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Abstract

In this paper, we shall prove a Wong-Zakai approximation for stochastic Volterra equa-

tions under appropriate assumptions. We may apply it to a class of stochastic differential

equations with the kernel of fractional Brownian motion with Hurst parameter H ∈ (1/2, 1)

and subfractional Brownian motion with Hurst parameter H ∈ (1/2, 1). As far as we know,

this is the first result on stochastic Volterra equations in this topic.
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1. Introduction and Main Results

Consider the following stochastic Volterra equations:

Xt = ξ +

∫ t

0

b(t, s,Xs)ds+

∫ t

0

σ(t, s,Xs)dWs, (1.1)

where ξ ∈ R
d and b : R+ × R+ × R

d → R
d, σ : R+ × R+ × R

d → R
d×m are Borel measurable

functions, and {Wt}t≥0 is an m-dimensional standard Brownian motion defined on a filtered

probability space (Ω,F , (F )t ,P). Here the stochastic integral is the usual Itô’s integral.

Stochastic Volterra equations arise in many applications such as mathematical finance, bi-

ology, etc. There is a big amount of literature devoted to the study of stochastic Volterra

equations. Let us mention a few of them. When the coefficients σ(t, s, x) and b(t, s, x) are

Lipschitz continuous in x and uniformly with respect to t, s, the existence and uniqueness of

the strong solutions to Eq. (1.1) were first studied by Berger and Mizel [6, 7]. Later, the exis-

tence and uniqueness as well as the continuity of the solution to stochastic Volterra equations

with singular kernels and non-Lipschitz coefficients were considered in [42]. Meanwhile, Eu-

ler schemes and large deviations for stochastic Volterra equations with singular kernels were

established by Zhang [49].

Note that an important task in applications is to realize stochastic differential equations

(abbreviated SDEs) on computers, that is, to construct a discretized approximation. The
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Wong-Zakai approximation of SDEs (a.s. or in mean square) by random differential equations is

considered by Wong-Zakai [43,44], Ikeda-Watanabe [23], Karatzas-Shreve [25]. It is well known

that if we replace the Brownian motion in SDEs by some smooth approximations (such as linear

interpolation, mollifier, etc.), then the solution of the approximating equation converges (a.s.

or q.s. or in mean square) to the Stratonovich form of the original equation (e.g. [2, 3, 5, 9, 15,

18–22,27, 31, 34–41,45–48,50]).

However, to the best of our knowledge, the Wong-Zakai approximation for stochastic Vol-

terra equations has not been established. It is natural to ask whether the Wong-Zakai continues

to hold for stochastic Volterra equations. We remark that the stochastic Volterra equations is

in fact an anticipating SDEs, which is much difficult to study. Since the solution of stochastic

Volterra equations is neither Markovian, nor a semimartingale, Itô’s formula usually used in

the studies of SDEs is not available in this case. In this paper, we shall prove the Wong-Zakai

approximation for stochastic Volterra equations, which is first paper to study the problem.

Here and below, C will denote a positive constant that is not depending on n and may have

different values from one place to another one. For simplicity, we use | · | to denote both the

Euclidean norm for a vector in R
d and the Hilbert-Schmidt norm for a matrix in R

d×m.

In the present paper, we shall restrict our discussion to time interval [0, 1] and make the

following assumptions:

(H1) The function b(t, s, x) is differentiable with respect to the first variable, and the function

σ(t, s, x) is differentiable with respect to the first and the third variable. Also there are binary

functions gi(t, s)≥0, i = 1, 2, 3, 4, and λ1, λ2∈(0, 1/2) such that for any t, s ∈ [0, 1], 0≤u≤v≤1

and x ∈ R
d,

|b1(t, s, x)|+ |σ1(t, s, x)|+ |σ13(t, s, x)|+ |σ31(t, s, x)| ≤ Cg1(t, s), (1.2)

|b(t, s, x)| ≤ Cg2(t, s)(1 + |x|λ1), (1.3)

|σ(t, s, x)| ≤ Cg3(t, s)(1 + |x|λ2), (1.4)

|σ3(t, s, x)| ≤ Cg4(t, s), (1.5)

σ1(u, s, x) ≤ σ1(v, s, x), (1.6)

where

sup
0≤t≤1

∫ 1

0

g1(t, s)ds < ∞, sup
0≤t≤1

∫ 1

0

|gj(t, s)|pds < ∞, j = 2, 3, 4, ∀p ≥ 1,

and gj(r, s) ≤ gj(t, s), j = 2, 3, 4 for any 0 ≤ s ≤ r ≤ t ≤ 1. b1(t, s, x) represents the partial

derivative of b(t, s, x) with respect to the first variable. σ1(t, s, x) and σ3(t, s, x) represent

the partial derivatives of σ(t, s, x) with respect to the first variable and the third variable

respectively. σij(t, s, x) means that σ(t, s, x) first seeks a partial derivative of the i-th variable,

and then seeks a partial derivative of the j-th variable, where i, j = 1, 3, and i 6= j.

(H2) For all t, t′, s ∈ [0, 1] and x ∈ R
d,

|b(t′, s, x)− b(t, s, x)| ≤ F1(t
′, t, s), (1.7)

|σ(t′s, x)− σ(t, s, x)|2 ≤ F2(t
′, t, s), (1.8)

|σ3(t
′s, x)− σ3(t, s, x)|2 ≤ F3(t

′, t, s), (1.9)



Wong-Zakai Approximations for Stochastic Volterra Equations 3

where Fi(t
′, t, s), i = 1, 2, 3, are nonnegative functions on [0, 1] × [0, 1] × [0, 1], and satisfy for

some γ > 1,
∫ t∨t′

0

[

F 2
1 (t

′, t, s) + F2(t
′, t, s) + F3(t

′, t, s)
]

ds ≤ C|t− t′|γ . (1.10)

(H3) For all t, s ∈ [0, 1] and x, y ∈ R
d,

|b(t, s, x)− b(t, s, y)| ≤ h1(t, s)|x− y|, (1.11)

|σ3(t, s, x)− σ3(t, s, y)| ≤ h2(t, s)|x− y|, (1.12)

where hi(t, s), i = 1, 2, are nonnegative functions on [0, 1]× [0, 1], and satisfy

sup
0≤t≤1

∫ 1

0

[

hη1

1 (t, s) + hη2

2 (t, s)
]

ds ≤ C (1.13)

for some ηi ≥ 1, i = 1, 2. Moreover, we assume that hj(r, s)≤hj(t, s) for any 0 ≤ s ≤ r ≤ t ≤ 1,

j = 1, 2.

(H4) For all t ∈ [0, 1] and x ∈ R
d,

b(t, t, x) = σ(t, t, x) = σ3(t, t, x) = 0. (1.14)

In what follows, we consider the particular partition

∆n : 0 < 1/n < · · · < j/n < (j + 1)/n < · · · < 1, ∆n,j = (j/n, (j + 1)/n],

and the linear interpolation

Wn
t = (nt− j)W (∆n,j) +W j

n
, j/n ≤ t ≤ (j + 1)/n,

where

W (∆n,j) = W j+1

n
−W j

n
, n ≥ 1.

The Wong-Zakai approximation {Xn
t }0≤t≤1 associated with Eq. (1.1) is defined by

Xn
t = ξ +

∫ t

0

b
(

t, s,Xn
s

)

ds+

∫ t

0

σ
(

t, s,Xn
s

)

dWn
s , t ∈ [0, 1], (1.15)

where the second integral is to be understood in the Lebesgue-Stieltjies sense.

In order to prove the convergence ofXn
t toXt, we need the following additional assumptions:

(H5) For all s ∈ [0, tn] ⊆ [0, 1] and x ∈ R
d,

sup
s∈[0,tn]

sup
x∈Rd

[

n

(
∫ s

0

σ(s, r, x)dr −
∫ sn

0

σ(sn, r, x)dr

)

− (ns− ⌊ns⌋)
∫ s

0

σ1(s, u, x)du

]2

≤ C

nς1
, (1.16)

where ς1 > 0, sn := ⌊ns⌋/n, s+n := (⌊ns⌋+ 1)/n, and ⌊a⌋ denotes the integer part of a real

number a.
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Remark 1.1. Under (H1)-(H3), it is easy to derive that there exists a unique continuous

adapted solution Xt to Eq. (1.15) by similarly the proof of Wang [42]. (H2) and (H3) are called

regularity conditions, which play an important role in proving the conclusion of this paper.

Remark 1.2. gj(t, s), j = 1, 4, in (H1) and Fi(t
′, t, s), i = 1, 2, 3, in (H2) are not relaxed to

gj(t, s)(1 + |x|̺) and Fi(t
′, t, s)(1 + |x|ρ) with ̺, ρ ∈ (0, 1], respectively. The reason is that

there are some technical difficulties in the proof of this paper. This point is determined by the

characteristics of stochastic Volterra equations.

Remark 1.3. In Sections 4 and 5, we give two examples which satisfy (H1)-(H5).

Remark 1.4. In the paper, we introduce the hypothesis (H5) to deal with the On,1(t) (see

(3.25) below). At first glance, this hypothesis in this paper is very strange, but through the

two examples given in Sections 4 and 5, we show that this hypothesis is reasonable.

The main purposes in this paper is devoted to proving that

Theorem 1.1. Under (H1)-(H5), we have

lim
n→∞

sup
0≤t≤1

E
∣

∣Xn
t −Xt

∣

∣

2
= 0, (1.17)

where Xt and Xn
t are the solutions of Eqs. (1.1) and (1.15), respectively.

The main proof of this paper is an operation of pure algebra, that does not appeal to Itô’s

formula. The reason is that the coefficients of stochastic Volterra equations contain the time t.

This point is different from most existing results. The proof of Theorem 1.1 requires a few

propositions and lemmas which we give below. The proof is involved and delicate. We need to

complete the squares in last stage of the proof. Therefore we have to be very careful with the

each term in the estimates.

Remark 1.5. Because we assume that gi(r, s) ≤ gi(t, s), i = 2, 3, 4, and hj(r, s) ≤ hj(t, s),

j = 1, 2, hold for any 0 ≤ s ≤ r ≤ t ≤ 1 in (H1) and (H3), we can get (1.17). If we remove

these, it is easy to obtain the following result:

lim
n→∞

E
∣

∣Xn
t −Xt

∣

∣

2
= 0, ∀t ∈ [0, 1],

which is weaker than (1.17). This point can be seen by using Gronwall’s inequality for (3.29).

Although the Wong-Zakai approximation for SDEs has been proposed and studied for more

than fifty years, the boundedness of the derivative of diffusion coefficient with respect to its time

variable and the boundedness of the derivative of diffusion coefficient with respect to its space

variable have been always restrictive assumptions to derive the strong convergence of Wong-

Zakai approximations for SDEs. The boundedness assumption in this article is relaxed to two

integrable functions and the strong convergence of Wong-Zakai approximations for stochastic

Volterra equations without the boundedness of the derivatives of diffusion coefficient with re-

spect to its time and space variables is proposed. In other words, the first contribution of this

paper is to prove the strong convergence of Wong-Zakai approximations for stochastic Volterra

equations without the boundedness of the derivatives of diffusion coefficient with respect to its

time and space variables, and may apply it with a class of SDEs with the kernel of fractional
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Brownian motion with Hurst parameter H ∈ (1/2, 1) and subfractional Brownian motion with

Hurst parameter H ∈ (1/2, 1).

On the other hand, if the stochastic integral with respect to Brownian motion in Wong-Zakai

approximations theory of the classical SDEs is an Itô integral, then the corresponding corrected

term is σ′σ/2 which is well known. However, although the stochastic integral with respect to

Brownian motion in the stochastic Volterra equation is an Itô integral, its corrected term is

unclear, which is different from the classical case. The correction term in this paper is zero,

which is very important and nontrivial to prove the result of this paper. If the correction term

in this paper is nonzero, then the nonzero correction term can not be offset by other terms,

or treated by classical methods or coped by estimating other terms approaches. Moreover,

we can not get the Wong-Zakai approximation of stochastic Volterra equation. This is why

the correction term in this article is zero. This point is essentially different from the result of

existence and is seen by two examples below. As far as we know, it seems that this is the main

reason why the problem of the Wong-Zakai approximation of stochastic Volterra equation has

not been solved so far. This is the second contribution of this paper. In Sections 4 and 5 of

this paper, two examples are given to show that the hypothesises can be verified.

Remark 1.6. The correction term σ′σ/2 is zero in this paper. It should be pointed out that

in the particular case of classical Itô SDEs

Xt = ξ +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

this is a consequence of (1.14) from (H4).

Note that Lp (p ≥ 2) convergence rate for Wong-Zakai approximations of other types SDEs

(for example, Reflection SDEs, BSDEs) can be presented. The reason is that their proofs rely

on the classical stochastic analysis tools, for example, Itô’s formula. However, we can not use

this in the paper. To get the convergence, we employ a dense result. It is the fact that we

only know the convergence of the dense result, but not the convergence rate. This is a very

important reason why we can not give the convergence rate in this paper. In addition, since

some estimates are not available (e.g. (2.2) for Lp (p > 2) case), we can not prove Lp (p > 2)

convergence in this paper. It seems that this paper can only get an L2 convergence, but not

propose a convergence rate.

Finally we hope to apply our results to obtain the support theorem of stochastic Volterra

equations and also to get Wong-Zakai approximations and support theorems of stochastic

Volterra equations in Banach space. We like to leave this study in a forthcoming paper given

the length 20 of the current article. For the sake of simplicity, we assume d = m = 1 in the

proof. The multidimensional proof process is similar to this.

This paper is organized as follows. In Section 2, we prepare some necessary propositions

and lemmas for later use. In Section 3, we prove our main result. In Sections 4 and 5, we apply

our result to SDEs with the kernels of fractional Brownian motion with Hurst parameter H ∈
(1/2, 1), and subfractional Brownian motion with Hurst parameter H ∈ (1/2, 1), respectively.

In Appendixes A and B, (H1)-(H5) are verified for the kernel associated to fractional Brownian

motion and subfractional Brownian motion, separately.

2. Preliminaries

In this section, we will present some propositions and lemmas.
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Proposition 2.1. Under (H1)-(H3), Eq. (1.1) has a unique strong solution {Xt}0≤t≤1 such

that

sup
0≤t≤1

E|Xt|p < ∞, (2.1)

where p ≥ 2.

Proof. Similar to the proof of Wang [42], it is easy to derive that there exists a unique strong

solution Xt to Eq. (1.1). Set

τk1
:= inf{t > 0, |Xt| > k1}, k1 ∈ N.

If this inequality (2.1) holds for the process Xτk1∧t, let k1 → ∞, by Fatou’s lemma it follows

that this inequality (2.1) also holds for Xt. So we might as well suppose that Xt is bounded.

Moreover, by (1.3), (1.4), Hölder’s inequality, Young’s inequality and moment inequality [28,

Theorem 7.1], we have for any u ∈ [0, 1],

E|Xu|p ≤ C + C sup
0≤t≤u

E

[
∫ t

0

|b(t, s,Xs)|ds+
∣

∣

∣

∣

∫ t

0

σ(t, s,Xs)dWs

∣

∣

∣

∣

]p

≤ C + C sup
0≤t≤u

E

[
∫ t

0

|b(t, s,Xs)|ds
]p

+ C sup
0≤t≤u

E

[∣

∣

∣

∣

∫ t

0

σ(t, s,Xs)dWs

∣

∣

∣

∣

]p

≤ C + C sup
0≤t≤u

E

[
∫ t

0

|b(t, s,Xs)|pds
]

+ C sup
0≤t≤u

E

[
∫ t

0

|σ(t, s,Xs)|pds
]

≤ C + C sup
0≤t≤u

∫ t

0

[

gp2(t, s) + gp3(t, s)
]

E
(

1 + |Xs|pλ1 + |Xs|pλ2
)

ds

≤ C + C

∫ u

0

[

gp2(u, s) + gp3(u, s)
](

1 + E|Xs|p
)

ds.

Put

f(u) := E|Xu|p.

Then

f(u) ≤ C + C

∫ u

0

[

gp2(u, s) + gp3(u, s)
]

f(s)ds,

which, by Gronwall’s inequality (cf. [16, Theorem 16]), means that (2.1) holds. �

The following proposition shows that the Wong-Zakai approximations are well defined.

Proposition 2.2. Under the assumptions (H1)-(H5), for each n ∈ N the Eq. (1.15) has a

unique solution {Xn
t }0≤t≤1 such that

sup
n∈N

sup
0≤t≤1

E
∣

∣Xn
t

∣

∣

2
< ∞. (2.2)

Proof. The proof of existence and uniqueness can be established by the standard Picard

approximations (see [42] for the stochastic case). Set

τk2
:= inf

{

t > 0,
∣

∣Xn
t

∣

∣ > k2
}

, k2 ∈ N.

If this inequality (2.2) holds for the process Xn
τk2∧t, let k2 → ∞, by Fatou’s lemma it derives

from this inequality (2.2) also holds for Xn
t . So we can suppose that Xn

t is bounded.
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Note that
∫ t

0

σ
(

t, s,Xn
s

)

dWn
s =

∫ tn

0

σ
(

t, s,Xn
s

)

dWn
s +

∫ t

tn

σ
(

t, s,Xn
s

)

dWn
s =: Ln(t) +Mn(t). (2.3)

For Ln(t), by Newton-Leibniz formula, (1.14) and (1.15), we have

Ln(t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

σ
(

t, s,Xn
s

)

ds

= n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

{

σ
(

t, s,Xn
j
n

)

+

∫ s

j
n

σ3

(

t, s,Xn
u

)

×
[
∫ u

0

σ1

(

u, r,Xn
r

)

dWn
r +

∫ u

0

b1
(

u, r,Xn
r

)

dr

]

du

}

ds

=: Ln,1(t) + Ln,2(t) + Ln,3(t), (2.4)

where

Ln,1(t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

σ
(

t, s,Xn
j
n

)

ds,

Ln,2(t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(
∫ u

0

σ1

(

u, r,Xn
r

)

dWn
r

)

duds,

Ln,3(t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(
∫ u

0

b1
(

u, r,Xn
r

)

dr

)

duds.

For Ln,1(t), by the independence of the increments of the Brownian motion, the Cauchy-Schwarz

inequality, Fubini’s theorem and (1.4), we have

E|Ln,1(t)|2 = n2

⌊nt⌋−1
∑

j=0

E

[

W 2(∆n,j)

∣

∣

∣

∣

∫
j+1

n

j
n

σ
(

t, s,Xn
j
n

)

ds

∣

∣

∣

∣

2
]

= n2

⌊nt⌋−1
∑

j=0

EW 2(∆n,j)E

[

∫
j+1

n

j
n

σ
(

t, s,Xn
j
n

)

ds

]2

≤ n

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

∣

∣

∣
σ
(

t, s,Xn
j
n

)∣

∣

∣

2

ds

∫
j+1

n

j
n

1ds

]

=

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

∣

∣

∣
σ
(

t, s,Xn
j
n

)∣

∣

∣

2

ds

]

≤ C

∫ t

0

g23(t, s)E
(

1 +
∣

∣Xn
sn

∣

∣

2λ2
)

ds. (2.5)

Observe that

Ln,2(t) = L
(1)
n,2(t) + L

(2)
n,2(t), (2.6)

where

L
(1)
n,2(t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(

∫
j
n

0

σ1

(

u, r,Xn
r

)

dWn
r

)

duds,
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L
(2)
n,2(t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(

∫ u

j
n

σ1

(

u, r,Xn
r

)

dWn
r

)

duds.

For L
(1)
n,2(t), by the Cauchy-Schwarz inequality, Fubini’s theorem, the property of g1(u, r), the

independence of the increments of the Brownian motion, (1.2) and (1.5), we have

E
∣

∣L
(1)
n,2(t)

∣

∣

2

= n2
E

[

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(
∫

j
n

0

σ1

(

u, r,Xn
r

)

dWn
r

)

duds

]2

≤ n3

⌊nt⌋−1
∑

j=0

E

[

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(
∫

j
n

0

σ1

(

u, r,Xn
r

)

dWn
r

)

duds

]2

≤ Cn3

⌊nt⌋−1
∑

j=0

E

[

W 2(∆n,j)

∣

∣

∣

∣

∫
j+1

n

j
n

∫ s

j
n

g4(t, s)

∣

∣

∣

∣

∫
j
n

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

dr

∣

∣

∣

∣

duds

∣

∣

∣

∣

2
]

= Cn3

⌊nt⌋−1
∑

j=0

EW 2(∆n,j)E

[

∫
j+1

n

j
n

∫ s

j
n

g4(t, s)

∣

∣

∣

∣

∫
j
n

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

dr

∣

∣

∣

∣

duds

]2

≤ Cn2

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

(
∫ s

j
n

g4(t, s)

∣

∣

∣

∣

∫
j
n

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

dr

∣

∣

∣

∣

du

)2

ds

∫
j+1

n

j
n

1ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)

(

∫ s

j
n

∣

∣

∣

∣

∫
j
n

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

dr

∣

∣

∣

∣

2

du

)

ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)

(

∫ s

j
n

E

∣

∣

∣

∣

∫
j
n

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

dr

∣

∣

∣

∣

2

du

)

ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)

(

∫ s

j
n

∫
j
n

0

∫
j
n

0

2
∏

i=1

g1(u, ri)E

(

2
∏

i=1

∣

∣

∣

∣

dWn
ri

dri

∣

∣

∣

∣

)

dr1dr2du

)

ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)

(

∫ s

j
n

∫ 1

0

∫ 1

0

2
∏

i=1

g1(u, ri)

(

E

∣

∣

∣

∣

dWn
ri

dri

∣

∣

∣

∣

2) 1
2

dridu

)

ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)

(

∫ s

j
n

[
∫ 1

0

g1(u, r)

(

E

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

2) 1
2

dr

]2

du

)

ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)

(

∫ s

j
n

sup
0≤r≤1

E

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

2[ ∫ 1

0

g1(u, r)dr

]2

du

)

ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)

(

∫ s

j
n

sup
0≤r≤1

E

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

2

sup
0≤u≤1

[
∫ 1

0

g1(u, r)dr

]2

du

)

ds

]

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

(
∫ s

j
n

g24(t, s)du

)(
∫ s

j
n

ndu

)

ds

]

≤ C sup
0≤t≤1

∫ 1

0

g24(t, s)ds < ∞. (2.7)
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For L
(2)
n,2(t), by (1.2), (1.5), the Cauchy-Schwarz inequality, and property of g1(u, r), it is easy

to derive that

E
∣

∣L
(2)
n,2(t)

∣

∣

2
= n4

E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(
∫ u

j
n

σ1

(

u, r,Xn
r

)

dr

)

duds

]2

≤ Cn4
E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

g4(t, s)

(
∫ u

j
n

g1(u, r)dr

)

duds

]2

≤ Cn5

⌊nt⌋−1
∑

j=0

E

[

W 4(∆n,j)

∣

∣

∣

∣

∫
j+1

n

j
n

∫ s

j
n

g4(t, s)

(
∫ u

j
n

g1(u, r)dr

)

duds

∣

∣

∣

∣

2
]

≤ Cn3

⌊nt⌋−1
∑

j=0

∣

∣

∣

∣

∣

∫
j+1

n

j
n

g4(t, s)

∫ s

j
n

∫ u

j
n

g1(u, r)drduds

∣

∣

∣

∣

∣

2

≤ Cn3

⌊nt⌋−1
∑

j=0

(

1

n

)2
∣

∣

∣

∣

∣

∫
j+1

n

j
n

g4(t, s)ds

∣

∣

∣

∣

∣

2
[

sup
0≤u≤1

∫ 1

0

g1(u, r)dr

]2

≤ C sup
0≤t≤1

∫ 1

0

g24(t, s)ds < ∞. (2.8)

By (2.6)-(2.8), we have

E|Ln,2(t)|2 ≤ C, 0 ≤ t ≤ 1. (2.9)

For Ln,3(t), by (1.2), (1.5) and the Cauchy-Schwarz inequality, we have

E|Ln,3(t)|2 = n2
E

[

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(
∫ u

0

b1
(

u, r,Xn
r

)

dr

)

duds

]2

≤ Cn2
E

[

⌊nt⌋−1
∑

j=0

|W (∆n,j)|
∫

j+1

n

j
n

∫ s

j
n

g4(t, s)

(
∫ u

0

g1(u, r)dr

)

duds

]2

≤ Cn3

⌊nt⌋−1
∑

j=0

E

[

W 2(∆n,j)

∣

∣

∣

∣

∫
j+1

n

j
n

∫ s

j
n

g4(t, s)

(
∫ u

0

g1(u, r)dr

)

duds

∣

∣

∣

∣

2
]

≤ Cn3

⌊nt⌋−1
∑

j=0

1

n3

∣

∣

∣

∣

∣

∫
j+1

n

j
n

g4(t, s)ds

∣

∣

∣

∣

∣

2
[

sup
0≤u≤1

∫ 1

0

g1(u, r)dr

]2

≤ C

n
sup

0≤t≤1

∫ 1

0

g24(t, s)ds ≤
C

n
< ∞. (2.10)

By (2.4), (2.5)-(2.10) and Young’s inequality, we get

E|Ln(t)|2 ≤ C + C

∫ t

0

g23(t, s)E
(

1 +
∣

∣Xn
sn

∣

∣

2λ2
)

ds

≤ C +

∫ t

0

g23(t, s)E
∣

∣Xn
sn

∣

∣

2
ds, 0 ≤ t ≤ 1. (2.11)

For Mn(t), by (1.5), (2.3), Fubini’s theorem, Young’s inequality and the Cauchy-Schwarz in-

equality, we have for any a > 1 and 0 < aλ2 < 1,

E|Mn(t)|2 = E

∣

∣

∣

∣

∫ t

tn

σ
(

t, s,Xn
s

)

dWn
s

∣

∣

∣

∣

2
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= n2
E

∣

∣

∣

∣

∫ t

tn

σ
(

t, s,Xn
s

)

W (∆n,j)ds

∣

∣

∣

∣

2

≤ n2
E

[
∫ t

tn

∣

∣σ
(

t, s,Xn
s

)

W (∆n,j)
∣

∣

2
ds

∫ t

tn

1ds

]

≤ n

∫ t

tn

E
∣

∣σ
(

t, s,Xn
s

)

W (∆n,j)
∣

∣

2
ds

≤ n

∫ t

tn

[

E
∣

∣σ
(

t, s,Xn
s

)∣

∣

2a
]

1
a
[

EW
2a

a−1 (∆n,j)
]

a−1

a

ds

≤ C

∫ t

tn

g23(t, s)
[

E
(

1 +
∣

∣Xn
s

∣

∣

λ2
)2a
]

1
a

ds

≤ C

∫ t

tn

g23(t, s)
[

E
(

1 +
∣

∣Xn
s

∣

∣

2aλ2
)

]
1
a

ds

≤ C

∫ t

tn

g23(t, s)E
(

1 +
∣

∣Xn
s

∣

∣

2)
ds

≤ C sup
0≤t≤1

∫ 1

0

g23(t, s)ds+ C

∫ t

tn

g23(t, s)E
∣

∣Xn
s

∣

∣

2
ds

≤ C + C

∫ t

0

g23(t, s)E
∣

∣Xn
s

∣

∣

2
ds. (2.12)

By (1.3), Fubini’s theorem, Young’s inequality and the Cauchy-Schwarz inequality, we have

E

∣

∣

∣

∣

∫ t

0

b
(

t, s,Xn
s

)

ds

∣

∣

∣

∣

2

≤ C

∫ t

0

g22(t, s)
(

1 + E
∣

∣Xn
s

∣

∣

2λ1
)

ds

≤ C + C

∫ t

0

g22(t, s)E
∣

∣Xn
s

∣

∣

2
ds. (2.13)

Thus, by (1.15), (2.3) and (2.11)-(2.13), we have for any r ∈ [0, 1],

sup
t≤r

E
∣

∣Xn
t

∣

∣

2 ≤ C + C

∫ r

0

[

g22(r, s) + g23(r, s)
]

sup
r≤s

E
∣

∣Xn
r

∣

∣

2
ds. (2.14)

By Gronwall’s inequality (see [16, Theorem 16]) it is easy to see that (2.2) holds. Hence, we

complete the proof. �

Lemma 2.1. Under the assumptions (H1)-(H5), there exist C,α, and β > 0 such that

E

(

sup
0≤s≤1

∣

∣Xn
s −Xn

sn

∣

∣

4
)

≤ C

nα
, n ≥ 1, (2.15)

sup
0≤s≤1

E|Xs −Xsn |4 ≤ C

nβ
, n ≥ 1, (2.16)

where C is independent of n.

Proof. Note that

Xn
s −Xn

sn
=

∫ sn

0

[

b
(

s, r,Xn
r

)

− b
(

sn, r,X
n
r

)]

dr
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+

∫ sn

0

[

σ
(

s, r,Xn
r

)

− σ
(

sn, r,X
n
r

)]

dWn
r

+

∫ s

sn

b
(

s, r,Xn
r

)

dr +

∫ s

sn

σ
(

s, r,Xn
r

)

dWn
r

=: I1(s) + I2(s) + I3(s) + I4(s). (2.17)

For I1(s), by (1.7), (1.10) and the Cauchy-Schwarz inequality, we have

E

(

sup
0≤s≤1

|I1(s)|4
)

≤ CE sup
0≤s≤1

[
∫ sn

0

∣

∣b
(

s, r,Xn
r

)

− b
(

sn, r,X
n
r

)
∣

∣

2
dr

]2

≤ C sup
0≤s≤1

[
∫ sn

0

F 2
1 (s, sn, r)dr

]2

≤ C

n2γ
. (2.18)

For I2(s), we have by (1.8), (1.10) and Hölder’s inequality

E

(

sup
0≤s≤1

|I2(s)|4
)

≤ CE

{

sup
0≤s≤1

[
∫ sn

0

∣

∣σ
(

s, r,Xn
r

)

− σ
(

sn, r,X
n
r

)∣

∣

2
dr

]2 ∫ 1

0

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

4

dr

}

≤ C sup
0≤s≤1

[
∫ sn

0

F2(sn, s, r)dr

]2 ∫ 1

0

E

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

4

dr ≤ C

n2(γ−1)
. (2.19)

For I3(s), by (1.3), (2.2), Young’s inequality and Hölder’s inequality, we have for any q > 1 and

0 < 2λ1q < 1,

E

(

sup
0≤s≤1

|I3(s)|4
)

≤ C

n3
E sup

0≤s≤1

[
∫ s

sn

∣

∣b
(

s, r,Xn
r

)∣

∣

4
dr

]

≤ C

n3
E

[

sup
0≤s≤1

∫ 1

0

g42(s, r)
(

1 +
∣

∣Xn
r

∣

∣

λ1
)4
dr

]

≤ C

n3
sup

0≤s≤1

∫ 1

0

g
4q

q−1

2 (s, r)dr +
C

n3
E

[

sup
0≤s≤1

∫ 1

0

(

1 +
∣

∣Xn
r

∣

∣

λ1
)4q

dr

]

≤ C

n3
+

C

n3
sup

0≤r≤1
E
∣

∣Xn
r

∣

∣

4λ1q

≤ C

n3
+

C

n3
sup

0≤r≤1

(

E
∣

∣Xn
r

∣

∣

4λ1q·
1

2λ1q

)2λ1q

≤ C

n3

[

1 +
(

sup
n∈N

sup
0≤r≤1

E
∣

∣Xn
r

∣

∣

2
)2λ1q

]

≤ C

n3
. (2.20)

As for I4(s), we have by (1.4), (2.2) and Hölder’s inequality for any p1, p2>1 and 0<2λ2p1p2<1,

E

(

sup
0≤s≤1

|I4(s)|4
)

≤ CnE sup
0≤s≤1

[
∫ s

sn

∣

∣σ
(

s, r,Xn
r

)

W (∆n,j)
∣

∣

4
dr

]

≤ nCE

[

W 4(∆n,j) sup
0≤s≤1

∫ 1

0

g43(s, r)
(

1 +
∣

∣Xn
r

∣

∣

λ2
)4
dr

]

≤ Cn
[

EW
4p1

p1−1 (∆n,j)
]

p1−1

p1

[

E sup
0≤s≤1

∫ 1

0

g4p1

3 (s, r)
(

1 +
∣

∣Xn
r

∣

∣

λ2
)4p1

dr

]
1
p1

≤ C

n

[

E sup
0≤s≤1

∫ 1

0

g4p1

3 (s, r)
(

1 +
∣

∣Xn
r

∣

∣

λ2
)4p1

dr

]
1
p1
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≤ C

n

[

sup
0≤s≤1

∫ 1

0

g
4p1p2
p2−1

3 (s, r)dr + E sup
0≤s≤1

∫ 1

0

(

1 +
∣

∣Xn
r

∣

∣

λ2
)4p1p2

dr

]
1
p1

≤ C

n

(

1 +

∫ 1

0

E
∣

∣Xn
r

∣

∣

4λ2p1p2
dr

)
1
p1

≤ C

n

[

1 +

∫ 1

0

(

E
∣

∣Xn
r

∣

∣

4λ2p1p2·
1

2λ2p1p2

)2λ2p1p2

dr

]
1
p1

≤ C

n

[

1 +

∫ 1

0

(

sup
n∈N

sup
0≤r≤1

E
∣

∣Xn
r

∣

∣

2
)2λ2p1p2

dr

]
1
p1

≤ C

n
. (2.21)

By (2.17)-(2.21), we can conclude that (2.15) holds, where α = min{2(γ − 1), 1}.
Next, we turn to prove (2.16). Note that

Xs −Xsn = J1(s) + J2(s) + J3(s) + J4(s), (2.22)

where

J1(s) =

∫ sn

0

[b(s, r,Xr)− b(sn, r,Xr)]dr,

J2(s) =

∫ sn

0

[σ(s, r,Xr)− σ(sn, r,Xr)]dWr ,

J3(s) =

∫ s

sn

b(s, r,Xr)dr,

J4(s) =

∫ s

sn

σ(s, r,Xr)dWr .

For J1(s), by (1.7), (1.10) and the Cauchy-Schwarz inequality, we have

sup
0≤s≤1

E|J1(s)|4 ≤ C sup
0≤s≤1

E

[
∫ sn

0

∣

∣b
(

s, r,Xn
r

)

− b
(

sn, r,X
n
r

)∣

∣

2
dr

]2

≤ C sup
0≤s≤1

[
∫ sn

0

F 2
1 (s, sn, r)dr

]2

≤ C

n2γ
. (2.23)

For J2(s), we have by (1.8), (1.10) and moment inequality [28, Theorem 7.1]

sup
0≤s≤1

E|J2(s)|4 ≤ C sup
0≤s≤1

E

[
∫ sn

0

(

σ(s, r,Xr)− σ(sn, r,Xr)
)2
dr

]2

≤ C sup
0≤s≤1

[
∫ sn

0

F2(s, sn, r)dr

]2

≤ C

n2γ
. (2.24)

For J3(s), by (1.3), (2.1), Fubini’s theorem and Hölder’s inequality we get

sup
0≤s≤1

E|J3(s)|4 ≤ C

n3
sup

0≤s≤1

∫ s

0

[

g42(s, r)E
(

1 + |Xr|λ1
)4
]

dr

≤ C

n3
sup

0≤s≤1

∫ 1

0

[

g42(s, r)E
(

1 + |Xr|4λ1
)

]

dr

≤ C

n3
sup

0≤s≤1

∫ 1

0

[

g42(s, r)
(

1 +
(

E|Xr|4
)λ1
)]

dr ≤ C

n3
. (2.25)
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As for J4(s), we have by (1.5), (2.1), the Cauchy-Schwarz inequality, Young’s inequality, moment

inequality [28, Theorem 7.1] and Fubini’s theorem

sup
0≤s≤1

E|J4(s)|4 ≤ C sup
0≤s≤1

E

∣

∣

∣

∣

∫ s

sn

g23(s, r)
(

1 + |Xr|λ2
)2
dr

∣

∣

∣

∣

2

≤ C

n
sup

0≤s≤1

∫ 1

0

g43(s, r)E
(

1 + |Xr|λ2
)4
dr

≤ C

n
sup

0≤s≤1

∫ 1

0

g43(s, r)E
(

1 + |Xr|4λ2
)

dr

≤ C

n
sup

0≤s≤1

∫ 1

0

g43(s, r)
(

1 + E|Xr|4λ2·
1
λ2

)

dr

≤ C

n
sup

0≤s≤1

∫ 1

0

g43(s, r)
(

1 + E|Xr|4
)

dr ≤ C

n
. (2.26)

By (2.22)-(2.26), we obtain (2.16), where β = 1. Hence, we finish the proof of Lemma 2.1. �

The following density result is also needed in the proof.

Lemma 2.2. Under the assumption (H1), we have

lim
n→∞

sup
0≤t≤1

E

[

∫ 1

0

∣

∣

∣

∣

n

∫ s+n

sn

σ
(

t, r,Xn
sn

)

dr − σ
(

t, s,Xn
sn

)

∣

∣

∣

∣

2

ds

]

= 0. (2.27)

Proof. By the similar to the proof of [33, Lemma 6.1.3, Proposition 6.1.2], and [26, Case 3,

Page 47], and using Lebesgue dominated convergence theorem it is easy to derive that (2.27)

holds. �

3. Wong-Zakai Approximations

Proof of Theorem 1.1. By Eqs. (1.1) and (1.15), we have

Xn
t −Xt = In(t) + Jn(t) + Kn(t), (3.1)

where

In(t) =

∫ t

0

[

b
(

t, s,Xn
s

)

− b(t, s,Xs)
]

ds,

Jn(t) = Ln(t)−
∫ tn

0

σ(t, s,Xs)dWs,

Kn(t) = Mn(t)−
∫ t

tn

σ(t, s,Xs)dWs.

For In(t), by the Cauchy-Schwarz inequality and (1.11), it is easy to see that

E|In(t)|2 ≤ C

∫ t

0

h2
1(t, s)E|Xn

s −Xs|2ds. (3.2)

For Kn(t), by the Cauchy-Schwarz inequality, Young’s inequality, Fubini’s theorem, (1.4), (2.1)

and (2.2), we have

E|Kn(t)|2 ≤ C

[

E

∣

∣

∣

∣

∫ t

tn

σ
(

t, s,Xn
s

)

nW (∆n,j)ds

∣

∣

∣

∣

2

+ E

∫ t

tn

|σ(t, s,Xs)|2ds
]
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≤ C

{

n

∫ t

tn

g23(t, s)E
[

W 2(∆n,j)
(

1 +
∣

∣Xn
s

∣

∣

λ2
)2
]

ds+

∫ t

tn

g23(t, s)E
(

1 + |Xs|λ2
)2
ds

}

≤ C

{

n

∫ t

tn

g23(t, s)
[

EW 4(∆n,j)
]

1
2

[

E
(

1+
∣

∣Xn
s

∣

∣

λ2
)4
]

1
2

ds+

∫ t

tn

g23(t, s)E
(

1+|Xs|2λ2
)

ds

}

≤ C

{
∫ t

tn

g23(t, s)
[

E
(

1 +
∣

∣Xn
s

∣

∣

4λ2
)

]
1
2

ds+

∫ t

tn

g23(t, s)E
(

1 + |Xs|2λ2
)

ds

}

≤ C

{
∫ t

tn

g23(t, s)E
(

1 +
∣

∣Xn
s

∣

∣

2)
ds+

∫ t

tn

g23(t, s)E
(

1 + |Xs|2
)

ds

}

≤ C

[
∫ t

tn

g23(t, s)ds

]

≤ C√
n

[
∫ t

tn

g43(t, s)ds

]
1
2

≤ C√
n

[

sup
0≤t≤1

∫ 1

0

g43(t, s)ds

]
1
2

≤ C√
n
. (3.3)

Now let us deal with Jn(t). Taking into account (2.4) we have

Jn(t) = Jn,1(t) + Jn,2(t) + Ln,3(t), (3.4)

where

Jn,1(t) = Ln,1(t)−
∫ tn

0

σ(t, s,Xs)dWs,

Jn,2(t) = Ln,2(t).

Note that Jn,1(t) can be decomposed as

Jn,1(t) =

∫ tn

0

[

n

∫ s+n

sn

σ
(

t, r,Xn
sn

)

dr − σ(t, s,Xs)

]

dWs

=

∫ tn

0

[

n

∫ s+n

sn

σ
(

t, r,Xn
sn

)

dr − σ
(

t, s,Xn
sn

)

]

dWs

+

∫ tn

0

[

σ
(

t, s,Xn
sn

)

− σ
(

t, s,Xn
s

)]

dWs

+

∫ tn

0

[

σ
(

t, s,Xn
s

)

− σ(t, s,Xs)
]

dWs.

By (1.5) and Itô-isometry [28, Theorem 5.21], we have

E|Jn,1(t)|2 ≤ CE

[

∫ tn

0

∣

∣

∣

∣

n

∫ s+n

sn

σ
(

t, r,Xn
sn

)

dr − σ
(

t, s,Xn
sn

)

∣

∣

∣

∣

2

ds

]

+ C

∫ tn

0

g24(t, s)E
∣

∣Xn
sn

−Xn
s

∣

∣

2
ds+ C

∫ tn

0

g24(t, s)E
∣

∣Xn
s −Xs

∣

∣

2
ds. (3.5)

Moreover, by (2.15), (2.16) and (2.27), we get

E|Jn,1(t)|2 ≤ C

∫ t

0

g24(t, s)E
∣

∣Xn
s −Xs

∣

∣

2
ds+ δn, δn → 0. (3.6)

The term Jn,2(t) can be written as

Jn,2(t) =

7
∑

j=1

J
(j)
n,2(t), (3.7)
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where

J
(1)
n,2 (t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
j
n

)

(

∫
j
n

0

σ1

(

u, r,Xn
r

)

dWn
r

)

duds,

J
(2)
n,2 (t) = n

⌊nt⌋−1
∑

j=0

W (∆n,j)

∫
j+1

n

j
n

∫ s

j
n

[

σ3

(

t, s,Xn
u

)

−σ3

(

t, s,Xn
j
n

)]

(

∫
j
n

0

σ1

(

u, r,Xn
r

)

dWn
r

)

duds,

J
(3)
n,2 (t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,Xn
u

)

(

∫ u

j
n

(

σ1

(

u, r,Xn
r

)

−σ1(u, r,Xr)
)

dr

)

duds,

J
(4)
n,2 (t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

(

σ3

(

t, s,Xn
u

)

− σ3(t, s,Xu)
)

∫ u

j
n

σ1(u, r,Xr)drduds,

J
(5)
n,2 (t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,X j
n

)

∫ u

j
n

σ1

(

u, r,X j
n

)

drduds,

J
(6)
n,2 (t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,X j
n

)

∫ u

j
n

[

σ1(u, r,Xr)− σ1

(

u, r,X j
n

)]

drduds,

J
(7)
n,2 (t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

[

σ3(t, s,Xu)− σ3

(

t, s,X j
n

)]

∫ u

j
n

σ1(u, r,Xr)drduds.

For J
(1)
n,2 (t), by the independence of the increments of the Brownian motion, the Cauchy-

Schwarz inequality, Fubini’s theorem, (1.2) and (1.5), we have

E|J (1)
n,2 (t)|2 = n2

⌊nt⌋−1
∑

j=0

E

∣

∣

∣

∣

∣

W (∆n,j)

∫
j+1

n

j
n

σ3

(

t, s,Xn
j
n

)

∫ s

j
n

(
∫

j
n

0

σ1

(

u, r,Xn
r

)

dWn
r

)

duds

∣

∣

∣

∣

∣

2

≤ Cn2

⌊nt⌋−1
∑

j=0

EW 2(∆n,j)E

[

∫
j+1

n

j
n

g4(t, s)

∫ s

j
n

∫
j
n

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

drduds

]2

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

g24(t, s)ds

]

∫
j+1

n

j
n

(

s− j

n

)
∫ s

j
n

E

(
∫ 1

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

dr

)2

duds

= Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

g24(t, s)ds

]

∫
j+1

n

j
n

(

s− j

n

)

×
∫ s

j
n

∫ 1

0

∫ 1

0

g1(u, r1)g1(u, r2)E

(
∣

∣

∣

∣

dWn
r1

dr1

∣

∣

∣

∣

∣

∣

∣

∣

dWn
r1

dr1

∣

∣

∣

∣

)

dr1dr2duds

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

g24(t, s)ds

]

∫
j+1

n

j
n

(

s− j

n

)
∫ s

j
n

∫ 1

0

∫ 1

0

g1(u, r1)g1(u, r2)

×
(

E

∣

∣

∣

∣

dWn
r1

dr1

∣

∣

∣

∣

2
)

1
2
(

E

∣

∣

∣

∣

dWn
r1

dr1

∣

∣

∣

∣

2
)

1
2

dr1dr2duds

≤ Cn

⌊nt⌋−1
∑

j=0

[

∫
j+1

n

j
n

g24(t, s)ds

]

sup
0≤r≤1

E

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

2 ∫ j+1

n

j
n

(

s− j

n

)2

ds
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≤ C

n

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

g24(t, s)ds ≤ C

n
sup

0≤u≤1

∫ 1

0

g24(u, s)ds ≤
C

n
. (3.8)

For J
(2)
n,2 (t), we obtain by the Cauchy-Schwarz inequality, Fubini’s theorem, (1.2), (1.12),

(2.15), [30, Page 203] (or [11, Eq. (12)]),

E
∣

∣J
(2)
n,2 (t)

∣

∣

2

≤ Cn3

⌊nt⌋−1
∑

j=0

E

[

|W (∆n,j)|
∫

j+1

n

j
n

∫ s

j
n

h2(t, s)
∣

∣

∣
Xn

u−Xn
j
n

∣

∣

∣

∫
j
n

0

g1(u, r)

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

drduds

]2

≤ Cn3

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

∫ s

j
n

h2(t, s)
∣

∣

∣
Xn

u −Xn
j
n

∣

∣

∣
|W (∆n,j)| sup

0≤r≤1

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

∫
j
n

0

g1(u, r)drduds

]2

≤ Cn3

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

∫ s

j
n

h2(t, s)
∣

∣

∣
Xn

u−Xn
j
n

∣

∣

∣
|W (∆n,j)| sup

0≤r≤1

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

sup
0≤u≤1

∫ 1

0

g1(u, r)drduds

]2

≤ Cn3

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

∫ s

j
n

h2(t, s) sup
j
n
≤u≤s

∣

∣

∣
Xn

u −Xn
j
n

∣

∣

∣
|W (∆n,j)| sup

0≤r≤1

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

duds

]2

≤ Cn

⌊nt⌋−1
∑

j=0

E

[

∫
j+1

n

j
n

h2(t, s) sup
j
n
≤u≤s

∣

∣

∣
Xn

u −Xn
j
n

∣

∣

∣
|W (∆n,j)| sup

0≤r≤1

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

ds

]2

≤ C

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

h2
2(t, s)E

[

sup
j
n
≤u≤s

∣

∣

∣
Xn

u −Xn
j
n

∣

∣

∣
|W (∆n,j)| sup

0≤r≤1

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

]2

ds

≤ C

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

h2
2(t, s)

[

E sup
j
n
≤u≤s

(

Xn
u −Xn

j
n

)4
]

1
2
[

E

(

|W (∆n,j)| sup
0≤r≤1

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

)4] 1
2

ds

≤ C

n
α
2

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

h2
2(t, s)

[

EW 8(∆n,j)E

(

sup
0≤r≤1

∣

∣

∣

∣

dWn
r

dr

∣

∣

∣

∣

8)] 1
4

ds

≤ C(1 + logn)

n
α
2

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

h2
2(t, s)ds ≤ C(1 + logn)

n
α
2

sup
0≤t≤1

∫ 1

0

h2
2(t, s)ds

≤ C(1 + logn)

n
α
2

. (3.9)

By (1.2) and (1.5), we have

|J (3)
n,2 (t)| ≤ Cn2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

g4(t, s)

∫ s

j
n

∫ u

j
n

g1(u, r)
∣

∣Xn
r −Xr

∣

∣drduds

≤ J
(3)
n,21(t) + J

(3)
n,22(t) + J

(3)
n,23(t), (3.10)

where

J
(3)
n,21(t) = Cn2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

g4(t, s)ds

∫ s

j
n

∫ u

j
n

g1(u, r)
∣

∣

∣
Xn

r −Xn
j
n

∣

∣

∣
drdu,



Wong-Zakai Approximations for Stochastic Volterra Equations 17

J
(3)
n,22(t) = Cn2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

g4(t, s)ds

∫ s

j
n

∫ u

j
n

g1(u, r)
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣
drdu,

J
(3)
n,23(t) = Cn2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

g4(t, s)ds

∫ s

j
n

∫ u

j
n

g1(u, r)
∣

∣

∣
X j

n
−Xr

∣

∣

∣
drdu.

For J
(3)
n,21(t), by (2.15), [3, Example 5.3] and the Cauchy-Schwarz inequality, we have

E
∣

∣J
(3)
n,21(t)

∣

∣

2
= Cn4

E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

g4(t, s)ds

∫ s

j
n

∫ u

j
n

g1(u, r)
∣

∣

∣
Xn

r −Xn
j
n

∣

∣

∣
drdu

]2

≤ Cn4
E

[

sup
j

W 4(∆n,j) sup
0≤r≤1

∣

∣Xn
r −Xn

rn

∣

∣

2
]

×
[

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

g4(t, s)

∫ s

j
n

∫ u

j
n

g1(u, r)drduds

]2

≤ Cn4
[

E sup
j

W 8(∆n,j)
]

1
2

E

[

sup
0≤r≤1

∣

∣Xn
r −Xn

rn

∣

∣

4
]

1
2

×
[

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

g4(t, s)

∫ s

j
n

(

sup
0≤u≤1

∫ 1

0

g1(u, r)dr

)

duds

]2

≤ C[1 + (logn)2]

n
α
2

sup
0≤t≤1

(

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
2n

g4(t, s)ds

)2

≤ C[1 + (logn)2]

n
α
2

(

sup
0≤t≤1

∫ 1

0

g24(t, s)ds

)

≤ C[1 + (logn)2]

n
α
2

. (3.11)

Similarly for J
(3)
n,23(t), we have

E
∣

∣J
(3)
n,23(t)

∣

∣

2 ≤ C[1 + (logn)2]

n
β
2

(

sup
0≤t≤1

∫ 1

0

g24(t, s)ds

)

≤ C[1 + (logn)2]

n
β
2

. (3.12)

For J
(3)
n,22(t), by the independence of the increments of the Brownian motion, the Cauchy-

Schwarz inequality, Fubini’s theorem and Lemma 2.1, we have

E
∣

∣J
(3)
n,22(t)

∣

∣

2
= Cn4

E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

g4(t, s)ds

∫ s

j
n

∫ u

j
n

g1(u, r)
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣
drdu

]2

≤ Cn4
E

[

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

W 2(∆n,j)
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣
g4(t, s)ds

∫ s

j
n

(

sup
0≤u≤1

∫ 1

0

g1(u, r)dr

)

du

]2

≤ Cn2
E

[

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

W 2(∆n,j)
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣
g4(t, s)ds

]2

≤ Cn2
E

[
∫ t

0

W 2(∆n,⌊ns⌋)
∣

∣Xn
sn

−Xsn

∣

∣g4(t, s)ds

]2

≤ Cn2
E

∫ t

0

W 4(∆n,⌊ns⌋)
∣

∣Xn
sn

−Xsn

∣

∣

2
g24(t, s)ds
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≤ Cn2

∫ t

0

EW 4(∆n,⌊ns⌋)E
∣

∣Xn
sn

−Xsn

∣

∣

2
g24(t, s)ds

≤ C

∫ t

0

E
∣

∣Xn
sn

−Xsn

∣

∣

2
g24(t, s)ds

≤ C

∫ t

0

E
∣

∣Xn
s −Xs

∣

∣

2
g24(t, s)ds+ C

∫ t

0

E
∣

∣Xn
s −Xn

sn

∣

∣

2
g24(t, s)ds

+ C

∫ t

0

E|Xs −Xsn |2g24(t, s)ds

≤ C

∫ t

0

E
∣

∣Xn
s −Xs

∣

∣

2
g24(t, s)ds+

C

n
α
2

+
C

n
β
2

≤ C

∫ t

0

E
∣

∣Xn
s −Xs

∣

∣

2
g24(t, s)ds+ δn, δn −→ 0. (3.13)

By (3.10)-(3.13), we find that

E
∣

∣J
(3)
n,2 (t)

∣

∣

2 ≤ C

∫ t

0

E

[

∣

∣Xn
s −Xs

∣

∣

2
]

g24(t, s)ds+ δn, δn −→ 0. (3.14)

For J
(4)
n,2 (t), we can write

∣

∣J
(4)
n,2 (t)

∣

∣ ≤ n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

∣

∣σ3

(

t, s,Xn
u

)

− σ3(t, s,Xu)
∣

∣

∫ u

j
n

|σ1(u, r,Xr)|drduds

≤ J
(4)
n,21(t) + J

(4)
n,22(t) + J

(4)
n,23(t), (3.15)

where

J
(4)
n,21(t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

∣

∣

∣
σ3

(

t, s,Xn
u

)

− σ3

(

t, s,Xn
j
n

)∣

∣

∣

∫ u

j
n

|σ1(u, r,Xr)|drduds,

J
(4)
n,22(t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

∣

∣

∣
σ3

(

t, s,Xn
j
n

)

− σ3

(

t, s,X j
n

)∣

∣

∣

∫ u

j
n

|σ1(u, r,Xr)|drduds,

J
(4)
n,23(t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

∣

∣

∣
σ3

(

t, s,X j
n

)

− σ3(t, s,Xu)
∣

∣

∣

∫ u

j
n

|σ1(u, r,Xr)|drduds.

For J
(4)
n,21(t), by (1.2), (1.12), (2.15), [3, Example 5.3], Fubini’s theorem and the Cauchy-

Schwarz inequality, we have

E
∣

∣J
(4)
n,21(t)

∣

∣

2 ≤ Cn4
E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

h2(t, s)
∣

∣

∣
Xn

u −Xn
j
n

∣

∣

∣

∫ u

j
n

g1(u, r)drduds

]2

≤ Cn4
E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j) sup
0≤r≤1

∣

∣Xn
r −Xn

rn

∣

∣

∫
j+1

n

j
n

∫ s

j
n

h2(t, s)

(

sup
0≤u≤1

∫ 1

0

g1(u, r)dr

)

duds

]2

≤ Cn2
E

[

⌊nt⌋−1
∑

j=0

sup
j

W 2(∆n,j) sup
0≤r≤1

∣

∣Xn
r −Xn

rn

∣

∣

∫
j+1

n

j
n

h2(t, s)ds

]2
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≤ Cn2
E

[

sup
j

W 2(∆n,j) sup
0≤r≤1

∣

∣Xn
r −Xn

rn

∣

∣

⌊nt⌋−1
∑

j=0

(
∫

j+1

n

j
n

h2(t, s)ds

)

]2

≤ Cn2
E

[

sup
j

W 8(∆n,j)
]

1
2

E

[

sup
0≤r≤1

∣

∣Xn
r −Xn

rn

∣

∣

4
]

1
2

[

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

h2(t, s)ds

]2

≤ C[1 + (log n)2]

n
α
2

[

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

h2(t, s)ds

]2

≤ C[1 + (log n)2]

n
α
2

sup
0≤t≤1

∫ 1

0

h2
2(t, s)ds ≤

C[1 + (log n)2]

n
α
2

. (3.16)

Similarly,

J
(4)
n,23(t) ≤

C[1 + (logn)2]

n
β
2

. (3.17)

For J
(4)
n,22(t), by Fubini’s theorem, the Cauchy-Schwarz inequality, (1.12), (2.15) and (2.16),

we have

E
∣

∣J
(4)
n,22(t)

∣

∣

2 ≤ Cn4
E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

h2(t, s)
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣

(

sup
0≤u≤1

∫ 1

0

g1(u, r)dr

)

duds

]2

≤ Cn2
E

[

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

h2(t, s)
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣
ds

]2

≤ Cn3

⌊nt⌋−1
∑

j=0

E

[

W 4(∆n,j)
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣

2
]

[

∫
j+1

n

j
n

h2(t, s)ds

]2

= Cn3

⌊nt⌋−1
∑

j=0

EW 4(∆n,j)E
∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣

2
[

∫
j+1

n

j
n

h2(t, s)ds

]2

≤ C

⌊nt⌋−1
∑

j=0

∫
j+1

n

j
n

h2
2(t, s)E

∣

∣

∣
Xn

j
n

−X j
n

∣

∣

∣

2

ds

≤ C

∫ t

0

E
∣

∣Xn
sn

−Xsn

∣

∣

2
h2
2(t, s)ds

≤ C

∫ t

0

E
∣

∣Xn
s −Xs

∣

∣

2
h2
2(t, s)ds+ C

∫ t

0

E
∣

∣Xn
s −Xn

sn

∣

∣

2
h2
2(t, s)ds

+ C

∫ t

0

E
∣

∣Xs −Xsn

∣

∣

2
h2
2(t, s)ds

≤ C

∫ t

0

E
∣

∣Xn
s −Xs

∣

∣

2
h2
2(t, s)ds+ δn, δn −→ 0. (3.18)

By (3.15)-(3.18), we have

E
∣

∣J
(4)
n,2 (t)

∣

∣ ≤ C

∫ t

0

E
∣

∣Xn
s −Xs

∣

∣

2
h2
2(t, s)ds+ δn, δn −→ 0. (3.19)

Likewise, we have

E
∣

∣J
(i)
n,2

∣

∣

2 ≤ C

∫ t

0

E
∣

∣Xn
s −Xs

∣

∣

2
h2
2(t, s)ds+ δn, i = 6, 7. (3.20)
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Before dealing with J
(5)
n,2 (t), let us give some prior estimates. For all s ∈ [0, 1] and x ∈ R

d,

by (1.14) we have σ1(s, s, x) = 0. Moreover, by (1.6) we have σ1(u, s, x)≥σ1(u, u, x) = 0 for

0 ≤ s ≤ u ≤ 1 and x ∈ R
d. Thus, σ(u, s, x) is a monotonically increasing function with respect

to the first variable u for 0 ≤ s ≤ u ≤ 1 and x ∈ R
d. By (1.14), we have

n

∫ s

sn

σ(sn, r,Xsn)dr ≤ n

∫ s

sn

σ(r, r,Xsn)dr ≤ 0, (3.21)

for any s ∈ [0, 1].

For any s ∈ [0, 1], by (1.6) we have

(ns− ⌊ns⌋)
(
∫ s

0

[

σ1

(

sn + θ(s− sn), r,Xsn

)

− σ1(s, r,Xsn)
]

dr

)

≤ 0, (3.22)

where θ ∈ (0, 1). Note that

n

(
∫ s

0

σ(s, r,Xsn)dr −
∫ sn

0

σ(sn, r,Xsn)dr

)

− (ns− ⌊ns⌋)
∫ s

0

σ1(s, r,Xsn)dr

= n

∫ s

sn

σ(sn, r,Xsn)dr + n

(
∫ s

0

[σ(s, r,Xsn)− σ(sn, r,Xsn)]dr

)

− (ns− ⌊ns⌋)
∫ s

0

σ1(s, r,Xsn)dr

= n

∫ s

sn

σ(sn, r,Xsn)dr+(ns−⌊ns⌋)
(
∫ s

0

[

σ1

(

sn+θ(s−sn), r,Xsn

)

−σ1(s, r,Xsn)
]

dr

)

. (3.23)

Squaring both sides of (3.23) and using (1.16), (3.21), (3.22), we have

∣

∣

∣

∣

n

∫ s

sn

σ(sn, r,Xsn)dr

∣

∣

∣

∣

2

≤
∣

∣

∣

∣

n

(
∫ s

0

σ(s, r,Xsn)dr −
∫ sn

0

σ(sn, r,Xsn)dr

)

−(ns−⌊ns⌋)
∫ s

0

σ1(s, r,Xsn)dr

∣

∣

∣

∣

2

≤ C

nς1
. (3.24)

Next, we write the term J
(5)
n,2 (t) in the form

J
(5)
n,2 (t) = n2

⌊nt⌋−1
∑

j=0

W 2(∆n,j)

∫
j+1

n

j
n

∫ s

j
n

σ3

(

t, s,X j
n

)

∫ u

j
n

σ1

(

u, r,X j
n

)

drduds

=

∫ tn

0

n2W 2(∆n,⌊ns⌋)

∫ s

sn

σ3(t, s,Xsn)

∫ u

sn

σ1(u, r,Xsn)drduds

=

∫ tn

0

n2W 2(∆n,⌊ns⌋)

∫ s

sn

σ(s, r,Xsn)drσ3(t, s,Xsn)ds

=: On,1 + On,2,

where

On,1(t) =

∫ tn

0

n2W 2(∆n,⌊ns⌋)

∫ s

sn

σ(sn, r,Xsn)drσ3(t, s,Xsn)ds,

On,2(t) =

∫ tn

0

n2W 2(∆n,⌊ns⌋)

∫ s

sn

σ(s, r,Xsn)− σ(sn, r,Xsn)drσ3(t, s,Xsn)ds.
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For On,1(t), by (1.5), (3.24), the independence of the increments of the Brownian motion,

Fubini’s theorem and the Cauchy-Schwarz inequality, we have

E|On,1(t)|2 = E

[
∫ tn

0

n2W 2(∆n,⌊ns⌋)

∫ s

sn

σ(sn, r,Xsn)drσ3(t, s,Xsn)ds

]2

≤ E

[
∫ tn

0

n2W 2(∆n,⌊ns⌋)

∣

∣

∣

∣

∫ s

sn

σ(sn, r,Xsn)dr

∣

∣

∣

∣

|σ3(t, s,Xsn)|ds
]2

≤ CE

[
∫ tn

0

n2W 2(∆n,⌊ns⌋)

∣

∣

∣

∣

∫ s

sn

σ(sn, r,Xsn)dr

∣

∣

∣

∣

g4(t, s)ds

]2

≤ C

∫ tn

0

n4
EW 4(∆n,⌊ns⌋)E

∣

∣

∣

∣

∫ s

sn

σ(sn, r,Xsn)dr

∣

∣

∣

∣

2

g24(t, s)ds

= C

∫ tn

0

E

∣

∣

∣

∣

n

∫ s

sn

σ(sn, r,Xsng)dr

∣

∣

∣

∣

2

g24(t, s)ds

≤ C

nς1

∫ tn

0

g24(t, s)ds ≤
C

nς1
sup

0≤t≤1

∫ 1

0

g24(t, s)ds

≤ C

nς1
→ 0 as n → ∞. (3.25)

For On,2(t), by (1.5), (1.10), Fubini’s theorem, the Cauchy-Schwarz inequality and dominated

convergence theorem, we have

E|On,2(t)|2 = E

[
∫ tn

0

n2W 2(∆n,⌊ns⌋)

∫ s

sn

σ(s, r,Xsn)− σ(sn, r,Xsn)drσ3(t, s,Xsn)ds

]2

≤ E

[
∫ tn

0

n2W 2(∆n,⌊ns⌋)

∣

∣

∣

∣

∫ s

sn

σ(s, r,Xsn)− σ(sn, r,Xsn)dr

∣

∣

∣

∣

|σ3(t, s,Xsn)|ds
]2

≤ CE

[
∫ tn

0

n2W 2(∆n,⌊ns⌋)

∣

∣

∣

∣

∫ s

sn

σ(s, r,Xsn)− σ(sn, r,Xsn)dr

∣

∣

∣

∣

g4(t, s)ds

]2

≤ CE

[
∫ tn

0

n4(s− sn)W
4(∆n,⌊ns⌋)

∫ s

sn

|σ(s, r,Xsn)− σ(sn, r,Xsn)|2drg24(t, s)ds
]

≤ CE

[
∫ tn

0

n3W 4(∆n,⌊ns⌋)

∫ s

sn

F2(s, sn, r)drg
2
4(t, s)ds

]

≤ C

∫ tn

0

n3
EW 4(∆n,⌊ns⌋)

∫ s

0

F2(s, sn, r)drg
2
4(t, s)ds

≤ C

nλ−1

∫ tn

0

g24(t, s)ds ≤ C

nλ−1
sup

0≤t≤1

∫ 1

0

g24(t, s)ds → 0 as n → ∞. (3.26)

From (3.25)-(3.26) we obtain

E
∣

∣J
(5)
n,2 (t)

∣

∣

2 ≤ δn, δn → 0. (3.27)

Now, utilizing (3.7)-(3.20) and (3.27) we have

E
∣

∣Jn,2(t)
∣

∣

2 ≤ δn + C

∫ t

0

[

h2
2(t, s) + g24(t, s)

]

E
∣

∣Xn
s −Xs

∣

∣

2
ds. (3.28)

Finally, by (2.10), (3.1)-(3.6) and (3.28), we have for any u ∈ [0, 1],

sup
t≤u

E|Xn
t −Xt|2 ≤ δn + C

∫ u

0

[

h2
1(u, s) + h2

2(u, s) + g24(u, s)
]

sup
r≤s

E|Xn
r −Xr|2ds, (3.29)
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where δn → 0. By (3.29) and Gronwall’s inequality (see [16, Theorem 16]) it follows that

sup
0≤t≤1

E
∣

∣Xn
t −Xt

∣

∣

2 → 0. (3.30)

The proof is finished. �

4. Stochastic Volterra Equation with Fractional Brownian Motion

Kernel

For any H ∈ (1/2, 1), we set

KH(t, s) :=











cHs
1
2
−H

∫ t

s

(u − s)H− 3
2uH− 1

2du, 0 < s ≤ t ≤ 1,

0, otherwise,

(4.1)

where

cH =

(

H − 1

2

)

√

2HΓ(3/2−H)

Γ(H + 1/2)Γ(2− 2H)
,

and Γ denotes the usual Gamma function.

The fractional Brownian motion with Hurst parameter H ∈ (1/2, 1) may be defined by

(cf. [14])

Bt :=

∫ t

0

KH(t, s)dWs,

which has the covariance function

RH(s, t) = E(BtBs) =
1

2

(

s2H + t2H − |t− s|2H
)

.

The fractional Brownian motion has the following properties: Long-range dependence, self-

similarity, and Höder continuity. The fractional Brownian motion is neither a semimartingale

nor a Markov process.

We consider the following stochastic Volterra equation with the kernel function KH :

Xt = ξ +

∫ t

0

KH(t, s)b(Xs)ds+

∫ t

0

KH(t, s)σ(Xs)dWs (4.2)

for any t ∈ [0, 1], where ξ ∈ R
d, b : Rd → R

d and σ : Rd → R
d×m are Borel measurable functions.

Eq. (4.2) has been investigated in many fields, including nonlinear filtering [13] using fractional

Brownian motion kernels, pharmacokinetic models [29] (Langevin equation driven by fractional

Brownian motion), fluid turbulence [10], and turbulence modelling in atmospheric winds or

energy prices [4, 12] using Brownian semistationary processes.

Let Xn
t solve the following equation:

Xn
t = ξ +

∫ t

0

KH(t, s)b
(

Xn
s

)

ds+

∫ t

0

KH(t, s)σ
(

Xn
s

)

dWn
s , t ∈ [0, 1]. (4.3)

In the section we introduce the following assumption.

(H6) Assume that b ∈ C1
b (R

d), σ ∈ C2
b (R

d,Rd×m).
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Theorem 4.1. Let H ∈ (1/2, 1). Under the assumption (H6) we have

lim
n→∞

sup
0≤t≤1

E
∣

∣Xn
t −Xt

∣

∣

2
= 0,

where Xt and Xn
t are the solutions of Eqs. (4.2) and (4.3), respectively.

Proof. By Lemma A.1, it is easy to verify that (H1)-(H4) hold for all H ∈ (1/2, 1). By

Lemma A.2, we find that (H5) holds for all H ∈ (1/2, 1). Thus, we derive from Theorem 1.1

that Theorem 4.1 is true. We complete the proof. �

5. Stochastic Volterra Equation with Subfractional Brownian Motion

Kernel

For any H ∈ (1/2, 1), we set

KH(t, s) :=











bHs
3
2
−H

∫ t

s

(u2 − s2)H− 3
2 du, 0 ≤ s ≤ t ≤ 1,

0, otherwise,

(5.1)

where

bH =

√

Γ(1 + 2H) sin(πH)

π
.

The subfractional Brownian motion with Hurst parameter H ∈ (1/2, 1) may be defined by

(cf. [8, 17])

Bt :=

∫ t

0

KH(t, s)dWs,

which has the covariance function

RH(s, t) = E(BtBs) = s2H + t2H − 1

2

[

(s+ t)2H + (t− s)2H
]

.

The subfractional Brownian motion and the fractional Brownian motion have similar proper-

ties: long-range dependence, self-similarity, and Hölder continuity. The subfractional Brownian

motion is neither a semimartingale nor a Markov process. But, compared with the fractional

Brownian motion, the subfractional Brownian motion has non-stationary increments and the

increments over non-overlapping intervals are weakly correlated (cf. [8, 17]).

We consider the following stochastic Volterra equation with the kernel function KH :

Xt = ξ +

∫ t

0

KH(t, s)b(Xs)ds+

∫ t

0

KH(t, s)σ(Xs)dWs (5.2)

for any t ∈ [0, 1], where ξ ∈ R
d, b : Rd → R

d and σ : Rd → R
d×m are Borel measurable functions.

The subfractional Brownian motion is an extension of the Brownian motion that retains many

properties of fractional Brownian motion, but not the stationary increments. This property

makes subfractional Brownian motion a possible candidate for models that include long-range

dependence, self-similarity, and non-stationary increments which is suitable for the construction

of stochastic models in finance and non-stationary queueing systems. Eq. (5.2) is applied in the

systems, containing stochastic behavior, long-range dependence, and non-stationary increments

(cf. [1, 24, 32]).
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Let Xn
t solve the following equation:

Xn
t = ξ +

∫ t

0

KH(t, s)b
(

Xn
s

)

ds+

∫ t

0

KH(t, s)σ
(

Xn
s

)

dWn
s , t ∈ [0, 1]. (5.3)

(H7) Assume that b ∈ C1
b (R

d), σ ∈ C2
b (R

d,Rd×m).

Theorem 5.1. Let H ∈ (1/2, 1). Under the assumption (H7) we have

lim
n→∞

sup
0≤t≤1

E|Xn
t −Xt|2 = 0,

where Xt and Xn
t are the solutions of Eqs. (5.2) and (5.3), respectively.

Proof. By Lemmas B.1-B.2, it is easy to derive that Theorem 5.1 holds. �

Appendix A

The property of KH is very important in the proof of Theorem 4.1. The following result is

taken from [13,14].

Lemma A.1. (i1) The mappings s → KH(t, s) is continuous on the set 0 < s ≤ t and there

exists a positive constant θH such that

KH(t, s) ≤ θHs
1
2
−H , 0 < s ≤ t ≤ 1. (A.1)

(i2) For every 0 < s ≤ t

∫ t

0

|KH(t, r) −KH(s, r)|2dr = (t− s)2H . (A.2)

(i3) The mappings t → KH(t, s) is differentiable on the set 0 < s < t and

∂

∂t
KH(t, s) = cH

(s

t

)
1
2
−H

(t− s)H− 3
2 . (A.3)

(i4) For each 1 ≤ p < 2/(2H − 1),

sup
0≤t≤1

∫ 1

0

Kp
H(t, s)ds < ∞. (A.4)

(i5) For each f ∈ L∞([0, 1]) the function

g(t) =

∫ t

0

KH(t, s)f(s)ds, 0 ≤ t ≤ 1

is derivable and

g′(t) =

∫ t

0

∂

∂t
KH(t, s)f(s)ds. (A.5)

The following lemma states that under assumption (H6), the condition (1.16) in the Theorem 4.1

is satisfied.
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Lemma A.2. Under the assumption (H6), we have for any s ∈ [0, tn] ⊆ [0, 1],

∣

∣

∣

∣

gn(s)− (ns− ⌊ns⌋)
∫ s

0

K ′
H(s, r)dr

∣

∣

∣

∣

4

≤ C

n4H−2
, (A.6)

where gn : [0, 1] → R is a function defined by

gn(s) = n

(
∫ s

0

KH(s, r)dr −
∫ sn

0

KH(sn, r)dr

)

.

Proof. By
∫ s

0

KH(s, r)dr = aHsH+ 1
2

and the mean value theorem, we find that for any s ∈ [0, 1] there is a θ1 ∈ (sn, s) such that
∣

∣

∣

∣

gn(s)−
(

H +
1

2

)

aH(ns− ⌊ns⌋)sH− 1
2

∣

∣

∣

∣

=

∣

∣

∣

∣

aHn
(

sH+ 1
2 − (sn)

H+ 1
2

)

−
(

H +
1

2

)

aH(ns− ⌊ns⌋)sH− 1
2

∣

∣

∣

∣

=

∣

∣

∣

∣

(

H +
1

2

)

aHn(s− sn)θ
H− 1

2

1 −
(

H +
1

2

)

aH(ns− ⌊ns⌋)sH− 1
2

∣

∣

∣

∣

=

∣

∣

∣

∣

(

H +
1

2

)

aH(ns− ⌊ns⌋)θH− 1
2

1 −
(

H +
1

2

)

aH(ns− ⌊ns⌋)sH− 1
2

∣

∣

∣

∣

=

∣

∣

∣

∣

(

H +
1

2

)

aH(ns− ⌊ns⌋)
(

sH− 1
2 − θ

H− 1
2

1

)

∣

∣

∣

∣

≤ aH

(

H +
1

2

)

∣

∣sH− 1
2 − s

H− 1
2

n

∣

∣. (A.7)

Moreover, by (A.7) and the mean value theorem, we have

∣

∣

∣

∣

gn(s)− (ns− ⌊ns⌋)
∫ s

0

K ′
H(s, r)dr

∣

∣

∣

∣

4

≤ C1{0≤s< 1
n
}

∣

∣sH− 1
2

∣

∣

4
+ C1{ 1

n
≤s≤tn}

∣

∣sH− 1
2 − s

H− 1
2

n

∣

∣

4

≤ 1{0≤s< 1
n
}

C

n4H−2
+ 1{ 1

n
≤s≤tn}

C

n4
sup

1
n
≤θ2≤1

θ4H−6
2

≤ C

n4H−2
1{0≤s≤tn} ≤ C

n4H−2
. (A.8)

The proof is complete. �

Appendix B

The property of KH is very important in the proof of Theorem 5.1. Because the following

result can be concluded by simple calculations, we omit the proof.

Lemma B.1. (T1) The mappings s → KH(t, s) is continuous on the set 0 < s ≤ t and there

exists a positive constant dH such that

KH(t, s) ≤ dHsH− 1
2 , 0 < s ≤ t ≤ 1. (B.1)
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(T2) For every 0 < s ≤ t there is a positive constant eH such that

∫ t

0

|KH(t, r) −KH(s, r)|2dr ≤ eH(t− s)2H . (B.2)

(T3) The mappings t → KH(t, s) is differentiable on the set 0 < s ≤ t and

∂

∂t
KH(t, s) = bH

(

t

s
+ 1

)H− 3
2

(t− s)H− 3
2 . (B.3)

(T4) For each 1 ≤ p < 2/(2H − 1),

sup
0≤t≤1

∫ 1

0

Kp
H(t, s)ds < ∞. (B.4)

(T5) For each f ∈ L∞([0, 1]) the function

g(t) =

∫ t

0

KH(t, s)f(s)ds, 0 ≤ t ≤ 1

is derivable and

g′(t) =

∫ t

0

∂

∂t
KH(t, s)f(s)ds. (B.5)

The following lemma implies that under assumption (H7), the condition (1.16) in the The-

orem 5.1 is satisfied. In addition, this lemma can be proved in the same way we did for

Lemma A.2. So we omit the details.

Lemma B.2. Under the assumption (H7), we have for any s ∈ [0, tn] ⊆ [0, 1],

∣

∣

∣

∣

gn(s)− (ns− ⌊ns⌋)
∫ s

0

K′
H(s, r)dr

∣

∣

∣

∣

4

≤ C

n4H−2
, (B.6)

where gn : [0, 1] → R+ is a function defined by

gn(s) = n

(
∫ s

0

KH(s, r)dr −
∫ sn

0

KH

(

sn, r
)

dr

)

.
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