72), we are able to arrive at the partial order

(3.73) through the Bubble Sort procedure during which the requested subgradient sk+1 can

be automatically updated in an iterative manner (see Lines 17 and 18). This constitutes the

subroutine named by subgradient which starts from Line 12. It should be pointed out that

there is randomness in determining both xk+1 and sk+1, so that the performance evaluation

below is conducted in the sense of average by re-running SI (3.80) 100 times from the same

initial data. A preliminary estimate of the cost for three iteration steps T = 50, 500, 2000 is

presented in Table 4.1 where we have set p = 2 for instance.

The main task for reaching the exact solution set Xk+1
p by Theorem 3.1 is to deter-

mine m0 with which m1 can be automatically obtained by Eq. (3.55). In our implementa-

tion, exact solution uses the Bubble Sort to arrange sk in an ascending order such that

the accumulation of increment A(n), A(n− 1), · · · , A(1) is calculated, successively, until m0(k)

Algorithm 4.1: Pseudo-Code of the Simple Iterative (SI) Algorithm.

1 Initialize x0, r0, q0, p0, σ0, s0, T .

2 k← 0.

3 while k < T do

4 xk+1 ← exact solution(sk, rk);

5 rk+1 ← rk + δF (x
k+1,xk);

6 qk+1 ← qk + δq(x
k+1,xk);

7 pk+1 ← pk + δp(x
k+1,xk);

8 p̄k+1 ← p bar(xk+1, qk+1,pk+1);

9 (sk+1, σk+1)← subgradient(xk+1, p̄k+1, sk, σk);

10 k ← k + 1.

11 end

12 function(s, σ) = subgradient(x, p̄, s, σ)

13 for i = 1 to n− 1 do

14 for j = i+ 1 to 2 do

15 if (x(σ(j)), p̄(σ(j))) ≤ (x(σ(j − 1)), p̄(σ(j − 1))) then

16 σ ← swap(σ, j − 1, j);

17 s(σ(j − 1))← s(σ(j − 1))− 2wσ(j)σ(j−1) ;

18 s(σ(j))← s(σ(j)) + 2wσ(j)σ(j−1) .

19 end

20 else

21 break.

22 end

23 end

24 end

25 end function
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Table 4.1: Cost analysis: Mean values of (n −mk
0)/n, δσ(k)/n, and |V (k)|/n obtained from 100 runs

of the simple iterative (SI) algorithm (3.80) with p = 2. Here (n−mk
0), δσ(k), and |V (k)| are given in

Eq. (3.51), Eq. (4.1), and Eq. (4.5), respectively, n denotes the size of graph and T gives the total step

of iterations. The time complexity of SI is O(mean(c(k))nT ) with c(k) = (n−m0(k)) + δσ(k) + |V (k)|

depending on the underlying graph. The values of mean(c(k))/n are at most 0.095, 0.077, 0.077 for

T = 50, 500, 2000, respectively, thereby indicating mean(c(k)) is much smaller than n.

Graph n
mean(n−mk

0)/n mean(δσ(k))/n mean(|V (k)|)/n

T = 50 T = 500 T = 2000 T = 50 T = 500 T = 2000 T = 50 T = 500 T = 2000

G1 800 0.0073 0.0046 0.0045 0.0091 0.0082 0.0083 0.0010 0.0000 0.0000

G2 800 0.0069 0.0043 0.0042 0.0090 0.0084 0.0082 0.0008 0.0000 0.0000

G3 800 0.0072 0.0048 0.0046 0.0093 0.0081 0.0081 0.0009 0.0000 0.0000

G4 800 0.0061 0.0042 0.0040 0.0090 0.0082 0.0081 0.0061 0.0042 0.0040

G5 800 0.0059 0.0045 0.0043 0.0089 0.0081 0.0079 0.0007 0.0000 0.0000

G14 800 0.0510 0.0423 0.0412 0.0246 0.0243 0.0251 0.0034 0.0000 0.0000

G15 800 0.0550 0.0444 0.0440 0.0248 0.0253 0.0247 0.0068 0.0000 0.0000

G16 800 0.0532 0.0445 0.0428 0.0229 0.0237 0.0237 0.0532 0.0445 0.0428

G17 800 0.0567 0.0471 0.0461 0.0244 0.0244 0.0244 0.0020 0.0000 0.0000

G22 2000 0.0146 0.0106 0.0102 0.0120 0.0125 0.0120 0.0018 0.0001 0.0001

G23 2000 0.0119 0.0100 0.0099 0.0123 0.0117 0.0118 0.0021 0.0000 0.0000

G24 2000 0.0135 0.0100 0.0097 0.0125 0.0117 0.0120 0.0135 0.0100 0.0097

G25 2000 0.0161 0.0115 0.0111 0.0132 0.0124 0.0122 0.0161 0.0115 0.0111

G26 2000 0.0140 0.0101 0.0097 0.0126 0.0127 0.0127 0.0038 0.0000 0.0000

G35 2000 0.0475 0.0380 0.0370 0.0274 0.0259 0.0255 0.0475 0.0380 0.0370

G36 2000 0.0566 0.0484 0.0466 0.0252 0.0286 0.0278 0.0054 0.0005 0.0000

G37 2000 0.0516 0.0427 0.0414 0.0260 0.0272 0.0271 0.0076 0.0000 0.0000

G38 2000 0.0595 0.0478 0.0466 0.0260 0.0292 0.0302 0.0091 0.0000 0.0000

G43 1000 0.0140 0.0102 0.0100 0.0131 0.0125 0.0122 0.0024 0.0000 0.0000

G44 1000 0.0169 0.0134 0.0133 0.0126 0.0135 0.0129 0.0013 0.0000 0.0000

G45 1000 0.0152 0.0137 0.0135 0.0126 0.0130 0.0132 0.0152 0.0137 0.0135

G46 1000 0.0112 0.0093 0.0091 0.0121 0.0121 0.0121 0.0011 0.0000 0.0000

G47 1000 0.0125 0.0103 0.0100 0.0125 0.0125 0.0122 0.0125 0.0103 0.0100

G51 1000 0.0527 0.0440 0.0427 0.0228 0.0241 0.0239 0.0016 0.0004 0.0000

G52 1000 0.0485 0.0406 0.0391 0.0203 0.0239 0.0235 0.0485 0.0406 0.0391

G53 1000 0.0544 0.0462 0.0453 0.0212 0.0242 0.0245 0.0031 0.0000 0.0000

G54 1000 0.0616 0.0544 0.0520 0.0215 0.0241 0.0235 0.0017 0.0000 0.0000

(i.e. m0 at the k-step iteration) can be determined via Eq. (3.51). The cost of this proce-

dure is O((n −m0(k))n). Table 4.1 shows that the mean values of (n −m0(k))/n are far less

that 1, which are at most 0.060, 0.048, 0.047 for T = 50, 500, 2000, respectively. In particular,

exact solution reduces to Scenario 3 and thus only costs O(n) for p =∞.

The subroutine subgradient is also a Bubble Sort procedure and costs O(n2) in worst

cases. However, it should be pointed out that the efficiency of Bubble Sort depends on the
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initial order and actually costs O((δσ(k) + 1)n), where

δσ(k) =
1

2n

n
∑

i=1

∣

∣σk+1(i)− σk(i)
∣

∣ (4.1)

denotes an average displacement of the permutation σ used in Eq. (3.73) for the k-th iteration.

Table 4.1 shows that the ratios between mean(δσ(k)) and n are at most 0.03.

It remains to estimate the cost for updating r, q,p in Lines 5-7, where we prefer to only

calculate the increment

δΓ(x
k+1,xk) := Γ(xk+1)− Γ(xk), Γ ∈ {F, q,p}. (4.2)

Let

zk =
xk

‖xk‖∞
, zk,i =

(

zk,i1 , · · · , zk,in

)

=
(

zk+1
1 , · · · , zk+1

i , zki+1, · · · , z
k
n

)

. (4.3)

Then we have

δΓ(x
k+1,xk) = δΓ(z

k+1, zk) =

n
∑

i=1

δΓ(z
k,i, zk,i−1)

=
∑

i∈V (k)

δΓ(z
k,i, zk,i−1), Γ ∈ {F, q,p}, (4.4)

where

V (k) =
{

i
∣

∣ zk+1
i 6= zki

}

. (4.5)

Consequently, the complexity of calculating δΓ(x
k+1,xk) is O(|V (k)|n) since we need O(n) to

produce each component δΓ(z
k,i, zk,i−1). Table 4.1 reveals that mean(|V (k)|) is much smaller

than n and sometimes vanishes as T increases.

In total, the SI algorithm costs O(c(k)n) in the k-th step and

c(k) :=
(

n−m0(k)
)

+ δσ(k) + |V (k)|

depends on the underlying graph like its weights and order. Actual numerical experiments in

Table 4.1 show that the mean value of c(k) is much smaller than n.

4.2. Quality check

We are now ready for quality check of numerical solutions achieved by the simple algo-

rithm (3.80). The numerical results for the RSC algorithm based on graph Laplacian (∆2-RSC)

[14] and graph 1-Laplacian (∆1-RSC) [5], as well as the GW algorithm [14] are adopted for com-

parison.

The quality check is performed based on numerical solutions until T = 2000. Table 4.2

shows the minimum, mean and maximum cut values during 100 runs for p = 1, 2,∞. It can be

easily seen there that the results for different p (= 1, 2,∞) are comparable and are all very close

to the reference values. Actually, the ratios between the best cut values by SI (chosen from the

maximum cut values over p = 1, 2,∞) and the reference ones are at least 0.986 (see the results

for G36), while the numerical lower bound for such ratios is about 0.946, 0.933 and 0.949 for

the GW, ∆2-RSC and ∆1-RSC algorithms, respectively. In particular, for the case of p = ∞,

the ratios between the minimum, mean, maximum cut values and the reference ones are at
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Table 4.2: Quality check: Cut values for 27 problem instances in G-set obtained from 100 runs of the

simple iterative (SI) algorithm (3.80) with p = 1, 2,∞. Each run starts from the maximal eigenvector

of the graph Laplacian and undergoes T = 2000 iterations. The minimum, mean and maximum cut

values are recorded and compared to the reference ones obtained by combinatorial algorithms [13],

while the initial cut values are listed in the second column. The ratios between the best cut values (in

italics) by SI and the reference values are at least 0.986 (see G36).

Graph Initial
p = 1 p = 2 p = ∞

Reference
min mean max min mean max min mean max

G1 11221 11477 11524.52 11554 11505 11527.27 11548 11499 11523.3 11553 11624

G2 11283 11483 11525.91 11583 11484 11505.6 11535 11473 11517.42 11557 11620

G3 11298 11497 11542.53 11599 11564 11586.14 11602 11557 11586.99 11605 11622

G4 11278 11520 11561.1 11597 11545 11564.49 11606 11539 11568.26 11598 11646

G5 11370 11530 11568.89 11602 11561 11579.89 11607 11558 11577.22 11602 11631

G14 2889 2998 3016.89 3036 3015 3022.74 3030 3012 3026.18 3033 3064

G15 2771 2968 2986.36 3005 2989 2995.56 3006 2985 2996.68 3008 3050

G16 2841 2973 2995.32 3009 3005 3010.14 3014 3005 3011.76 3017 3052

G17 2866 2963 2981.65 3004 2996 3002.27 3012 2995 3002.7 3010 3047

G22 12876 13198 13243.55 13302 13237 13267.7 13286 13248 13266.04 13290 13359

G23 12817 13173 13220.99 13267 13238 13252.85 13271 13232 13246.72 13264 13344

G24 12826 13194 13221.16 13244 13235 13260.34 13295 13233 13262.4 13287 13337

G25 12781 13155 13189.61 13245 13185 13221 13240 13187 13213.86 13238 13340

G26 12752 13140 13176.81 13222 13185 13201.6 13221 13183 13197.21 13210 13328

G35 7194 7512 7540.39 7572 7558 7576.68 7595 7560 7575.4 7586 7687

G36 7124 7502 7529.77 7557 7535 7548.22 7566 7531 7553.36 7576 7680

G37 7162 7505 7541.03 7563 7565 7581.08 7603 7575 7590.59 7602 7691

G38 7122 7513 7542.91 7568 7561 7573.63 7589 7544 7565.93 7593 7688

G43 6395 6570 6609.44 6635 6599 6625.47 6645 6604 6625.8 6644 6660

G44 6439 6575 6598.42 6618 6593 6608.63 6617 6590 6609.27 6621 6650

G45 6364 6574 6599.49 6624 6587 6595.39 6612 6586 6593.07 6599 6654

G46 6389 6557 6586.68 6612 6562 6583.31 6597 6569 6583.93 6602 6649

G47 6353 6552 6583.5 6614 6584 6598.8 6609 6584 6597.24 6610 6657

G51 3645 3769 3787.88 3810 3788 3797.76 3811 3785 3794.12 3806 3848

G52 3645 3766 3787.31 3807 3808 3811.55 3816 3806 3811.85 3820 3851

G53 3630 3778 3793.98 3812 3795 3804.37 3818 3797 3808.45 3817 3850

G54 3655 3767 3789.34 3805 3800 3809.05 3818 3808 3813.69 3821 3852

least 0.979, 0.982, 0.986, respectively, all of which are larger than the average ratios over these

27 graphs for the ∆1-RSC (≃ 0.971), GW (≃ 0.960), ∆2-RSC (≃ 0.958), and SC (≃ 0.951)

algorithms. The SC cuts are obtained by rounding the initial data with a threshold of 0 and

the cut values are shown in the second column of Table 4.2. In order to further show the overall

performance in achieving high ratio by the SI algorithm, we plot the histogram of the ratios for

all 3× 2700 runs in Fig. 4.1. We are able to clearly observe there that:
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Fig. 4.1. Quality check: Histogram of the ratios for all 2700 × 3 runs depicted in Table 4.2 (more

explanations are referred to Table 4.2). The percent of runs obtained a ratio larger than 0.980, which

lie on the right of the black vertical line, exceeds 95%.

(1) More than 95% of runs achieve ratios exceeding 0.986 (see the black vertical line of

Fig. 4.1).

(2) The percent of runs obtained a ratio larger than 0.986 exceeds 72%.

4.3. Breaking out of local optima

Within the SI algorithm, we are allowed to plug into local breakout techniques to fur-

ther improve the solution quality. A preliminary attempt is to generate a new point x̃
k+1 =

(x̃1, · · · , x̃n) in a stochastic manner

x̃i =

{

−xk
i with the probability of e−β|p̄k

i |,

xk
i with the probability of 1− e−β|p̄k

i |,
(4.6)

when SI is stuck at xk = (xk
1 , · · · , x

k
n), namely, it cannot make the function F (·) increase. Here

we choose β to be a controllable parameter, and p̄k = (p̄k1 , · · · , p̄
k
n) to generate x̃

k+1 in order

to decrease F (·) (if any) as little as possible in view of the following fact:

F (Tix
k)− F (xk) = −

∣

∣p̄ki
∣

∣, i = 1, . . . , n, (4.7)

where Ti is defined in Eq. (3.82). In such sense, we regard the manner (4.6) as a special kind of

perturbation, and the resulting algorithm is named by the simple iteration with perturbation

(SI-P).

Algorithm 4.2 presents the pseudo-code of SI-P. In Lines 17-39, si perturb undergoes

the simple iteration equipped with jumping out of local optima until a given final time T

during which the perturbation (4.6) triggers with a prescribed β if the function values remain

unchanged for t steps (see Lines 29-32). It should be noted that si perturb returns the maximal

cut value ropt and the corresponding point xopt during the period of T . We are now left only

to choose β which should not only depend on the iteration time but also have a specific range

because x̃
k+1 = −xk when β = 0 and x̃

k+1 = xk when β → ∞. Here Algorithm 4.2 adopts
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Algorithm 4.2: Pseudo-Code of the Simple Iteration with Perturbation (SI-P).

Require: initial x0, L, T .

Ensure : count, xcount, rcount.

1 r0 ← 0, count← 0.

2 while True do

3 for ipert = 1 to L do

4 β: chosen from (0, 1) randomly;

5 (x̃ipert, r̃ipert)← si perturb(xcount, T, t, β).

6 end

7 ipert← argmax ipert∈{1,2,··· ,L}r̃
ipert;

8 count← count+ 1;

9 if r̃ipert > rcount−1 then

10 xcount ← x̃
ipert;

11 rcount ← r̃ipert.

12 end

13 else

14 break.

15 end

16 end

17 function (xopt, ropt) = si perturb(x0, T, t, β)

18 initial r0, q0, p0, σ0, s0.

19 k← 0.

20 ropt ← 0.

21 p̄k ← p bar(xk, qk,pk).

22 while k < T do

23 xk+1 ← exact solution(sk, rk);

24 rk+1 ← rk + δF (x
k+1,xk);

25 if rk+1 > ropt then

26 ropt ← rk+1;

27 xopt ← xk+1.

28 end

29 if rk+1 = rk = · · · = rk−t then

30 xk+1 ← perturb(p̄k, β);

31 rk+1 ← rk + δF (x
k+1,xk).

32 end

33 qk+1 ← qk + δq(x
k+1,xk);

34 pk+1 ← pk + δp(x
k+1,xk);

35 p̄k+1 ← p bar(xk+1, qk+1,pk+1);

36 (sk+1, σk+1)← subgradient(xk+1, p̄k+1, sk, σk);

37 k ← k + 1.

38 end

39 end function
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a naive way via an outer loop in Lines 2-16, and takes L runs of si perturb with different β

randomly chosen from (0, 1) within each turn of loop. This outer loop continues until the cut

value stops increasing (see Lines 9-15) and the variable count records the total number of turns

(see Line 8).

Table 4.3 shows the numerical results by SI-P with t = 3, T = 2000, L = 20, and p =∞. Now

the cut values are all increased for those 27 problem instances in G-set and the ratios between

the best cut values and the reference ones become at least 0.997. Moreover, the complexity of

the function si perturb is almost the same as SI. Therefore, SI-P calls si perturb count×L

times and performs count× L × T iterations in total. This is the price we should pay for the

improved cut values, which is at most 17× 20× 2000 = 680000 iteration steps in the numerical

experiments on G-set (see the last column of Table 4.3).

Table 4.3: Improved cut values achieved by the simple iteration with perturbation (SI-P) depicted in

Algorithm 4.2 with t = 3, L = 20, T = 2000, and p = ∞. The ratios between the best cut values by

SI-P and the reference ones by combinatorial algorithms [13] are at least 0.997 (see G37). The number

of turns of outer loop, recorded by count in Line 8 of Algorithm 4.2, is at most 17, thereby meaning

that the SI-P algorithm runs at most count × L× T = 17× 20× 2000 = 680000 iterations.

Graph Reference Result Ratio
Ratio without

perturbation
count

G1 11624 11624 1.0000 0.9939 9

G2 11620 11620 1.0000 0.9946 4

G3 11622 11622 1.0000 0.9985 3

G4 11646 11646 1.0000 0.9959 17

G5 11631 11630 0.9999 0.9975 9

G14 3064 3063 0.9997 0.9899 5

G15 3050 3050 1.0000 0.9862 12

G16 3052 3052 1.0000 0.9885 6

G17 3047 3046 0.9997 0.9879 14

G22 13359 13358 0.9999 0.9948 8

G23 13344 13339 0.9996 0.9940 7

G24 13337 13335 0.9999 0.9963 7

G25 13340 13337 0.9998 0.9924 4

G26 13328 13318 0.9992 0.9911 3

G35 7687 7663 0.9969 0.9869 11

G36 7680 7656 0.9969 0.9865 13

G37 7691 7665 0.9966 0.9884 7

G38 7688 7673 0.9980 0.9876 12

G43 6660 6660 1.0000 0.9976 2

G44 6650 6650 1.0000 0.9956 4

G45 6654 6654 1.0000 0.9917 2

G46 6649 6646 0.9995 0.9929 5

G47 6657 6657 1.0000 0.9929 3

G51 3848 3841 0.9982 0.9891 4

G52 3851 3849 0.9995 0.9920 8

G53 3850 3846 0.9990 0.9914 10

G54 3852 3845 0.9982 0.9920 9
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4.4. Comparison with CirCut

Finally, we compare SI in Algorithm 4.1 and SI PERTURB in Algorithm 4.2 with the

primal CirCut algorithm given in [3, Algorithm 1] which does not invoke any local search tech-

niques. For convenience, we adopt the same notations as those used in [3] unless otherwise

specified. It should be noted that CirCut do need a simple gradient algorithm with a back-

tracking Armijo line-search to minimize the nonconvex objective function f(θ) from θ0 instead

of calling an external solver. The stopping condition for the line-search is, either the relative

change in f(θ) is less than ǫf or the relative change in its gradient is less than ǫg. We use Tf

(resp. Tg) to count the total number of times f(θ) (resp. ∇f(θ)) has been evaluated during

the line-search. CirCut stops until N consecutive random perturbations cannot improve the

approximate cut, and let TP count the total number of perturbations. For a fair comparison, we

extract the first two steps: line-search and Procedure-CUT, to form a pure rank-two relaxation

for maxcut, abbreviated as CirCut0, which excludes the perturbation step, and set it against

SI. When the random perturbation is invoked, CirCut is compared with SI PERTURB. For

a given graph, one usually runs the algorithm M times with multiple random starting points:

θ0 ∼ U(0, 2π), and T̄γ gives the average value of Tγ over these M times for γ ∈ {f, g, P}. The

iteration of SI is not stopped until the cut values remain unchanged for t consecutive steps and

we run SI PERTURB T̄P times staring from a single initial data where TS counts the total

number of iterations. Both SI and SI PERTURB are re-run M times from the same initial

data given by the maximal eigenvector of the graph Laplacian where T̄S denotes the average

value of TS .

We set N = 10,M = 20, t = 3 and use the implementation of CirCut available at Github1)

where the parameters for the line-search are: the maximum number of rounds nmax = 200, and

the tolerances ǫf = ǫg = 1e-4. Fig. 4.2 plots the minimum, mean and maximum cut values

(normalized by the number of edges |E|) from the simulations with the M starting points. We

are able to observe there that the quality of SI solutions is much better than CirCut0, and

the approximate cuts produced by SI PERTURB are of comparable quality to CirCut with the

same number of perturbations.

According to Theorems 3.2 and 3.4, the cut values obtained by SI are monotonically updated,

and the iterative solution converges to a local optimum from any given initial data. So it will

be interesting to see whether SI can improve the output cuts of CirCut0 and the results are

displayed in Fig. 4.2(a) with dot lines and legend CirCut0+SI where the maximum number of SI

iterations is set to be 100. It is shown there that SI does improve the quality of solutions obtained

by CirCut0, which clearly indicates that CirCut0 is not guaranteed to get local optimum.

Almost the same story happens with CirCut+SI (see Fig. 4.2(b)). On the other hand, we

should point out that CirCut0 cannot improve the quality of the solution produced by SI. In

fact, the solution obtained by SI must be a cut, while, by [3, Theorem 3.4], any cut corresponds

to a critical point of f(θ), which means that the stopping condition ∇f(θ) ≈ 0 in the line-search

is immediately satisfied, and there is obviously no way to improve it further.

We run all above-mentioned algorithms in Matlab (r2019b) on a High-Performance Comput-

ing Platform: 2*Intel Xeon E5-2650-v4 (2.2 GHz, 30 MB Cache, 9.6 GT/s QPI Speed, 12 Cores,

24 Threads) with 128 GB Memory. In Table 4.4, we list the values of T̄γ with γ ∈ {f, g, S, P} as

well as the average wall-clock time in seconds needed by only one thread for each run. In each

step of the line-search, it is required to calculate f(θ) and its gradient the complexity of which

1) see https://github.com/MQLib/MQLib/tree/master/src/heuristics/maxcut
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Fig. 4.2. Comparison with CirCut: The minimum, mean, and maximum cut values (normalized by

the number of edges |E|) produced by CirCut0, SI, and CirCut0+SI from multiple starting points are

displayed in (a), while those obtained by CirCut, SI PERTURB, and CirCut+SI are presented in (b).

CirCut0 refers to the pure rank-two relaxation which consists of the line-search and Procedure-CUT,

only the first two steps of [3, Algorithm 1]. CirCut0+SI means the output of CirCut0 serves as the

input to SI for possible solution quality improvements and so does CirCut+SI.

is O(n2) and does not change significantly as the search proceeds. Then, it can be deduced that

the run time of both CirCut0 and CirCut should be roughly proportional to T̄f + T̄g, which can

be readily verified in Table 4.4. By comparison, thanks to its monotonicity in Theorem 3.2 and

local adjustability in Theorem 3.4, the complexity of one iteration step decreases as SI goes on,

and its average over all steps is O(mean(c(k))n) and usually much less than O(n2) as already

shown in Table 4.1. There are two important implications. One is that the time ratio between

SI and CirCut0 (or CirCut) should be roughly proportional to T̄S/(T̄f + T̄g) where T̄S for SI is

not so large (less than 50). This can be easily checked in Table 4.4. The other is the run time of
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Table 4.4: Comparison with CirCut: The wall-clock time in seconds, the numbers of calculating f(θ)

and its gradient T̄f and T̄g in CirCut0 and CirCut, the number of iterations T̄S in SI and SI PERTURB,

and the same number of perturbations T̄P in CirCut and SI PERTURB. It is clearly shown that SI

and SI PERTURB require much fewer iterations and thus run much faster than CirCut0 and CirCut,

respectively. CirCut0 refers to the pure rank-two relaxation which only contains the first two steps

of [3, Algorithm 1].

Graph

CirCut0 SI CirCut SI PERTURB

Time T̄g T̄f Time T̄s Time T̄g T̄f Time T̄s T̄p

G1 1.73 74.45 126 0.34 32.65 39.37 1589.05 2817.9 0.61 643.55 30

G2 1.76 74.75 125.55 0.37 33.15 38.33 1544 2763.15 0.55 652.9 30

G3 1.75 73.85 124.35 0.31 32.1 41.82 1745.25 3103.15 0.50 637.25 33

G4 2.09 92.95 156.85 0.32 34.65 37.95 1585.1 2788.6 0.54 617.7 30

G5 1.88 77 130 0.33 29 39.18 1657.25 2909.15 0.56 677.9 31

G14 1.09 75 118.3 0.10 24.15 27.09 2070.7 3183.85 0.60 791.1 34

G15 1.09 75.5 118 0.11 28.25 26.14 2038.9 3137.1 0.58 780.15 32

G16 1.17 81.4 127.5 0.11 25 22.18 1695.25 2628.1 0.46 660.8 28

G17 1.00 76.25 119.35 0.10 23.3 22.75 1752 2694.95 0.45 658.35 29

G22 4.26 65.6 101.9 0.90 31.05 90.58 1344.4 2076.35 3.81 801.15 31

G23 3.51 54.4 84.7 0.91 31.25 104.28 1538.15 2395.05 3.74 795.7 34

G24 3.94 62.35 96.3 0.91 32.9 94.22 1404.1 2175.95 3.69 805.25 31

G25 3.95 63 97.7 0.90 32.45 87.42 1297.55 2007.25 3.50 732.9 29

G26 4.02 63.8 99.9 0.86 32.45 83.02 1244.25 1916.05 3.64 750.6 28

G35 4.50 86.15 136.7 0.58 27.6 155.32 2968.25 4606.1 5.57 1020 40

G36 4.28 83.6 131.2 0.64 30.45 176.06 3405.65 5276.25 6.67 1072.1 42

G37 4.67 88.15 141.5 0.64 31.1 165.54 3206.85 4959.4 6.44 1042.5 41

G38 4.87 92.75 145.7 0.64 29.9 164.64 3217.9 4957.6 7.35 1170.75 43

G43 1.39 62.55 97.45 0.24 33.35 29.69 1275.85 1998.3 0.62 598.75 29

G44 1.41 63.25 99.1 0.24 29.9 34.89 1517.6 2402.25 0.72 746.2 34

G45 1.47 65.55 102.6 0.24 28.2 33.33 1458.75 2319.2 0.69 739.2 32

G46 1.37 60.95 95.15 0.24 27.35 29.63 1262.55 2002.3 0.55 606.75 28

G47 1.37 64.25 99.95 0.23 27.55 25.59 1127.9 1777.85 0.58 624.6 25

G51 1.56 82.5 129.95 0.15 25.1 41.71 2281.45 3516.85 1.02 793.35 35

G52 1.50 79.85 125.55 0.15 24.3 45.90 2506.95 3875 1.22 922.45 38

G53 1.66 88.85 139.55 0.17 25.4 36.32 1959.1 3017.85 0.93 753.15 32

G54 1.49 79.65 124.25 0.15 23.25 35.04 1873.75 2885.05 0.88 690.9 30

SI PERTURB should grow much more slowly as the iteration goes on where T̄S is always larger

than 500, which can be seen by comparing the time between SI and SI PERTURB in Table 4.4.

Hence, we are able to tell that SI and SI PERTURB require much fewer iterations and thus

run much faster than CirCut0 and CirCut, respectively. That is, although both SI and CirCut

do not need call any external solver, quickly locating and checking stationary points of f(θ) as

many as possible in CirCut is not that simple.
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5. Conclusion and Outlook

An equivalent continuous fractional optimization problem and a simple iterative (SI) algo-

rithm going from one cut to another in a monotonic and rounding-free way for the maxcut

problem were proposed. “Simple” means SI utilizes the exact solutions of the inner subprob-

lems. Numerical experiments on G-set demonstrated that the continuous SI algorithm can

produce more qualified solutions than all other existing continuous algorithms. The underlying

guiding thought is to build a firm bridge between discrete data world and continuous math field

and then use it to design more efficient algorithms. Introducing more advanced combinatorial

heuristics into SI and further improving the quality of solutions are on the way. Our attempts

on the maxcut problem may provide a valuable reference for other combinatorial problems and

fractional programming problems.
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