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Abstract

In this paper, we propose a numerical method for turning point problems in one di-

mension based on Petrov-Galerkin finite element method (PGFEM). We first give a priori

estimate for the turning point problem with a single boundary turning point. Then we use

PGFEM to solve it, where test functions are the solutions to piecewise approximate dual

problems. We prove that our method has a first-order convergence rate in both L∞

h norm

and a discrete energy norm when we select the exact solutions to dual problems as test

functions. Numerical results show that our scheme is efficient for turning point problems

with different types of singularities, and the convergency coincides with our theoretical

results.

Mathematics subject classification: 65N06, 65B99.
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1. Introduction

Singularly perturbed problems have been widely studied in the fields of fluid mechanics,

aerodynamics, convection-diffusion process, etc. In such problems, there exist boundary layers

or interior layers because a small parameter is included in the coefficient of the highest derivative.

Consider the following singularly perturbed turning point problem in one dimension:
{

Lu = −εu′′ + p(x)u′ + b(x)u = f(x), xL < x < xR,

u(xL) = uL, u(xR) = uR,
(1.1)

where p(x) has zeros z1 < z2 < · · · < zm on [xL, xR]. We assume p, b, and f to be sufficiently

smooth. Furthermore, we suppose

b(x) − p′(x) ≥ γ0 > 0,

b(x) ≥ b0 > 0
(1.2)

to ensure the well-posedness of the dual problems. Each zero of p(x) is presumed to be a single

root, i.e. p′(zi) 6= 0.

From the asymptotic analysis, we know that there will be boundary/interior layers at some

of zi. Here we consider the following types of singularities:
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(a) Exponential boundary layers (singularly perturbed problems without turning points).

(b) Cusp-like interior layers (interior turning point problems).

(c) Boundary layers of other types (boundary turning point problems).

Singularly perturbed elliptic equations without turning points have been widely studied by

researchers. Various numerical methods are utilized, where finite difference methods and fi-

nite element methods play prominent roles. El-Mistikawy and Werle [8] raise an exponential

box scheme (EMW scheme) in order to solve Falkner-Skan equations. Kellogg et al. [2], Rior-

dan and Stynes [28], etc., find this EMW scheme efficient when solving singularly perturbed

elliptic equations. Fitted operator numerical methods, such as exponentially fitted finite dif-

ference method and Petrov-Galerkin method, are developed. Another class of methods, fitted

mesh methods [6,12,16,20,31], show good adaptivity to different problems, while remeshing is

necessary in some moving front problems.

A turning point problem is a class of equations in which the coefficient p(x) vanishes at

some points in the domain. Compared to singularly perturbed equations without turning

points, interior layers and other types of boundary layers might appear in the solutions to

turning point problems. O’Malley [24] and Abrahamson [1] analyze turning point problems

in some common cases. Kellogg et al. [2] theoretically examine turning point problems with

single interior turning points, and they use a modified EMW scheme, which obtains a first-

order (or lower) convergence rate. Stynes and Riordan [28,29] build a numerical scheme under

Petrov-Galerkin framework and prove the uniform convergence in L1 norm and L∞ norm.

Farrell [9] proposes sufficient conditions for an exponentially fitting difference scheme to be

uniformly convergent for a turning point problem. Farrell and Gartland [10] modify the EMW

scheme and construct a scheme with uniform first-order convergency, where parabolic cylinder

functions are used in the computation. For other studies of turning point problems using

fitted operator methods, please refer to [11, 21, 27, 34], for fitted mesh methods, please refer

to [5, 19, 22, 25, 26, 30, 36].

We notice that most of the present research assume turning points to be away from the

boundary. If a turning point meets an endpoint, the problem is called a boundary turning

point problem, which has not been thoroughly studied. Vulanović [33] considers a turning point

problem with an arbitrary single turning point and obtains uniform convergency using finite

difference method on a non-equidistant mesh. Vulanović and Farrell [35] examine a multiple

boundary turning point problem and make a priori estimates. However, estimates for single

boundary turning point problems and numerical methods based on the uniform mesh are not

given yet. In order to fill this blank, in this paper we estimate the derivatives of the solution to

a standard single boundary turning point problem and raise an algorithm without particular

mesh generation.

Petrov-Galerkin finite element method (PGFEM) is used in many problems. Dated back

to 1979, Hemker and Groen [7] raise a method that treats problem (1.1) with Petrov-Galerkin

method, where the coefficient p(x) has a positive lower bound. The scheme in Farrell and Gart-

land [10] is based on the so-called patched function method, also interpreted as Petrov-Galerkin

method. In references [3,4], Petrov-Galerkinmethod and discontinuous Petrov-Galerkinmethod

are implemented in elliptic equations in two dimensions, demonstrating their efficiency and con-

vergency.

Tailored finite point method (TFPM) is raised by Han et al. [15], which is designed to solve

PDEs using properties of the solutions, especially for singularly perturbed problems. TFPM
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could handle exponential singularities well, while simple difference methods might sometimes

suffer from a low convergence rate. TFPM is later utilized in interface problems [17], steady-

state reaction-diffusion equations [13], convection-diffusion-reaction equations [14], etc.

This study presents a numerical scheme to solve problem (1.1) with several types of sin-

gularities. We prove that the width of the boundary layer of a single boundary turning point

problem is O(
√
ε), which is a weaker version of the result in [35]. The derivative of the solution,

u′ is bounded by C(1 + ε−1/2) near the boundary layer and bounded by C(1 + x−1) away from

the layer. We also prove the uniform convergence of the scheme in several discrete norms.

The rest of this paper is organized as follows. In Section 2, a priori estimates for contin-

uous problems will be shown in each case. We use PGFEM to solve problem (1.1), where we

choose (either exact or approximate) solutions to dual problems as test functions. We show

details related to the numerical implementation in Section 3. Numerical results demonstrate

the efficiency and the uniform first-order convergency of our scheme in Section 4. Finally, we

give a brief conclusion in Section 5.

2. A Priori Estimates

In this section, we present a priori estimates for cases (a), (b), (c). First we briefly recall

some results from previous work for cases (a) and (b). We will prove our estimates for case (c)

later.

2.1. Exponential boundary layer

Suppose the velocity coefficient p(x) ≥ p0 > 0 (or otherwise, it has a negative upper bound).

Eq. (1.1) is now written as














Lu ≡ −εu′′ + p(x)u′ + b(x)u = f(x), −1 < x < 1,

u(−1) = uL, u(1) = uR,

p(x) ≥ p0 > 0, b(x) ≥ b0 ≥ 0.

(2.1)

The solution to (2.1) admits a boundary layer at x = 1 (at x = −1 if p(x) ≤ p0 < 0), and it is

shown [2, 18] that the following estimates hold:

|u(k)(x)| ≤ C

(

1 + ε−k exp

(

−η(1− x)

ε

))

, x ∈ (−1, 1), k = 0, 1, 2, . . . , (2.2)

where C, η are positive constants depending on uL, uR, f, p, b, which are independent of ε. We

have the following property at once.

Proposition 2.1. Suppose u is the solution to (2.1) and p(x) is lower bounded, then there

exists a constant C depending on uL, uR, f, p, b, which is independent of ε such that

|(1 − x)u′(x)| ≤ C, ∀x ∈ (−1, 1). (2.3)

2.2. Cusp-like interior layer

Suppose there is only one turning point x = 0, and Eq. (1.1) reads














Lu ≡ −εu′′ + p(x)u′ + b(x)u = f(x), −1 < x < 1,

u(−1) = uL, u(1) = uR,

p(0) = 0, p′(0) < 0, |p′(x)| ≥ 1

2
|p′(0)|, b(x) ≥ b0 > 0.

(2.4)
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In some papers, x = 0 is called an attractive turning point because flows on both sides are

toward the turning point, and (2.4) is called an attractive turning point problem. Such problems

are characterized by the parameter λ = −b(0)/p′(0). It is shown [1, 2] that the solution has

an interior layer when λ ∈ (0, 1], and the following estimates hold:

|u(k)(x)| ≤ C
(

|x|+
√
ε
)λ−k

, x ∈ (−1, 1), k = 0, 1, 2, . . . . (2.5)

Similar to the previous case, the first derivative of the solution turns out bounded after multi-

plying a factor x.

Proposition 2.2. Suppose u is the solution to (2.4), then there exists a constant C depending

on uL, uR, f, p, b, which is independent of ε such that

|xu′(x)| ≤ C, ∀x ∈ (−1, 1) (2.6)

on the assumption that λ ∈ (0, 1].

If p′(0) > 0, the problem is also called a repulsive turning point problem, and its solution is

smooth near the turning point. Thus we need no additional treatment when dealing with such

turning points.

2.3. Boundary turning point problem

Consider the turning point is positioned at an endpoint. We set the interval as [0, 1], and

(1.1) becomes















Lu = −εu′′ + p(x)u′ + b(x)u = f(x), 0 < x < 1,

u(0) = uL, u(1) = uR,

p(0) = 0, |p′(x)| ≥ 1

2
|p′(0)|, b(x) ≥ b0 > 0.

(2.7)

For multiple boundary turning point problems, i.e. p(k)(0) = 0 for k = 1, 2, . . . ,m, it is proved

[35] that there exist positive constants C, η depending on uL, uR, f, p, b, which are independent

of ε such that the following estimates hold:

|u(k)(x)| ≤ C

(

1 + ε−
k
2 exp

(

− ηx√
ε

))

, x ∈ (0, 1), k = 0, 1, 2, . . . . (2.8)

One can deduce the following result immediately:

|u(k)(x)| ≤ Cmin
{(

1 + ε−
k
2

)

, (1 + x−k)
}

= C
(

1 +
(

max
{

x,
√
ε
})−k)

. (2.9)

Now assume that the boundary turning point is single, i.e. p′(0) 6= 0. Boundary behaviors

of such problems differ from those of (2.1). We introduce the following approximated problem:















L̃u ≡ −εu′′ + p′(0)xu′ + b(0)u = f(0), 0 < x < 1,

u(0) = uL, u(1) = uR,

p′(0) 6= 0, b(0) > 0.

(2.10)
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We divide the discussion of problem (2.10) into two cases by the sign of p′(0). Inspired by [2],

we could represent the solution as a linear combination of Weber’s parabolic cylinder functions,

which we use to analyze the bounds of the derivatives. The detailed deduction is omitted and

the reader could refer to Lemmas A.2 and A.3 in the Appendix A. We only put the main results

here that we need in the numerical analysis later.

Proposition 2.3. For the solution u of (2.7), when p′(0) > 0 and p(1) > 0, there exists

a constant C = C(uL, uR, f, p, b) independent of ε, satisfying

|xu′(x)| ≤ C, x ≤ 1

2
, (2.11a)

|(1− x)u′(x)| ≤ C, x ≥ 1

2
. (2.11b)

Proposition 2.4. If u is the solution to (2.7) with p′(0) < 0 and p(1) ≤ 0, there exists a con-

stant C = C(uL, uR, f, p, b) independent of ε such that

|xu′(x)| ≤ C. (2.12)

3. Numerical Method

In this section, we first introduce some definitions and weak formulations in Section 3.1. We

derive the weak solution using a Petrov-Galerkin finite element method (PGFEM), summarized

in Algorithm 3.2. If we know the analytic expressions of the solutions to the dual problems,

we directly use them as the test functions in PGFEM, otherwise, the dual problems are solved

numerically by TFPM on a uniform mesh, as described in Section 3.2. Furthermore, we prove

first-order convergency of the approximated operator in L∞
h -norm and discrete energy norm

in Section 3.3. And the nodal values of PGFEM solution are exact when test functions are

evaluated exactly (c.f. Theorem 3.3).

3.1. Definitions and formulations

The weak form of problem (1.1) is: Find u ∈ H1(xL, xR) such that

Aε(u, v) ≡ ε(u′, v′) + (pu′, v) + (bu, v) = (f, v), ∀v ∈ H1
0 (xL, xR),

u(xL) = uL, u(xR) = uR.
(3.1)

Let us take a partition {xi, i = 0, 1, . . . , N} on [xL, xR], including any possible interior turning

point

xL = x0 < x1 < · · · < xN = xR,

Ii = [xi−1, xi], i = 1, 2, . . . , N,

hi =

{

xi − xi−1, i = 1, . . . , N,

0, i = 0, N + 1,

and the mesh size h is defined as

h = max
1≤i≤N

hi.
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In this section, we use L∞, L2 and an energy norm ‖ · ‖ε for a function u

‖u‖L∞ = max
xL≤x≤xR

|u(x)|, (3.2)

‖u‖L2 =

√

∫ xR

xL

|u(x)|2dx, (3.3)

‖u‖ε =
√

‖u‖2L2 + ε‖u′‖2L2, (3.4)

and the corresponding discrete infinity norm ‖ · ‖L∞
h

and discrete energy norm ‖ · ‖ε,h for a grid

function uh

‖uh‖L∞
h

= max
0≤i≤N

|uh(xi)|, (3.5)

‖uh‖ε,h =
√

‖uh‖2L2
h

+ ε‖u′h‖2L2
h

. (3.6)

Here L2
h is the discrete L2 space with the norm defined on the grid, and u′h is computed by

a difference scheme

‖uh‖L2
h
=

√

√

√

√

N
∑

i=0

u2h(xi)
hi + hi+1

2
, (3.7)

‖u′h‖L2
h
=

√

√

√

√

N
∑

i=1

(

uh(xi)− uh(xi−1)

hi

)2

hi. (3.8)

Before discretization of finite element method, we first approximate (1.1) by the following

problem:
{

L̄uh ≡ −εu′′h + p̄(x)u′h + b̄(x)uh = f̄(x), xL < x < xR,

uh(xL) = uL, uh(xR) = uR,
(3.9)

where p̄, b̄, f̄ are piecewise approximations to the corresponding functions. Test function space

Vh is defined by a group of basis functions {ψi}N−1
i=1 with ψi solving the dual problem of (3.9)

on Ii ∪ Ii+1
{

L̄∗ψi ≡ −εψ′′
i − p̄(x)ψ′

i +
(

b̄(x)− p̄′(x)
)

ψi = 0, xi−1 < x < xi,

ψi(xi−1) = 0, ψi(xi) = 1,
(3.10a)

{

L̄∗ψi ≡ −εψ′′
i − p̄(x)ψ′

i +
(

b̄(x)− p̄′(x)
)

ψi = 0, xi < x < xi+1,

ψi(xi) = 1, ψi(xi+1) = 0,
(3.10b)

supp(ψi) = Ii ∪ Ii+1.

Functions {ψi}N−1
i=1 are referred to as L∗-splines in some articles.

Then we use PGFEM to discretize the weak form of (3.9): Find Uh ∈ Uh such that

Āε(Uh, vh) ≡ ε(U′
h, v

′
h) + (p̄U′

h, vh) + (b̄Uh, vh) = (f̄ , vh), ∀vh ∈ Vh,

Uh(xL) = uL, Uh(xR) = uR,
(3.11)

where

Uh =
{

vh ∈ C[xL, xR]
∣

∣ vh | Ii is linear, i = 1, . . . , N
}

, (3.12)

Vh =

{

vh
∣

∣ vh =

N−1
∑

i=1

ciψi, ci ∈ R, i = 1, . . . , N − 1

}

. (3.13)
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Remark 3.1. If we use parabolic cylinder functions as test functions, it is usual to compute

a cut-off of the series expansion of these special functions in order to generate the stiffness

matrix and the right-hand-side term. We compute parabolic cylinder functions in MATLAB

using codes from Fortran90 by [23,32]. In some cases, numerical cost is expensive when we need

these special functions to be precise enough. Moreover, we could not analytically represent the

solution to the dual problem with a nonlinear first-order coefficient. In practice, it works as

well if we substitute exact evaluations of special functions with numerical solutions described

in the following subsection.

3.2. Numerical method of dual problems

We apply TFPM on the uniform mesh to each dual problem. Precisely, for a specific dual

problem, we approximate −p̄(x) by a linear function â(x−X0) and b̄(x)− p̄′(x) by a constant b̂

−εψ′′ + â(x−X0)ψ
′ + b̂ψ = 0, X1 < x < X2. (3.14)

In practice, we take

â = −p′(x∗),
b̂ = b(x∗)− p′(x∗),

X0 = x∗ − p(x∗)

p′(x∗)
,

where x∗ ∈ [X1, X2]. The solution ψ is determined with the following boundary conditions:

ψ(X1) = 1, ψ(X2) = 0. (3.15)

We make a uniform partition on the subinterval

Yj = X1 + j
X2 −X1

N1
, j = 0, 1, . . . , N1.

TFPM solution on [Yi−1, Yi+1] is the linear combination of solutions to the equation

−εψ′′ + â(Yi −X0)ψ
′ + b̂ψ = 0, Yi−1 < x < Yi+1. (3.16)

Eq. (3.16) admits two exponential solutions ψ(1), ψ(2). Denoting ψi = ψ(Yi), we suppose

αi,i−1ψi−1 + αi,iψi + αi,i+1ψi+1 = 0. (3.17)

We presume αi,i = 1 because (3.16) is homogeneous, and the rest of the coefficients are deter-

mined by requiring ψ(1) and ψ(2) to satisfy (3.17)

(

ψ
(1)
i−1 ψ

(1)
i+1

ψ
(2)
i−1 ψ

(2)
i+1

)

(

αi,i−1

αi,i+1

)

= −
(

ψ
(1)
i

ψ
(2)
i

)

. (3.18)

By gathering conditions (3.17) at i = 1, . . . , N1−1 together with boundary conditions (3.15),

we obtain a tri-diagonal linear system which gives evaluations of approximated dual solutions

{ψ(Yi)}N1

i=0. We remark that TFPM on the uniform mesh described above yields smaller errors

than simple finite difference methods.
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To compute derivatives at X1 and X2, we represent the solution by exponential basis func-

tions on [Y0, Y1] and [YN1−1, YN1
] respectively. For instance, TFPM solution on [Y0, Y1] is as-

sumed to satisfy (3.16) which is defined on Y0 < x < Y1 and Yi is replaced by Y1/2 = (Y0 + Y1)/2.

By boundary conditions at Y0 and Y1, the solution is identified on [Y0, Y1], and ψ
′(X1) is avail-

able by direct calculations.

We summarize the numerical process to solve dual problems in the next algorithm.

Algorithm 3.1: Evaluation of Test Functions ψ and its Derivatives.

1 Specify coefficients â, b̂, endpoints of the subinterval X1, X2 and the boundary

condition in the dual equation to be solved, such as (3.14) and (3.15).

2 Make the uniform partition {Yj} on [X1, X2].

3 Use the formulation (3.18) to decide the linear relation (3.17) among ψi−1, ψi and ψi+1

for i = 1, 2, . . . , N1 − 1.

4 Gather the boundary conditions and N1 − 1 relations to form a linear system of {ψj}.
Evaluations {ψj} could be solved.

5 Represent the solution on [Y0, Y1] by a linear combination of exponential functions.

Then ψ′(X1) is approximated by the derivative of this combination. Approximation of

ψ′(X2) is similar.

3.3. Main results

We have defined the approximated coefficients and the approximated operator in (3.9). We

classify all the subintervals Ik’s into ones close to singular points and ones far away. More

exactly, we list all singular points in ascending order as {si}m
′

i=1 which contain any possible

interior turning points zi (with λi ∈ (0, 1]) and endpoints (with a boundary layer). Let 0 < δ <

mini |si − si−1|/3 and define

Ji = [si − δ, si + δ], i = 1, . . . ,m′,

Jr = [xL, xR]−
⋃

Ji.

According to whether the middle point of a subinterval Ik locates in some Ji or not, we ap-

proximate p on Ik by either a linear function or a constant one

p̄(x)
∣

∣

Ik
=

{

p(xk− 1
2
), if xk− 1

2
∈ Jr,

p′(x∗k)(x − x∗k) + p(x∗k), if xk− 1
2
∈ Ji,

where

x∗k =

{

si, if Ik is adjacent to some si,

xk− 1
2
, otherwise.

Take b̄(x)|Ik as piecewise constant b(xk−1/2) on every subinterval Ik and f̄(x)|Ik likewise. Thus

test functions induced by linearly approximated p̄ are represented by parabolic cylinder func-

tions and ones derived by constant p̄ are exponential functions.

For the difference between L and L̄, we have the following theorem.

Theorem 3.1 (First-Order L∞ Uniform Convergence). Assume p, b, f as above, and

singularities of type (a), (b), and (c) might occur in the solution. Then the error between
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the solution to (3.9) and (1.1) converges linearly and uniformly in L∞ norm, i.e. there exists

a constant C = C(uL, uR, f, p, b) independent of h, ε such that

‖e‖L∞ ≤ Ch (3.19)

with e = u− uh, where u is the solution to problem (3.1), uh is the solution to problem (3.9).

Proof. We note that maximum principle holds for L and L̄, i.e. there exists a constant

C= C(b−1
0 ) independent of ε, h

‖v‖∞ ≤ C
(

‖Lv‖∞ + |v(xL)|+ |v(xR)|
)

,

‖v‖∞ ≤ C
(

‖L̄v‖∞ + |v(xL)|+ |v(xR)|
)

.

With the same arguments by Gartland and Farrell [10], we distract the equations of u and uh
and denote e = u− uh

L̄e = −(p− p̄)u′ − (b − b̄)u + (f − f̄), (3.20a)

e(xL) = e(xR) = 0. (3.20b)

Then from the maximum principle we have

‖e‖∞ ≤ C
{

‖(p− p̄)u′‖∞ + ‖b− b̄‖∞‖u‖∞ + ‖f − f̄‖∞
}

.

We separate the discussion of |e(x)| by whether xk−1/2 lies in some Ji, where x ∈ Ik.

Case (a) xk−1/2 ∈ Ji.

Suppose xk−1/2 ∈ Ji. If the singular point si ∈ (xL, xR), we have the estimate of the

derivative

|u′(x)| ≤ C
(

|x− si|+
√
ε
)λi−1

,

where the coefficient λi = −b(si)/p′(si) ∈ (0, 1], |u′(x)| is bounded by a constant C for

other evaluations of λ. By definition of p̄, the term |(p− p̄)u′| is under control due to the

following inequalities and (2.6):

{

|p− p̄| ≤ Ch2 ≤ Ch|x− si|, if |x− si| ≥ h,

|p− p̄| ≤ C|x− si|2 ≤ Ch|x − si|, if |x− si| ≤ h.

In both cases |u′(x)| multiplied by |x−si| is bounded. The second inequality holds, for we

approximate p by the first-order Taylor polynomial at x=si in the intervals adjacent to si.

In the cases where si is an endpoint of the whole interval, generally the derivative u′(x)

might be significant near the singular point, such as ε−1 or ε−1/2. We have shown in

(2.3), (2.11a), and (2.12) that |(x− si)u
′(x)| is bounded uniformly by a constant C.

Case (b) xk−1/2 ∈ Jr.

Jr is δ away from boundary layers and interior layers. Without singularity, we could write

the bound of |u′| as C1, which may depend on a minus power of δ.

In the end, using the facts that |f − f̄ |, |b− b̄| ≤ Ch and |u| ≤ C(|f |+ |uL|+ |uR|) ≤ C̃, the

first-order convergence in L∞ norm is proved. �

Now we can discretize the approximated problem (3.11) with the following algorithm.
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Algorithm 3.2: PGFEM for Turning Point Problems.

1 Identify singular points si and their types of singularities.

2 Take a partition and add in singular points which are absent in the mesh.

3 Approximate p, b, f by piecewise constants or piecewise linear functions based on

distance from the midpoint of an interval to singular points (see the definition before

Theorem 3.1).

4 Solve dual problems analytically or numerically to evaluate test functions.

5 Generate stiffness matrix and right-hand-side term using test functions.

6 Solve a linear system to obtain the numerical solution Uh (on grid points).

Remark 3.2. This algorithm is a fitted operator method because the solution is derived by

selecting special test functions, and we need no special mesh on the whole interval. One needs

to identify the location of singular points when one constructs the linear system in order to use

information of the singularities and to solve dual problems with enough precision.

Theorem 3.2 (First-Order L2 Uniform Convergence). Providing the same conditions as

the previous theorem, the error between the solution to (3.9) and (1.1) is linearly and uniformly

convergent in L2-norm and ε-norm, i.e. there exists a constant C = C(uL, uR, f, p, b) indepen-

dent of h and ε such that

‖e‖L2 ≤ ‖e‖ε ≤ Ch. (3.21)

Proof. If we consider L2-norm, we start by (3.20)

−εe′′ + p̄e′ + b̄e = F (x) ≡ −(p− p̄)u′ − (b − b̄)u + (f − f̄).

We have proved that |e| ≤ C|F | ≤ C̃h. On the assumption that u, uh ∈ C1, the following

energy estimate holds:

∫ xR

xL

ε(e′)2 +

(

b̄− 1

2
p̄′
)

e2dx ≤ ‖F‖L2‖e‖L2 +
1

2

N−1
∑

i=1

e2(xi)[p̄](xi). (3.22)

For h sufficiently small, using assumption in (1.2), it holds that

b̄− 1

2
p̄′ ≥ b0 + γ0

4
.

Denoting

γ = min

(

1,
b0 + γ0

4

)

,

we have the estimate in the energy norm from (3.19) and (3.22)

‖e‖2ε ≤ Ch2, (3.23)

where the constant C may depend on p, b, f, γ−1, and the jump of p̄ is at most Ch

∣

∣[p̄](xk)
∣

∣ ≤
∣

∣p̄(x−k )− p(xk)
∣

∣+
∣

∣p(xk)− p̄(x+k )
∣

∣ ≤ Ch.

The proof is complete. �
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Proposition 3.1 (Numerical Stability). The scheme satisfies discrete maximum principle,

i.e. the matrix induced by PGFEM is tri-diagonally dominated.

Proof. The stiffness matrix of PGFEM is an M -matrix. It could be verified by taking

integrals [10] to (3.10a) and (3.10b). �

We mention that a main feature of our choice of test function space is the zero nodal error.

We state this in the next theorem.

Theorem 3.3 (Exactness of Nodal Values). Assume that we use exact dual solutions as

PGFEM test functions, uh is the solution of (3.9), and Uh is the solution of (3.11). Then we

have

uh(xi) = Uh(xi), ∀i = 0, 1, . . . , N.

Proof. Consider the weak formulations which uh and Uh satisfy

ε(u′h, v
′
h) + (p̄u′h, vh) + (b̄uh, vh) = (f̄ , vh), ∀vh ∈ H1

0 ,

ε(U′
h, v

′
h) + (p̄U′

h, vh) + (b̄Uh, vh) = (f̄ , vh), ∀vh ∈ Vh.

We need to assume the regularity of uh and Uh is good enough for further analysis. Denote

E = uh − Uh as the error introduced by PGFEM discretization. Take a special test function

vh = ψi, i = 1, 2, . . . , N − 1, and distract the two equation, which gives us

ε(E′, ψ′
i) + (p̄E′ + b̄E, ψi) = 0.

Integrate by part and substitute in the definition of ψi in (3.10a) and (3.10b), then the boundary

term remains as follows:

(

εEψ′
i + p̄Eψi

)∣

∣

∂Ii
+
(

εEψ′
i + p̄Eψi

)∣

∣

∂Ii+1
= 0.

We can check that the coefficient of Ej above is the same with the entry of stiffness matrix when

we implement Algorithm 3.2. AssemblingN−1 such conditions together with E(x0)=E(xN )=0,

we obtain a linear system of {E(xi)}Ni=0 which admits only zero solution due to Proposition 3.1.

The proof is complete. �

4. Numerical Implementation

In this section, we use three examples to validate the efficiency and convergency of our

algorithm. Different cases of singularities (a), (b), and (c) are included in these examples.

Test functions could be computed with exact parabolic cylinder functions or approximated by

numerical solutions. PGFEM solutions with fine girds (N = 4096) using exact test functions

are chosen to be reference solutions in the first two examples; the third one admits an exact

solution. We calculate errors by ‖ · ‖L∞
h
, ‖ · ‖L2

h
and ‖ · ‖ε,h defined in (3.5)-(3.8).

Example 4.1. Consider a turning point problem with a cusp-like interior layer and an exponen-

tial-type boundary layer







−εu′′ + cos(2πx)u′ + u =
1

1 + x2
, 0 < x < 1,

u(0) = 1, u(1) = 2.
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There is an interior layer at x = 1/4 and a boundary layer at x = 1, corresponding to cases

(b) and (a). We set {1/4, 3/4, 1} to be singular points which need special care. Although the

condition (1.2) for (b − p′) is not satisfied in this case, while numerical experiments indicate

that Algorithm 3.2 still works if properly treated. If we take p̄ as piecewise linear function in

a δ-neighborhood of the repulsive turning point x = 3/4, we use the exact solution of the dual

problem as test functions; if we take p̄ as piecewise constant function, we could use the exact

solution or the approximate solution of the dual problem as test functions. In practice we take δ

in Theorem 3.1 as follows in all three examples:

δ = min

{

0.1,
mini |si − si−1|

3

}

,

where si are all the singular points.

The reference solution, together with numerical solutions using PGFEM on the uniform

mesh and an up-winding scheme on Shishkin mesh [22] with both 256 grids are shown in

Fig. 4.1. Exact dual solutions are selected as test functions. Compared to non-equidistant

mesh of Shishkin type, PGFEM needs no special grids, and values on the uniform mesh points

are highly accurate. The solution using Shishkin mesh has a lower resolution outside the interior

layer, which could be improved by mesh refinement. PGFEM errors in three different discrete

norms versus grid number N are drawn with a log-log plot in Fig. 4.2, where one may find

a nearly second-order convergency.

(a) (b)

Fig. 4.1. Numerical and reference solutions for Example 4.1 (ε = 1 × 10−6), where test functions in

PGFEM are calculated with exact expressions. (a) PGFEM and the method in [22] are employed with

grid number N = 256, with the latter using an up-winding scheme on Shishkin mesh. The reference

solution is computed with PGFEM on grids N = 4096, (b) Horizontal magnification near x = 1/4.

Remark 4.1. As we evaluate all the coefficients at the middle points of intervals, we could

even observe the second-order convergency from the numerical results.

Example 4.2. Consider a boundary turning point problem

{

−εu′′ + (1− x2)u′ + 3u = ex, −1 < x < 1,

u(−1) = 1, u(1) = 2.
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At both endpoints the solution appears singular with p′(−1) > 0 at x = −1 and p′(1) < 0 at

x = 1, corresponding to case (c) with a positive slope and a negative one. These two boundary

layers are weaker than those in Example 4.1, as the PGFEM solution and the reference solution

are drawn in Fig. 4.3. Setting {−1, 1} as singular points and exact dual solutions as test

functions, L∞
h errors and discrete energy errors are shown in Tables 4.1 and 4.2 accordingly,

where a second-order uniform convergence could be verified.

For Example 4.2, if we compute test functions numerically, using the same reference solution,

convergence is the same as above (see Table 4.3). Convergency also holds for multiple turning

point problems if we follow the same procedure to compute test functions, although it is unclear

what analytic expressions of the solutions to dual problems are.

Fig. 4.2. Log-log plot for PGFEM errors in Example 4.1 versus grid number N , in L∞

h , L2
h and discrete

energy norm. The solid black line and black dashed line have slopes −1 and −2, respectively.

(a) (b)

Fig. 4.3. Numerical and reference solutions for Example 4.2 (ε = 1× 10−6). Test functions in PGFEM

are calculated with exact expressions. (a) PGFEM is implemented with grids N = 256, and the

reference solution is calculated using the same algorithm with N = 4096, (b) Horizontal magnification

near x = 0.
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Table 4.1: L∞

h errors of PGFEM solutions for Example 4.2. Test functions are calculated with exact

expressions.

ε 1 1E-02 1E-04 1E-06

N L∞

h Rate L∞

h Rate L∞

h Rate L∞

h Rate

32 1.12E-04 2.78E-03 1.85E-03 1.85E-03

64 2.39E-05 2.43 1.46E-03 1.52 7.22E-04 2.10 7.16E-04 1.93

128 5.97E-06 2.00 3.72E-04 1.97 1.90E-04 1.93 1.83E-04 1.97

256 1.56E-06 1.98 7.86E-05 2.37 4.49E-05 2.26 8.66E-05 2.31

512 3.85E-07 2.02 1.94E-05 2.01 1.41E-05 1.89 3.73E-05 2.45

1024 9.07E-08 2.10 4.83E-06 2.04 3.33E-06 2.08 1.51E-05 2.22

Table 4.2: ‖ · ‖ε,h errors of PGFEM solutions for Example 4.2. Test functions are calculated with exact

expressions.

ε 1 1.E-02 1.E-04 1.E-06

N Energy Rate Energy Rate Energy Rate Energy Rate

32 3.93E-04 1.95E-03 6.38E-04 6.27E-04

64 9.56E-05 2.24 9.93E-04 1.52 2.08E-04 1.84 2.09E-04 1.77

128 2.39E-05 2.00 2.55E-04 1.97 5.31E-05 1.99 5.50E-05 2.01

256 6.02E-06 2.03 5.47E-05 2.37 1.51E-05 2.17 1.42E-05 2.18

512 1.49E-06 2.02 1.35E-05 2.01 4.46E-06 2.01 3.93E-06 2.15

1024 3.53E-07 2.08 3.36E-06 2.05 1.24E-06 2.03 1.14E-06 2.13

Table 4.3: L∞

h errors of PGFEM solutions for Example 4.2. Test functions are approximated by

numerical solutions.

ε 1 1.E-02 1.E-04 1.E-06

N L∞

h Rate L∞

h Rate L∞

h Rate L∞

h Rate

32 1.12E-04 2.78E-03 1.86E-03 1.86E-03

64 2.39E-05 2.43 1.46E-03 1.52 7.23E-04 2.11 7.21E-04 1.94

128 5.96E-06 2.00 3.72E-04 1.97 1.90E-04 1.93 1.84E-04 1.97

256 1.56E-06 1.98 7.86E-05 2.37 4.50E-05 2.26 8.66E-05 2.32

512 3.85E-07 2.02 1.94E-05 2.01 1.40E-05 1.89 3.68E-05 2.45

1024 9.07E-08 2.10 4.83E-06 2.04 3.33E-06 2.08 1.51E-05 2.29

Example 4.3. Consider the following multiple boundary turning point problem [35]:

{

−εu′′ − x3u′ + u = f(x), 0 < x < 1,

u(0) = 2, u(1) = e
− 1√

ε + e,

where f(x) is determined by the exact solution

u(x) = e
− x√

ε + ex.

There is a
√
ε-wide boundary layer at the turning point x = 0, as drawn in Fig. 4.4.
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(a) (b)

Fig. 4.4. Numerical and exact solutions for Example 4.3 (ε = 1 × 10−6). Test functions in PGFEM

are approximated by numerical solutions on grids N1 = 4096. (a) PGFEM and the method in [35] are

manipulated with uniform grids N = 256, and the reference solution is computed with PGFEM and

N = 4096, (b) Horizontal magnification near x = 0.

Results of PGFEM are compared with one in [35], where we compute with two methods on

the same uniform mesh, and PGFEM obtains solutions with higher precision. In this case,

analytic expressions of dual solutions are unknown. Thus we utilize numerical solutions to dual

problems as test functions. The L∞
h convergence rate of PGFEM is almost two, as shown in

Table 4.4.

Table 4.4: L∞

h errors of PGFEM solutions for Example 4.3. Test functions are approximated by

numerical solutions.

ε 1 1.E-02 1.E-04 1.E-06

N L∞

h Rate L∞

h Rate L∞

h Rate L∞

h Rate

32 1.84E-05 1.65E-04 3.71E-04 1.05E-03

64 4.61E-06 2.00 4.82E-05 1.77 5.89E-05 2.66 3.01E-04 1.81

128 1.15E-06 2.00 1.26E-05 1.93 8.85E-06 2.82 7.64E-05 1.98

256 2.88E-07 2.00 3.20E-06 1.98 2.22E-06 1.99 1.77E-05 2.11

512 7.21E-08 2.00 8.02E-07 2.00 5.50E-07 2.01 4.57E-06 2.31

1024 1.79E-08 2.01 2.01E-07 2.00 1.33E-07 2.04 1.17E-06 1.97

5. Conclusion

In this paper, we develop a Petrov-Galerkin finite element method (PGFEM) to solve a class

of turning point problems in one dimension. A priori estimates have been established for

the single boundary turning point case. Numerical analysis shows that our scheme has first-

order uniform convergency in several different discrete norms. In numerical examples, errors

in different discrete norms validate the feasibility and efficiency of the scheme. We emphasize

that such an algorithm not only could be implemented with evaluations of exact solutions to

the dual problems but also is considerable if test functions are approximated numerically.
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Appendix A. A Priori Estimates for Single Boundary Turning Point

Problems

A.1. Preparations for estimates

We introduce a lemma to estimate the solution u more precisely.

Lemma A.1. There exists one and only one solution u to (2.7). Besides, there is a constant

C = C(uL, uR, f, p, b) independent with ε such that

|p(x)u′(x)| ≤ C, ∀x ∈ [0, 1/2]. (A.1)

Proof. We suffice to show that εu′′(x) is bounded by C on [0, 1/2], for u could be bounded

by f using the maximum principle. First assume that p′(0) = −α < 0, and let z(x) = u′′(x).

Differentiate (2.7) once, and we have

−εz′ + p(x)z = s(x),

where

s(x) = s1(x) + s2(x),

s1(x) = f ′(x)− b′(x)u,

s2(x) = −
(

p′(x) + b(x)
)

u′.

Let P (x) = −
∫ x

0 p(t)dt. Since p
′(x) ≤ −α/2 < 0, after some basic calculus we have

−P (x)
ε

≤ 0,

P (t)− P (x) =

∫ x

t

p(τ)dτ ≤ 0

for 0 < t < x. By variance of constants we have

z(x) = z(0) exp

(

−P (x)
ε

)

− ε−1

∫ x

0

exp

(

P (t)− P (x)

ε

)

s(t)dt. (A.2)

Taking x = 0 in (2.7),

z(0) = ε−1
(

b(0)u(0)− f(0)
)

= Cε−1.

The integral in the second term of (A.2) is split into terms with s1 and s2

I1 =

∫ x

0

exp

(

P (t)− P (x)

ε

)

s1(t)dt ≤
∫ x

0

1 · Cdt = C,

I2 =

∫ x

0

exp

(

P (t)− P (x)

ε

)

s2(t)dt ≤ C,

where we use the second mean value theorem for integrals for the second inequality. Thus we

have shown that εu′′(x) is bounded on [0, 1] if p′(0) < 0.

In the case p′(0) = α > 0, the same argument could be repeated with the following modifi-

cation:

z(x) = exp

(

P (1/2)− P (x)

ε

)

z

(

1

2

)

− ε−1

∫ 1
2

x

exp

(

P (τ) − P (x)

ε

)

s(τ)dτ,
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where |z(1/2)| is bounded by C. The result here applies only for x ∈ [0, 1/2] because (2.7) may

have a boundary layer at x = 1. �

We have shown that p(x)u′(x) is bounded near the singular point x = 0. The original

problem (2.7) is solved by decomposing u = u1 + u2 + u0

u0 =
f(0)

b(0)
,

{

L̃u1 = 0, 0 < x < 1,

u1(0) = uL − u0, u1(1) = uR − u0,
{

L̃u2 = g(x), 0 < x < 1,

u2(0) = u2(1) = 0,

(A.3)

where L̃ is defined in (2.10), and

g(x) ≡
(

f(x)− f(0)
)

−
(

p(x)− p′(0)x
)

u′ −
(

b(x)− b(0)
)

u.

From Lemma A.1 we could write

g(x) = h(x)x,

where |h(x)| is bounded by a constant depending on p, b and f for x ∈ [0, 1/2]. We solve u1 by

direct representation with parabolic cylinder functions, while u2 is related to Green’s function

for L̃.

A.2. Basic property of parabolic cylinder function

Parabolic cylinder functions U(a, x), V (a, x), using Weber’s notations, are linear indepen-

dent solutions to the equation

−y′′ +
(

a+
x2

4

)

y = 0,

where a is a coefficient. The following properties will be used later [23, 32]:

πV (a, x) = Γ

(

1

2
+ a

)

(

sinπa · U(a, x) + U(a,−x)
)

, (A.4a)

Γ

(

1

2
+ a

)

U(a, x) = π sec2 πa
(

V (a,−x)− sinπa · V (a, x)
)

, (A.4b)

√
2πU(a, ix) = Γ

(

1

2
− a

)

(

e−iπ(−a
2
− 1

4
)U(−a, x) + eiπ(−

a
2
− 1

4
)U(−a,−x)

)

, (A.4c)

U ′(a, x) +
1

2
xU(a, x) +

(

a+
1

2

)

U(a+ 1, x) = 0, (A.4d)

U ′(a, x)− 1

2
xU(a, x) + U(a− 1, x) = 0, (A.4e)

V ′(a, x) +
1

2
xV (a, x)− V (a+ 1, x) = 0, (A.4f)

V ′(a, x)− 1

2
xV (a, x)−

(

a− 1

2

)

V (a− 1, x) = 0, (A.4g)

U(a, x) = exp

(

−1

4
x2
)

x−a− 1
2 δ1, x ≥ C0, (A.4h)
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V (a, x) =

√

2

π
exp

(

1

4
x2
)

xa−
1
2 δ2, x ≥ C0. (A.4i)

C0 = O(1) is a constant related to a, and coefficients δ1, δ2 satisfy

|δi − 1| ≤ 1

3
.

A.3. Green’s function of the operator L̃

Denote µ0 by the solution to
{

L̃u = 0,

u(0) = 0, u(1) = 1,

and µ1 by the solution to
{

L̃u = 0,

u(0) = 1, u(1) = 0.

The Wronskian of µ0 and µ1 is

W (x) =W (µ0, µ1) = µ0(x)µ
′
1(x)− µ1(x)µ

′
0(x).

The Green’s function of L̃ is piecewise defined on [0, 1]

G(x, τ) =



















−ε−1µ0(x)µ1(τ)
exp

(

(p′(0)/2ε)(1 − τ2)
)

W (1)
, 0 ≤ x ≤ τ ≤ 1,

−ε−1µ1(x)µ0(τ)
exp

(

(p′(0)/2ε)(1 − τ2)
)

W (1)
, 0 ≤ τ ≤ x ≤ 1,

which satisfies

L̃G(x, τ) = δ(x− τ),

G(0) = G(1) = 0.

u2 defined in (A.3) could be represented as

u2(x) =

∫ 1

0

G(x, τ)τh(τ)dτ.

Thus estimates for u2 turn into ones for G(·, τ) and its derivatives.

A.4. The case p′(0) = α > 0

We first estimate derivatives of the solution u in the next lemma.

Lemma A.2. Assume u is the solution to (2.7) with p′(0) > 0, and ρ = C0
√
ε, where C0 is

defined in Section A.2. For k = 1, 2, . . . ,

∣

∣u(k)(x)
∣

∣ ≤











C(1 + ρ−k), 0 ≤ x ≤ ρ,

C(1 + x−k), ρ ≤ x ≤ 1

2
,

(A.5)

where C depends on uL, uR, f, p, b. Rewriting these estimates in a more compact form, we have

∣

∣u(k)(x)
∣

∣ ≤ C
(

1 + (max{x, ρ})−k
)

, 0 ≤ x ≤ 1

2
. (A.6)
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Proof. Since u0 in (A.3) has no contribution to the derivative, for the sake of simplicity, we

replace u by u1 +u2 and still denote it by u. We introduce the following change of variable, for

both u1 and u2 satisfy an equation of L̃:

x̃ =
x

√

ε/α
,

u1(x) = ũ(x̃) exp

(

x̃2

4

)

.

Denoting β = b(0)/α > 0, we obtain the equation for ũ

−ũ′′ +
(

x̃2

4
+ β − 1

2

)

ũ = 0.

ũ admits linear independent solutions U(β − 1/2, x̃), V (β − 1/2, x̃). Hence,

u1(x) = c1 exp

(

x̃2

4

)

U

(

β − 1

2
, x̃

)

+ c2 exp

(

x̃2

4

)

V

(

β − 1

2
, x̃

)

.

Coefficients c1, c2 are determined by boundary conditions










U

(

β − 1

2
, 0

)

V

(

β − 1

2
, 0

)

exp
( α

4ε

)

U

(

β − 1

2
,

1
√

ε/α

)

exp
( α

4ε

)

V

(

β − 1

2
,

1
√

ε/α

)











(

c1
c2

)

=

(

uL
uR

)

.

Call the matrix on the left-hand side A. Denoting Ki as constants of O(1), we could rewrite A

in the asymptotic form

A ≈





K1 K2

K3ε
β

2 K4 exp
( α

2ε

)

ε
1−β

2



 .

Therefore the coefficients are represented as follows:
(

c1
c2

)

= A−1

(

uL
uR

)

.

We omit all the constants of O(1) for simplicity. Considering uL, uR = O(1), the derivatives

are in the following form:

u1
(k)(x) = ε−

k
2

[

c1 exp

(

x̃2

4

)

Πk
i=1(−β−i+ 1)U

(

β+k−1

2
, x̃

)

+c2 exp

(

x̃2

4

)

V

(

β+k−1

2
, x̃

)]

= ε−
k
2

[

c′1 exp

(

x̃2

4

)

U

(

β + k − 1

2
, x̃

)

+ c2 exp

(

x̃2

4

)

V

(

β + k − 1

2
, x̃

)]

.

For convenience, write u1(x) = uLµ1(x) + uRµ0(x), and we estimate µ0 and µ1 first in order to

estimate u1 and its derivatives on [0, 1/2]

∣

∣µ
(k)
0 (x)

∣

∣ ≤











C exp
(

− α

2ε

)

ε
β−k−1

2 , |x| ≤ ρ,

C
(

exp
(

− α

2ε

)

εβ−
1
2 x−β−k + ε−k exp

(

− α

2ε
(1− x2)

)

xβ+k−1
)

, ρ ≤ |x| ≤ 1,

∣

∣µ
(k)
1 (x)

∣

∣ ≤







Cε−
k
2 , |x| ≤ ρ,

C
(

ε
β
2 x−β−k + exp

(

− α

2ε
(1− x2)

)

ε
β
2
−kxβ+k−1

)

, ρ ≤ |x| ≤ 1,
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which hold for k = 0, 1, 2, . . . . Thus

|W (1)| ≥ Cε
β

2
−1.

If x ≤ ρ, from

u
(k)
1 = uLµ

(k)
1 + uRµ

(k)
0 ,

we have

∣

∣u
(k)
1 (x)

∣

∣ ≤ C
(

|uR|
∣

∣µ
(k)
0 (x)

∣

∣ + |uL|
∣

∣µ
(k)
1 (x)

∣

∣

)

≤ C
(

|uR| exp
(

− α

2ε

)

ε
β−k−1

2 + |uL|ε−
k
2

)

≤ Cρ−k, k = 1, 2, . . . .

If ρ ≤ x ≤ 1/2,

exp
(

− α

2ε
(1− x2)

)

≤ exp

(

−α
′

2ε

)

,

where α′ = 3α/4, we have

∣

∣u
(k)
1 (x)

∣

∣ ≤ C|uL|
(

ε
β

2 x−β−k + exp
(

− α

2ε
(1− x2)

)

ε
β

2
−kxβ+k−1

)

+ C|uR|
(

exp
(

− α

2ε

)

εβ−
1
2 x−β−k + ε−k exp

(

− α

2ε
(1− x2)

)

xβ+k−1
)

≤ C(1 + x−k), k = 1, 2, . . . .

Constant C may depend on β, k, α, C0. Derivatives of u2 are estimated by induction

∣

∣u′2(x)
∣

∣ ≤ C

∫ 1

0

|Gx(x, τ)|τdτ

=



















∫ x

0

+

∫ ρ

x

+

∫ 1

ρ

, 0 ≤ x ≤ ρ,

∫ ρ

0

+

∫ x

ρ

+

∫ 1

x

, ρ ≤ x ≤ 1

2
.

After some standard computation, we could verify the first derivative of u2 satisfies (A.5) with

k = 1.

We have to obtain estimates for u
(k)
1 and u′2 in the same form. Considering that the behavior

near x = 1 has been studied well as an exponential boundary layer, we narrow down the a priori

estimate for u to [0, 1/2]

|u′(x)| ≤











C(1 + ρ−1), 0 ≤ x ≤ ρ,

C(1 + x−1), ρ ≤ x ≤ 1

2
.

For higher derivatives u(k)(k ≥ 2), we could differentiate (k− 1) times the equation in (2.7)

and split v = u(k−1) into three parts as u is decomposed in (A.3). It is noticed that v satisfies

a similar equation to (2.10), with β replaced by β+k−1 and boundary conditions in asymptotic

forms. Actually, we can obtain by induction, for k = 1, 2, . . . ,

u(k)(0) = ε−
k
2 ,

u(k)(1) = ε−k.
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Simple calculations yield the following result:

|u(k)(x)| ≤











C(1 + ρ−k), 0 ≤ x ≤ ρ,

C(1 + x−k), ρ ≤ x ≤ 1

2
.

The proof is complete. �

Remark A.1. If we take x ≈ 1 into consideration, the estimates could be modified as

|u(k)(x)| ≤







C(1 + ρ−k), 0 ≤ x ≤ ρ,

C
(

1 + x−k + (1− x)−k
)

, ρ ≤ x ≤ 1,
k = 1, 2, . . . . (A.7)

Note that for 1/2 ≤ x ≤ 1,

exp
(

− α

2ε
(1− x2)

)

≤ C

(

ε

1− x

)k

.

The following proposition holds as a direct conclusion, and we will use these propositions to

show the convergence of the numerical method.

A.5. The case p′(0) = −α < 0

In this case, estimates for derivatives of u are mildly different.

Lemma A.3. Assume that u is the solution to (2.7) when p′(0) < 0 and p(1) < 0. Let

β = b(0)/α > 0, and ρ is defined as above. Then we have the following estimates:

|u(k)(x)| ≤







C(1 + ρβ−k + |uL|ρ−k), 0 ≤ x ≤ ρ,

C(1 + xβ−k + |uL|x−k), ρ ≤ x ≤ 1,
k = 1, 2, . . . , (A.8)

where C depends on uL, uR, f, p, b. Or otherwise in a compact form

|u(k)(x)| ≤ C
(

1 + (max{x, ρ})β−k + |uL|(max{x, ρ})−k
)

, 0 ≤ x ≤ 1, k = 1, 2, . . . . (A.9)

Proof. If we let x̃ = x/
√

−ε/α, the new variable becomes pure imaginary. From the

property that evaluation of U(a, iz) and V (a, iz) could be represented by U(−a, z), V (−a, z)
(c.f. (A.4a),(A.4c)), we assume the solution to be

u(x) = c1 exp

(

x̃2

4

)

U

(

1

2
+ β, |x̃|

)

+ c2 exp

(

x̃2

4

)

V

(

1

2
+ β, |x̃|

)

.

For simplicity we denote x̂ = |x̃| = x/
√

ε/α, which gives

u(x) = c1 exp

(

− x̂
2

4

)

U

(

1

2
+ β, x̂

)

+ c2 exp

(

− x̂
2

4

)

V

(

1

2
+ β, x̂

)

.

Again we solve coefficients c1, c2 from boundary conditions uL, uR. Let

A =













U

(

1

2
+ β, 0

)

V

(

1

2
+ β, 0

)

exp
(

− α

4ε

)

U

(

1

2
+ β,

1
√

ε/α

)

exp
(

− α

4ε

)

V

(

1

2
+ β,

1
√

ε/α

)
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≈





K1 K2

K3 exp
(

− α

2ε

)

ε
1+β
2 K4ε

−
β
2



 .

Then c1, c2 could be written as
(

c1
c2

)

= A−1

(

uL
uR

)

.

As the previous case, for k = 1, 2, . . . ,

u(k)(x) = ε−
k
2

[

c′1 exp

(

− x̂
2

4

)

U

(

β +
1

2
− k, x̂

)

+ c′2 exp

(

− x̂
2

4

)

V

(

β +
1

2
− k, x̂

)]

.

For µ0, µ1, and k = 0, 1, 2, . . . ,

µ
(k)
0 (x) = exp

(

− x̂
2

4

)

ε
β−k

2

(

U

(

β +
1

2
− k, x̂

)

+ V

(

β +
1

2
− k, x̂

))

,

µ
(k)
1 (x) = exp

(

− x̂
2

4

)

ε−
k
2

(

U

(

β +
1

2
− k, x̂

)

+ ε
1
2
+β exp

(

− α

2ε

)

V

(

β +
1

2
− k, x̂

))

.

We have the following estimates:

∣

∣µ
(k)
0 (x)

∣

∣≤







Cε
β−k

2 , x ≤ ρ,

C
(

exp
(

− α

2ε
x2
)

εβ+
1
2
−kx−β+k−1 + xβ−k

)

, x ≥ ρ,

∣

∣µ
(k)
1 (x)

∣

∣≤







Cε−
k
2 , x ≤ ρ,

C
(

exp
(

− α

2ε
x2
)

ε
β+1

2
−kx−β+k−1+exp

(

− α

2ε

)

ε
β+1

2 xβ−k
)

, x ≥ ρ,

k = 0, 1, . . . .

Since these two estimates are different from the case p′(0) > 0, we might keep uL and uR as

independent variables

∣

∣u
(k)
1 (x)

∣

∣ ≤ |uR|
∣

∣µ
(k)
0 (x)

∣

∣ + |uL|
∣

∣µ
(k)
1 (x)

∣

∣

≤







C
(

|uR|ε
β−k

2 + |uL|ε−
k
2

)

, x ≤ ρ,

C
(

|uR|xβ−k + |uL|x−k
)

, x ≥ ρ,
k = 1, 2, . . . .

u2 could be estimated similarly by computing integrals of Green’s function. We omit these

details and present the following result:

∣

∣u
(k)
2 (x)

∣

∣ ≤







C(1 + ρβ−k), x ≤ ρ,

C(1 + xβ−k), x ≥ ρ,
k = 1, 2, . . . .

The conclusion in Lemma A.3 consists of estimates for u1 and u2. �

Remark A.2. The solution of the case p′(0) < 0 is smooth at the endpoint x = 1, hence,

estimates are made on the whole interval [0, 1]. The result in Lemma A.3 is quite similar to [2],

except that nonzero uL might lower the regularity of the solution.

Remark A.3. Estimates (2.8) are stronger than Lemmas A.2 and A.3. Analysis in [35] applies

in the cases k ≥ 2, where k stands for multiples of the turning point, while the same argument
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no longer holds for k = 1. Another difference is that their estimates are made on the whole

interval [0, 1]. In contrast, estimates hold for [0, 1/2] in Lemma A.2 and for the whole interval

in Lemma A.3. Estimates (A.5) and (A.8) give upper bounds for x ≤ ρ and x ≥ ρ separately

when the turning point is single, and it is unknown whether these estimates could be combined

into one expression in an essential way.
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