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Abstract

We propose a new method for smoothly interpolating a given set of data points on

Grassmann and Stiefel manifolds using a generalization of the De Casteljau algorithm. To

that end, we reduce interpolation problem to the classical Euclidean setting, allowing us

to directly leverage the extensive toolbox of spline interpolation. The interpolated curve

enjoy a number of nice properties: The solution exists and is optimal in many common

situations. For applications, the structures with respect to chosen Riemannian metrics are

detailed resulting in additional computational advantages.
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1. Introduction

Data points on Riemannian manifolds are fundamental objects in many fields including, sub-

space filtering, machine learning, Signal-image-video processing and medical imaging [6, 7, 22].

To cite but few examples, tracking, face and action recognition and statistical shape analy-

sis [1, 2, 35, 39, 42]. In many real-world applications, Stiefel manifold and Grassmann manifold

are most commonly preferred as representation on Riemannian manifolds. A common limitation

in many of these applications has been the geometric structure on underlying manifolds, e.g.

Grassmann and Stiefel manifolds [1]. As increasingly real-world applications have to deal with

non-vector data, a great number of algorithms for manifold embedding and manifold learning

have been introduced. Recently, many efforts have been made to develop important geomet-

ric and statistical tools: Riemannian exponential map and its inverse, means, distributions,

geodesic [6, 9, 25].

Motivated by the success of these approaches, we are interested in the problem of fitting

smooth curves to a finite set of data points on a special class of Riemannian manifold M:

The Grassmann manifold of all p-dimensional subspace of R
n and the Stiefel manifold of

p-orthonormal vectors in R
n. More precisely, given a finite set of points X0, X1, · · · , XN in M

and a distinct and ordered instants of time (0 = t0 < t1 < · · · < tN = 1), we seek a spline

α : [0, 1] → M that best fits the given data X0, X1, · · · , XN and is sufficiently smooth. More

importantly, we focus on the search space of smooth regression splines where data points verify
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orthogonality constraints and ti are distinct and ordered time instants. We show that this

problem occurs in many real situations and leads to specific optimization methods, usually

called optimization on Riemannian manifolds [1, 14]. In fact, one way to tackle the two con-

flicting goals of being sufficiently smooth while passing sufficiently close to the data points at

the given ti, is to express the spline α as the minimizer of the following functional:

E : W → R
+

α 7→
λ

2

∫ tN

t0

〈
D2α(t)

Dt2
,
D2α(t)

Dt2

〉

M

dt+
1

2N

N∑

i=0

d2M
(
α(ti), Xi

)
,

(1.1)

where W denotes the underlying space of admissible C2 splines in M, 〈. , .〉M and dM denote

the Riemannian metric and distance, respectively. We are thus facing an optimization problem

in infinite dimension. It is well-known that when the Riemannian manifold M reduces to

the Euclidean space R
n, solutions of the optimization problem (1.1) under the interpolation

constraint
N∑

i=0

d2M
(
α(ti), Xi

)
= 0

are cubic splines.

In this paper, we propose a geometric algorithm that generates a solution of problem (1.1),

which is expressed as interpolating Bézier splines with a certain degree of smoothness. We adopt

the Grassmann manifold as an example of symmetric spaces. Therefore, using the definition of

geodesic curves and taking into account the rich and nice structure of these spaces, we present

a novel approach to generate a C2 Bézier spline that interpolates a given data set of points

at specified knot times. As for the Stiefel manifold, in short, the task is that of regression on

a homogeneous space [1] in the purpose to estimate/predict missing data from few available

observations. By observations we mean any data points that can be obtained from temporal

acquisitions. For example, medical images at different time instants are usually used to analyze

the evolution of a disease. In this context and due to logistic and time constraints, it is very

common to store few discrete moments only. Then at each time instant, we have a data point

that is represented as an element of a manifold [25]. So there is a need to estimate missing

data points on such manifold at non observed time instants. Several discrete-time models on

smooth manifolds and Lie groups have been studied in the literature [34]. Here, we consider

a continuous-time model only of class C1 and will address the problem of regularized non-linear

regression from finite observations [12]. In the main and in both cases, we start from the energy

minimization formulation of linear least-squares in the Euclidean space R
n and generalize this

concept to these manifolds. The proposed method is geometrically simple, extensible and

easy to implement. In fact, we illustrate the relevance of the proposed method with various

experiments.

In a general fitting problem, a vast number of methods for fitting smooth curves to a given

finite set of points on Riemannian manifolds have appeared recently. For instance, motivated by

the work of Noakes et al. general Riemannian manifolds, the authors in [38] derive a fourth-order

differential equation associated to this variational problem involving the covariant derivative

and the curvature tensor and prove that the optimal curves are approximating cubic splines.

On the other hand, Samir et al. [36] choose to solve the optimization problem (1.1) by means of

a steepest-descent algorithm on an adequate set of curves where the steepest-descent direction

for the energy function E is defined with respect to the first-order and second-order Palais
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metric. Jupp and Kent proposed a regression method on the sphere based on the technique

of unrolling [21]. This approach was recently generalized by Kim et al. [22] to shape space.

Niethammer et al. [28] solved the optimization problem (1.1) on the manifold of diffeomorphisms

using an adjoint method. Other alternative approaches, but without a variational interpretation

have been developed. These approaches includes subdivision schemes [13, 27, 41], Lie-algebraic

methods [37], intrinsic polynomial regression [17], extrinsic local regression [26], global and local

Fréchet regression [31]. Neither of these methods can be used for constructing C2 interpolating

splines on Riemannian manifolds which is the main motivation of this paper. In this direction,

various works have been introduced to construct an interpolating Bézier spline on Riemannian

manifolds of class C1. We mention [16] (and references therein) for an account of important

theoretical contributions in this area. Unfortunately, the problem of piecing generalized Bézier

curves into a C2 spline is much more complicated, except for some trivial cases such as compact

Lie groups [10], spheres [32] and symmetric Riemannian manifolds [15, 33].

For the specific problem of interpolation on Grassmann and Stiefel manifoldsM, there exists

a rich body of recent literature with an increasing interest. Indeed, Riemannian optimization

on Stiefel and Grassmann manifolds is generally extremely hard to solve due to the geometric

structure of M and to orthogonality constraints that represent these manifolds. Therefore,

many efforts have been made to develop important geometric and statistical tools: Riemannian

exponential map and its inverse, means, distributions, geodesic arcs, etc. [6]. For instance,

Batzies et al. [3] have presented a simple closed form expression for the geodesic arc joining

two points on Grassmann manifolds based only on the given data points. Hüper et al. [19]

have proposed a scheme to compute the Karcher mean on Grassmann manifolds. However,

only a little has been done in this direction for Stiefel manifolds. Edelman et al. [14] have

derived an accurate expression of geodesics on Stiefel manifolds starting at a given point with

a specified direction. Moreover, they propose numerical methods to compute exponential maps

with both Euclidean and canonical metrics. Nevertheless, no explicit expressions for geodesic

that joins two points on Stiefel manifolds are known.

To address this issue, in [29], the authors introduce the notion of quasi-geodesic, a curve with

constant speed, constant covariant acceleration, and constant geodesic curvature that joins two

points on the Stiefel manifold. In [34,43], they solved the problem by computing the Riemannian

log map equipped with the canonical metric. We emphasize that methods for computing the

Riemannian log map equipped with Euclidean metric have already been discussed in [5, 40].

By exploiting such explicit formulas, one can solve other important problems such as fitting

and interpolation of data points on Grassmann and Stiefel manifolds. In this context, Hüper

et al. [20] have proposed a method to generate interpolating curves on Grassmann manifolds

which is based on the rolling technique. Batzies et al. [3] have deduced the necessary condition

for the geodesic that gives the minimum value of the least-squares problem on Grassmann

manifolds. Another method based on Jacobi field approach described by Rentmeesters [34] to

approximate a given set of data points on the Grassmannian using gradient descent technique.

We refer also to the recent paper [23] giving a new method to generate smooth interpolating

curves on Stiefel manifolds. This method is achieved from a substitution of geodesic in the

geometric De Casteljau algorithm on manifolds by a successive quasi-geodesic interpolation.

Hong et al. [18] proposed an intrinsic geodesic regression model generalizing classical linear

least-squares regression on Grassmannian.

The paper is organized as follows. In Section 2, we review the basic differential geometry

of Grassmann and Stiefel manifolds that will be used to derive our main results. Section 3



4 I. ADOUANI AND C. SAMIR

introduces our approach to fit a given set of points on the Stiefel manifold. In Section 4, we

address the fitting problem on the Grassmannian and we describe our method to construct a C2

Bézier spline on this manifold. Section 5 shows numerical results and potential applications.

We finish the paper with some concluding remarks in Section 6.

2. Preliminaries

In this section, we record some basic facts about Grassmann and Stiefel manifolds that will

be essential in our terminology to build a consistent geometric algorithm to generate interpo-

lating Bézier spline. In particular, we describe few computational tools (namely geodesics, the

Riemannian Exp and Log maps) derived from a chosen Riemannian metric on these manifolds.

For a more detailed exposition, we refer the reader to [1, 14].

2.1. A Riemannian structure of Stiefel manifolds

The compact Stiefel manifold M = St(n, p) is a matrix manifold of p-dimensional orthonor-

mal frames in R
n. As an embedded submanifold of Rn×p, M is defined by

M = {X ∈ R
n×p | XTX = Ip},

where Ip denotes the p× p identity matrix. When p = 1, we simply have the unit sphere Sn−1,

while when p = n, we have the orthogonal Lie group O(n) and when p = n− 1, we obtain the

special orthogonal group SO(n).

Remark 2.1. The Stiefel manifold can also be viewed as a quotient manifold of the orthogonal

Lie group O(n). In fact, two points Q0 and Q1 in the orthogonal Lie group O(n) represent the

same point in M if

Q1 = Q0

(
Ip 0

0 P

)

for P ∈ O(n − p). The linear left action of O(n) in M is transitive (i.e. for every pair of

elements X1 and X2, there is an element Q ∈ O(n) such that QX1 = X2). Besides, the isotropy

group at the identity frame

X =

[
Ip
0

]
∈ St(n, p)

is isomorphic to O(n − p). We remind that the isotropy group for the identity frame X is

a subgroup of O(n) fixingX , i.e. QX = X for any Q ∈ O(n). Consequently, M is diffeomorphic

to O(n)/O(n − p) which turns the matrix manifold into a homogeneous space.

For any matrix representative X ∈ M, the tangent space of M at X is defined as

TXM = {Z ∈ R
n×p | XTZ + ZTX = 0}.

Hence, the dimension of both TXM and M is np − p(p + 1)/2. We can endow the Stiefel

manifold with a different Riemannian metrics: the Euclidean metric and the canonical metric.

In the two special cases when p = 1 and p = n, these two Riemannian metrics are equal.

Otherwise they differ, and yield different formulas for geodesics and parallel translation. For
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the purpose of this paper, we endow M with the canonical metric. In fact, let X ∈ M, and

Z1, Z2 ∈ TXM, then we define the canonical metric on TXM by

〈Z1, Z2〉X = trace

(
ZT
1

(
In −

1

2
XXT

)
Z2

)
. (2.1)

Geodesics on a Riemannian manifold are locally shortest curves that are parametrized by the

arc length. For a given curve γ : [0, 1] → M, they satisfy the following second-order differential

equation:

γ̈ + γ̇γ̇tγ + γ
(
(γtγ̇)2 + γ̇tγ̇

)
= 0. (2.2)

It is clear that this equation is numerically difficult to solve. Hopefully, the canonical structure

allows a practical decomposition of the tangent space that simplify the characterization of

geodesics.

Proposition 2.1. Let X be a matrix representation on M and Z a tangent vector on TXM .

Then the geodesic γ : [0, 1] → M such that γ(0) = X and (∂γ/∂t)|t=0 = Z is given by

γ(t) = XM(t) +QN(t), (2.3)

where M(t) and N(t) are p-by-p matrices defined by

[
M(t)

N(t)

]
= exp

(
t

(
A −Rt

R 0

))[
Ip
0

]
. (2.4)

Proof. The proof starts with a decomposition of the tangent vector Z into its horizontal

and vertical components with respect to the base point X,Z = XXTZ + (In − XXT )Z.

Then, by letting A = XTZ a skew symmetric matrix and by means of a QR decomposition of

(In −XXT )Z, we get Z = XA+QR, which establishes the formula of the geodesic. �

Corollary 2.1. Let γ : [0, 1] → M be a geodesic such that γ(0) = X1 and (∂γ/∂t)(t)|t=0 = Z ∈

TX1
M. The Riemannian exponential map ExpX1

: TX1
M → M that sends a Stiefel tangent

vector Z to the endpoint γ(1) = X2 is given by

ExpX1
(Z) = X1M +QN = X2 ∈ M, (2.5)

where M and N are the same as described in Eq. (2.4).

Conversely, given two points X1 and X2 ∈ M, the inverse exponential map Exp−1
X1

(also

known as the logarithmic map LogX1
) allows the recovery of the tangent vector Z = LogX1

(X2).

Formulas to compute the Riemannian log map on the Stiefel manifold relative to the Euclidean

metric are provided in [5,40]. As far as we know, until now, there exist two different approaches

for evaluating the log map on the Stiefel manifold with respect to the canonical metric [34,43].

In this paper, we adopt the method provided in [43] and we suppose that each two points belong

to a geodesic ball with an injectivity radius determined in [34].

Corollary 2.2. The geodesic arc joining X1 to X2 in M can be parameterized explicitly by

γ(t,X1, X2) = ExpX1

(
tLogX1

(X2)
)
, t ∈ [0, 1]. (2.6)
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2.2. A Riemannian structure of the Grassmann manifold

The real Grassmann manifold M = Gn,p is defined as the set of p-dimensional R-linear

subspace of Rn. It is a smooth and compact manifold of dimension p(n − p). A point X ∈ M

is a linear subspace that may be represented numerically as the span of a full-rank n-by-p

matrix X

M =
{
X = span(X), X ∈ R

n×p, rank(X) = p
}
.

Remark 2.2. We can easily check that the matrix representative X ∈ X ⊂ M is a point on

the Stiefel manifold St(n, p). In particular, M is the quotient space of St(n, p) by the action

of the orthogonal Lie group O(n), i.e. M = St(n, p)/O(p).

Definition 2.1. For any X ∈ M, the map ϕ : M → M defined by

ϕ(X) = PXP−1, P =

(
Ip 0

0 −In−p

)
(2.7)

is an involutive automorphism, which turns the Grassmann manifold into a Riemannian sym-

metric space.

The symmetry ϕ will be an essential tools to handle the C2 differentiability condition in M.

Given X ∈ M, we identify the tangent space of M by

TXM =
{
S ∈ R

n×p | XTS = 0
}
.

Unlike the case of the Stiefel manifold, introducing the metric based on the quotient space

structure of M or that inherited from the Euclidean space R
n×n on the tangent space TXM

conduct to the same metric. Hence, we will endow M with the one induced from the Frobenius

inner product on R
n×n, for S1, S2 ∈ TXM, given by

〈S1, S2〉X = tr
(
ST
1 S2

)
.

Proposition 2.2. Let A be a p-by-p skew-symmetric matrix and B an arbitrary (n − p)-by-p

matrix. A geodesic γ : [0, 1] → O(n) starting at P ∈ O(n) in the direction of the tangent vector

P
( A −Bt

B O

)

lying on the horizontal space at P , is defined by

γ(t) = P exp

(
t

(
A −Bt

B O

))
. (2.8)

Then, geodesics in M are projections of the orthogonal Lie group O(n) geodesics under the

Riemannian submersion π1 : O(n) → Gn,p, that is a geodesic γ̃ : [0, 1] → Gn,p is given by

γ̃(t) = [γ(t)].

Corollary 2.3. The exponential map ExpX : TXM → M is defined as

ExpX(S) =
(
XW cos(Σ) + V sin(Σ)

)
W t, (2.9)

where (V ΣW t) is the compact singular value decomposition of the tangent vector S ∈ TXM.

Gallivan et al. [24] have proposed a method to compute the inverse of the exponential map

which is based on the representation of M with SO(n)/(SO(p)× SO(n− p)) and some results

from linear algebra, the CS (cosine-sine) decomposition in particular.
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Proposition 2.3. Let X1 and X2 ∈ M. The log-map LogX1
(X2) : M → TX1

M is defined as

LogX1
(X2) = W2ΣW

t
1 , (2.10)

where W2,W1 are given by the CS decomposition
[

Xt
1X2(

In −X1X
t
1

)
X2

]
=

[
W1 cos(Σ)V

t

W2 sin(Σ)V
t

]
. (2.11)

Corollary 2.4. The shortest geodesic arc joining X1 to X2 in M is given by

γ(t,X1, X2) = ExpX1

(
tLogX1

(X2)
)
, t ∈ [0, 1]. (2.12)

Here and subsequently,

γ̇(t,X1, X2) :=
∂

∂u

∣∣∣
u=t

γ(u,X1, X2), (2.13)

and (dExpX1
)S stands for the derivative of ExpX1

at S ∈ TX1
M.

3. C1 Interpolation on the Stiefel Manifold M = St(n, p)

In this section, we introduce a method to construct a C1 interpolating Bézier spline for

smoothing data that are constrained to live in the Stiefel Manifold M equipped with its canon-

ical Riemannian metric. More explicitly, consider (N + 1) distinct data points X0, · · · , XN

in M associated with time instants ti = i, i = 0, . . . , N . Our goal is to estimate a spline

α : [0, N ] → M, minimizing the cost functional (1.1), and satisfying the following properties:

(i) α(ti) = Xi, i = 0, . . . , N .

(ii) α is conformed by N Bézier curves of order j.

(iii) α is of class C1.

Let us recall that geometrically a Bézier curve of order j in the Euclidean space R
n is a poly-

nomial function defined by a sequence of control points expressed in a particular basis called

the Bernstein basis polynomials such that the first and last control points of the curve are

interpolated but the intermediate control points are in general not on the curve. A simple algo-

rithm to construct such curve is called De Casteljau algorithm and is based only on a successive

linear interpolation [11]. Therefore, one idea to define a Bézier curve of order j on Riemannian

manifolds is to generalize the De Casteljau’s algorithm. It can be easily seen that by replacing

straight lines by minimal geodesic between two points, the generalization of the De Casteljau’s

algorithm is made in an obvious way.

Definition 3.1. The Bézier curve αj : [0, N ] → M, t → αj(t;V0, · · · , Vj) of order j paramet-

rized by (j + 1) control points V0, · · · , Vj is defined as follows. Consider the point V 0
i = Vi and

we iterate the construction of further points. In fact, for i = 0, . . . , j − k, k = 1, . . . , j,

V k
i = αk(t, Vi, · · · , Vi+k) = Exp

V
k−1

i

(
tLog

V
k−1

i

(
V k−1
i+1

))
, t ∈ [0, 1]

represent the i-th point of the k-th step of the De Casteljau algorithm, and thus

αj(t;V0, · · · , Vj) = V j
0 .

The resulting Bézier spline α : [0, N ] → M is only formed by a sequence of N Bézier curves

αi
j , j ∈ {2, 3} and i = 0, . . . , N − 1 such that first and last ones are quadratic Bézier curves

while all the others are cubic.
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Definition 3.2. Assume that there exists two artificial control points (Ŷ −

i , Ŷ +
i ) on the left-

and on the right-hand side of the interpolation point Xi, i = 1, . . . , N − 1 defining a chain of

Bézier curve αi
j , j ∈ {2, 3}, 0 ≤ i ≤ N − 1. The Bézier spline α : [0, N ] −→ M is then given by

α(t) =





α0
2

(
t;X0, Ŷ

−

1 , X1

)
, 0 ≤ t ≤ 1,

αi
3

(
t− i;Xi, Ŷ

+
i , Ŷ −

i+1, Xi+1

)
, i− 1 ≤ t ≤ i,

αN−1
2

(
t− (N − 1);XN−1, Ŷ

+
N−1, XN

)
, N − 1 ≤ t ≤ N.

As the Bézier spline α interpolates the first and the last control points of each Bézier curve

αi
j , j ∈ {2, 3}, 0 ≤ i ≤ N − 1, we are left with the task of determining the remaining control

points (Ŷ −

i , Ŷ +
i ), i = 0, . . . , N − 1. Note that we want α to be at least C1. It is immediate, by

construction, that the spline α is C∞ on ]ti, ti+1[, i = 1, . . . , N−1. We are thus looking to ensure

the differentiability condition at the knot points. Our main idea to handle this issue is to treat

the fitting problem on different tangent space. Specifically, let X0, · · · , XN be a set of distinct

given points in M with Xl being in the cut locus of Xi, i 6= l. The cut locus of Xl in M, in

turn, is the set of points in M where the geodesics starting at Xl stop being length-minimizing.

By means of the algorithm of the logarithm map developed in [34, 43] for Stiefel manifold, we

transport data points X0, · · · , XN to TXi
M at a point Xi ∈ M, i = 1, . . . , N−1. Let us denote

the mapped data by Zi = (Zi
0, · · · , Z

i
N) with Zi

m = LogXi
(Zm) for m = 0, . . . , N . Now our

next concern is to search for the control points of a C1 Bézier spline on TXi
M, i = 1, . . . , N−1.

From this tangential solution, the Riemannian exponential map ExpXi
defined on M by

Eq. (2.5) will bring back the solution to the matrix manifold M. The resulting Bézier spline α

is then reconstructed with De Casteljau algorithm and we prove that is optimal. So let

β : [0, N ] → TXi
M denote the Bézier spline on TXi

M, i = 1, . . . , N − 1 defined identically

to the Bézier spline on M by N Bézier curves βi
k, k ∈ {2, 3}, 0 ≤ i ≤ N − 1. And let (Bi

m)−

and (Bi
m)+ denote control points on the left- and on the right-hand side of the interpolation

point Zm for m = 1, . . . , N − 1. Hence,

β(t) =





β0
2

(
t;Zi

0, (B
i
1)

−, Zi
1

)
, 0 ≤ t ≤ 1,

βi
3

(
t− i;Zi

i , (B
i
i)

+, (Bi
i+1)

−, Zi
i+1

)
, i− 1 ≤ t ≤ i,

βN−1
2

(
t− (N − 1);Zi

N−1,
(
Bi

N−1

)+
, Zi

N

)
, N − 1 ≤ t ≤ N.

Proposition 3.1. The optimization problem Eq. (1.1), which is not easy to solve directly on M

is simplified to an Euclidean cost function on TXi
M, i = 1, . . . , N − 1, given by

min
(Bi

1
)−,··· ,(Bi

N−1
)−

E
((
Bi

1

)−
, · · · ,

(
Bi

N−1

)−)

:= min
(Bi

1
)−,··· ,(Bi

N−1
)−

∫ 1

0

∥∥β̈0
2

(
t;Zi

0,
(
Bi

1

)−
, Zi

1

)∥∥2

+

N−2∑

m=1

∫ 1

0

∥∥β̈i
3

(
t;Zi

m,
(
Bi

m

)+
,
(
Bi

m+1

)+
, Zi

m+1

)∥∥2

+

∫ 1

0

∥∥β̈N−1
2

(
t;ZN−1,

(
Bi

N−1

)+
, Zi

N

)∥∥2, (3.1)

where ‖.‖ represents the canonical norm on the tangent space TXi
M, i = 1, . . . , N .
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Proof. We give the proof only for the case i = 1, the other ones being similar. Let

X0, · · · , XN a set of (N + 1) data points in M and Z1 = (Z1
0 , · · · , Z

1
N ) their correspond-

ing mapped data in the tangent space TX1
M. Let t −→ βk(t;B

1
0 , · · · , B

1
N ) denote the Bézier

curve of order k ∈ {2, 3} in TX1
M defined with its control points B1

0 , · · · , B
1
N in the Bernstein

basis polynomials of degree k as

β2

(
t;B1

0 , B
1
1 , B

1
2

)
= B1

0(1− t)2 + 2B1
1(1− t)t+B1

2t
2,

β3

(
t;B1

0 , B
1
1 , B

1
2 , B

1
3

)
= B1

0(1 − t)3 + 3B1
1t(1 − t)2 + 3B1

2t
2(1− t) +B1

3t
3.

(3.2)

Let ((B1
m)−, (B1

m)+) denote the two control points on the left- and the right-hand side of the

interpolation point Z1
m, m = 1, . . . , N − 1. Furthermore, to ensure that β is C1, we shall make

the following assumption:

β̇ki

((
B1

0

)i
, · · · ,

(
B1

ki

)i
; t− i+ 1

)∣∣
t=i

= β̇ki+1

((
B1

0

)i+1
, · · · ,

(
B1

ki+1

)i+1
; t− i

)∣∣
t=i

, i = 0, . . . , N − 2. (3.3)

This differentiability condition allows us to express (B1
m)− in terms of (B1

m)+ as

(
B1

1

)+
=

5

3
Z1
1 −

2

3

(
B1

1

)−
, (3.4)

(
B1

i

)+
= 2Z1

i −
(
B1

i

)−
, i = 2, . . . , N − 2, (3.5)

(
B1

N−1

)+
=

5

2
Z1
N−1 −

3

2

(
B1

N−1

)−
. (3.6)

Hence, the task now is reduced to search only control points (B1
i )

−, i = 1, . . . , N−1, that gener-

ate the C1 Bézier spline β in TX1
M. Replacing the new optimization variables in problem (1.1)

gives

min
(B1

1
)−,··· ,(B1

N−1
)−

E
((
B1

1

)−
, · · · ,

(
B1

N−1

)−)

:= min
(B1

1
)−,··· ,(B1

N−1
)−

∫ 1

0

∥∥β̈0
2

(
t;Z1

0 ,
(
B1

1

)−
, Z1

1

)∥∥2

+
N−2∑

m=1

∫ 1

0

∥∥β̈i
3

(
t;Z1

m,
(
B1

m

)+
,
(
B1

m+1

)+
, Z1

m+1

)∥∥2

+

∫ 1

0

∥∥β̈N−1
2

(
t;ZN−1,

(
B1

N−1

)+
, Z1

N

)∥∥2
, (3.7)

which is merely the problem of minimization of the mean square acceleration of the Bézier curve

β in the Euclidean space R
n. �

The problem (3.1) is now treated similarly as the Euclidean case M = R
n. Actually, we

prove that solutions of the mean square acceleration are exactly the control points of β. Details

of the solution of (3.1) on R
n are given in Appendix A. Furthermore, we give a geometrical

illustration of our approach in Fig. 3.1.

Theorem 3.1. Given X0, · · · , XN a set of (N + 1) data points in M and Bi = [(Bi
1)

−, · · · ,

(Bi
N−1)

−]T a matrix of size (n(N−1)×n) containing the (N−1) control points that generate βi

in each tangent space TXi
M, i = 1, . . . , N − 1. Then, the Bézier spline α : [0, N ] → M
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interpolating the data points Xi on M is of class C1 and is uniquely defined by the set of

control points Y = [Ŷ −

1 , · · · , Ŷ −

N−1]
T ∈ R

n(N−1)×n where the rows of Ŷ are given by

Ŷ −

i = ExpXi

(
(Bi

i)
−
)
, i = 1, . . . , N − 1. (3.8)

Proof. To solve the optimization problem (3.1), we need to compute the critical points of

the gradient of the energy function E. Again, we give the proof for the case i = 1. Let us first

examine the inner product of the acceleration. In fact, the acceleration on respective intervals

is given by

β̈2

(
t;B1

0 , B
1
1 , B

1
2

)
= 2B1

0 − 4B1
1 + 2B1

2 ,

β̈3

(
t;B1

0 , B
1
1 , g

1
2 , B

1
3

)
= 6B1

0 − 12B1
1 + 6B1

2 + 6t
(
−B1

0 + 3B1
1 − 3B1

2 +B1
3

)
.

(3.9)

Then we compute the inner product of the acceleration with respect to the inner product defined

in TX1
M, we thus get

‖β̈2‖
2 = 4

(〈
B1

0 , B
1
0

〉
− 4

〈
B1

0 , B
1
1

〉
+ 2

〈
B1

0 , B
1
2

〉
+ 4

〈
B1

1 , B
1
1

〉

− 4
〈
B1

2 , B
1
1

〉
+
〈
B1

2 , B
1
2

〉)
,

‖β̈3‖
2 = 36

〈
B1

0 − 2B1
1 +B1

2 + t
(
−B1

0 + 3B1
1 − 3B1

2 +B1
3

)
,

B1
0 − 2B1

1 +B1
2 + t

(
−B1

0 + 3B1
1 − 3B1

2 +B1
3

)〉
.

Finally, we evaluate the integral of each term of Eq. (3.7), we obtain

∫ 1

0

‖β̈2‖
2dt = ‖β̈2‖

2 = 4
(〈
B1

0 , B
1
0

〉
− 4

〈
B1

0 , B
1
1

〉
+ 2

〈
B1

0 , B
1
2

〉

+ 4
〈
B1

1 , B
1
1

〉
− 4

〈
B1

2 , B
1
1

〉
+
〈
B1

2 , B
1
2

〉)
,

∫ 1

0

‖β̈3‖
2dt = 36

(
1

3

〈
B1

0 , B
1
0

〉
−
〈
B1

0 , B
1
1

〉
+

1

3

〈
B1

0 , B
1
3

〉
+
〈
B1

1 , B
1
1

〉

−
〈
B1

1 , B
1
2

〉
+
〈
B1

2 , B
1
2

〉
−
〈
B1

2 , B
1
3

〉
+

1

3

〈
B1

3 , B
1
3

〉)
.

By replacingB1
k such that B1

0 = Z1
0 , B

1
1 = (B1

1)
− and B1

2 = Z1
1 for the first interval, B1

0 = Z1
N−1,

B1
1 = (B1

N−1)
− and B1

2 = Z1
N for the last interval, and B1

0 = Z1
k , B

1
1 = (B1

k)
+, B1

2 = (B1
k+1)

−

Fig. 3.1. Geometrical illustration of the Riemannian manifold M and its tangent space TXi
M at

Xi ∈ M. γ is an interpolating spline with Xt = γ(t) for t ∈ I which verifies γ(t)Tγ(t) = Ip for all t ∈ I .
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and B1
3 = Z1

k+1 for the intermediate intervals, it leads to the apparition of constant terms K

involving all Z1
k which will disappear when we derive the gradient. As detailed in Appendix A,

the new formulation becomes

min
(B1

1
)−,··· ,(B1

N−1
)−

E
((
B1

1

)−
, · · · ,

(
B1

N−1

)−)

= 4
(
−4

〈
Z1
0 ,
(
B1

1

)−〉
+ 4

〈(
B1

1

)−
,
(
B1

1

)−〉
− 4

〈
Z1
0 ,
(
B1

1

)−〉)

+

N−2∑

k=1

36
(
− 〈Z1

k ,
(
B1

k

)+〉
+
〈(
B1

k

)+
,
(
B1

k

)+〉
−
〈(
B1

k

)+
,
(
B1

k+1

)−〉

+
〈(
B1

k+1

)−
,
(
B1

k+1

)−〉
−
〈(
B1

k+1

)−
, Z1

k+1

〉)

+ 4
(
− 4

〈
Z1
N−1,

(
B1

N−1

)+〉
+ 4

〈(
B1

N−1

)+
,
(
B1

N−1

)+〉
− 4

〈
Z1
N ,

(
B1

N−1

)+〉)
+K.

After changing (B1
k)

+’s by (B1
k)

−’s using Appendix A, the next step is to compute the gradient

and search for the optimal solution (B1
k)

−. Consequently, ∀w ∈ TX1
M the optimal solution is

given by

∂E

∂(B1
1)

−
= 4

(
8
〈(
B1

1

)−
, w

〉
− 4

〈
Z1
0 , w

〉
− 4

〈
Z1
1 , w

〉)

+ 36

(
−

14

9

〈
Z1
1 , w

〉
+

8

9

〈(
B1

1

)−
, w

〉
+

6

9

〈(
B1

2

)−
, w

〉)
= 0,

∂E

∂(B1
2)

−
= 36

(
−
5

3

〈
Z1
1 , w

〉
+

2

3

〈(
B1

1

)−
, w

〉
+ 2

〈(
B1

2

)−
, w

〉
−
〈
Z1
2 , w

〉)

+ 36
(
−3

〈
Z1
2 , w

〉
+ 2

〈(
B1

2

)−
, w

〉
+
〈(
B1

3

)−
, w

〉)
= 0,

∂E

∂(B1
k)

−
= 36

(
− 3

〈
Z1
j , w

〉
+ 2

〈(
B1

j

)−
, w

〉
+
〈(
B1

j+1

)−
, w

〉)

+ 36
(
− 2

〈
Z1
j−1, w

〉
+
〈(
B1

j−1

)−
, w

〉

+ 2
〈(
B1

j−1

)−
, w

〉
−
〈
Z1
j , w

〉)
= 0, j = 2, . . . , N − 2,

∂E

∂(B1
N−1)

−
= 36

(
− 2

〈
Z1
N−2, w

〉
+
〈(
B1

N−2

)−
, w

〉
+ 2

〈(
g1N−1

)−
, w

〉
−
〈
Z1
N−1, w

〉)

+ 4
(
− 24

〈
Z1
N−1, w

〉
+ 18

〈(
B1

N−1

)−
, w

〉
+ 6

〈
Z1
N , w

〉)
= 0. (3.10)

Consequently, similar as the Euclidean case R
n, the solution of Eq. (3.1) is given by

B1 =
[(
B1

1

)−
, · · · ,

(
B1

N−1

)−]T
= DP̃ ,

and therefore, Ŷ −

1 = expX1
(x̃1) where

x̃1 =
(
B1

1

)−
=

n∑

k=0

D1kX
1
k .

The differentiability condition at the interpolation points allows us to express control points

(Bi
1)

− in terms of (Bi
1)

+ as

(
Bi

1

)−
= Xi + λi

((
Bi

1

)+
−Xi

)
. (3.11)
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Considering that logp(b) = b − p in the Euclidean case, hence the generalization of Eq. (3.11)

on M is given by

Ŷ +
i = ExpXi

(
λiExp

−1
Xi

(
Ŷ −

i

))
, (3.12)

which assert the C1 differentiability condition on M. �

Algorithm 3.1 synthesizes all steps needed to construct the C1 solution on M.

Algorithm 3.1: C1 Solution on the Stiefel manifold M.

Input : N ≥ 3, (X0, · · · , XN ) a matrix of size N(n+ 1)×N containing the (N + 1)

interpolation points on M.

Output: Ŷ .

1 for i = 1 : N − 1 do

2 Compute Z = [Zi
0, · · · , Z

i
N ]T a matrix of size N(n+ 1)×N containing the (N + 1)

interpolation points on TXi
M.

3 for k = 0 : N do

4 Zi
k = LogXi

(Xk).

5 Compute Bi = [(Bi
1)

−, · · · , (Bi
N−1)

−]T a matrix of size N(n− 1)×N

containing the (N − 1) control points of the C1 Bézier curve βi on TXi
M,

using Appendix A.

6 Compute control point Ŷ −

i = ExpXi
((B̂i

i)
−) on M.

7 end

8 end

9 return Ŷ .

4. C2 Interpolation on the Grassmann Manifold M = Gn,p

In this section, we will show that in the case of the Grassmann Manifold M, the Bézier

spline α is of class C2 due to the elegant properties of this manifold. In other words, we

are again given (N + 1) distinct data points X0, · · · , XN in M associated with time instants

ti = i, i = 0, . . . , N . Our goal is to construct a Bézier spline α : [0, N ] → M interpolating the

data points Xi, i = 0, . . . , N and assuring a C2 differentiability condition at the knot points.

Similarly as in the previous section, the Bézier spline α will be constructed recursively by a chain

of Bézier curve αj , j ∈ {2, 3} defined by a set of (N − 1) control points (Ŷ −

i , Ŷ +
i ) on the left-

and on the right-hand side of the interpolation point Xi, i = 1, . . . , N − 1. Our algorithm to

find optimal control points of the C2 Bézier spline in M consists of the following two phases:

Phase 1: We construct an interpolation Bézier spline α : [0, N ] → M in M only C1. To

do these, for each i = 1, . . . , N − 1, we transfer the data X0, · · · , XN in each tangent space

TXi
M using Riemannian logarithmic map given by (2.10). The mapped data are then given

by Si = (Si
0, · · · , S

i
N ) with Si

k = LogXi
(Xk) for k = 0, . . . , N , and i = 1, . . . , N − 1. Then,

by means of equations that govern the control points of the C2 Bézier spline on R
n given in

Appendix A, we construct the C2 Bézier curve βi in each tangent space TXi
M, i = 1, . . . , N−1.

Finally, the Riemannian exponential map ExpXi
defined on M by (2.9) will transport control

points of the C2 Bézier curve βi from the tangent space TXi
M to the matrix manifold M which
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provides control point of the desired C1 interpolation Bézier spline α in M. We summarize

this result in Theorem 4.1.

Theorem 4.1. Given X0, · · · , XN a set of (N + 1) points in M, and Bi = [(Bi
1)

−, · · · ,

(Bi
N−1)

−]T a matrix of size (n(N − 1) × n) such that each row x̃i of Bi contains optimal

control points of the C2 Bézier spline βi in each tangent space TXi
M, i = 1, . . . , N − 1. Then,

the Bézier spline α : [0, N ] → M interpolating the data Xi is of class C
1 and is uniquely defined

by the set of control points Ŷ = [Ŷ −

1 , · · · , Ŷ −

N−1]
T ∈ R

n(N−1)×n given by

Ŷ −

i = ExpXi
(x̃i), i = 1, . . . , N − 1. (4.1)

Proof. The proof is similar to the one of Theorem 3.1. �

Remark 4.1. The interpolation point XN is modified under the C2 differentiability condition

of the curve βi on TXi
M, i = 1, . . . , N − 1, therefore the point XN is changed and the new

(N + 1) interpolation points on M is given by

X̃k = ExpXi(S̃
i
k), k = 0, . . . , N, i = 1, . . . , N − 1, (4.2)

where S̃ = [S̃i
0, · · · , S̃

i
N ]T a matrix of size n(N+1)×n containing the new (N+1) interpolation

points in each tangent space TXi
M. More details are given in Appendix A.

It is important to notice that at this first step, the Bézier spline α is only of class C1. Our

next goal is to show how to arrange α to satisfy the C2 differentiability condition at points Xi,

i = 1, . . . , N .

Phase 2: At this step, nice properties of symmetric spaces are involves. Lemma B.1 and

Theorem B.1 in Appendix B examine in details the relation made between global symmetries

at interpolation points and the C2 differentiability of the Bézier spline on symmetric spaces. In

fact, this requires the computation of the derivative of the geodesic symmetry given by Eq. (2.7)

and the derivative of the Riemannian exponential map ExpXi
defined in M by (2.9). Let us

denote by Y −

i and Y +
i the new control points on the left- and on the right-hand side of the

interpolation point X̃i that define the Bézier spline α in M. Our basic idea to find control

points Y −

i , i = 1, . . . , N − 1 is similar to the Euclidean case R
n. That is, we might know Y −

1

(and therefore Y +
1 by the C1 differentiability condition in M) and wish to define iteratively

Y −

i , i = 2, . . . , N − 1 (and obviously Y +
i in much the same way as Y +

1 ).

Theorem 4.2. Under the hypotheses of Theorem 4.1, the Bézier spline α : [0, N ] → M is

C2 and is uniquely defined by the set of control points given by the row of the matrix Y =

[Y −

1 , · · · , Y −

N−1]
T ∈ R

n(N−1)×n by

1. Y −

1 = ExpX̃1
((B̂1

1)
−),

2. Y −

2 = ExpY +

1

(
((dϕX̃1

)Y −

1

(γ̇(1, X̃0, Y
−

1 ))− 4γ̇(0, Y −

1 , X̃1))/3
)
,

3. Y −

i+1 = ExpY +

i

(
((dϕX̃i

)Y −

i
(γ̇(1, Y +

i−1, Y
−

i ))− 2γ̇(0, Y −

i , X̃i))
)
, i = 2, . . . , N − 2,

where dϕX̃i
represent the derivative of the symmetry map ϕX̃i

at a point Y −

i , i = 1, . . . , N − 1.
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Proof. The proof strongly depends on the results given in [33]. Hence, all technical details

of the proof will be given in Appendix B. For convenience, we remind the main ideas:

1. In [33], they compute the covariant derivative of a tangent vector along a curve and provide

the explicit C2 condition on symmetric spaces in terms of the derivative of exponential

and symmetry functions. We make use of this result and Theorem 3.1 to simplify the

derivative of the inverse of the exponential map.

2. We express the derivative of the symmetry as a function of the tangent vector along the

Bézier spline αj
i at t = 0 and t = 1 which simplify the C2 condition in [33] and help us to

obtain an explicit expression for control points that generate the Bézier spline α.

We summarize the different steps of the proof in Algorithm 4.1.

Algorithm 4.1: C2 interpolating Bézier spline on the Grassmann manifold M.

Input : N ≥ 3, X̃ = [X̃0, · · · , X̃N ]T a matrix of size n(N + 1)× n containing the

(N + 1) interpolation points in M.

Output: Y .

1 Calculate Ŷ = [Ŷ −

1 , · · · , Ŷ −

N−1]
T a matrix of size n(N − 1)× n containing the (N − 1)

control points of the C2 Bézier curve βi on TXi
M using Appendix A.

2 Set Y −

1 = Ŷ −

1 .

3 Calculate control point Y +
1 :

4 Y +
1 = ExpX̃1

(−(2/3)Exp−1

X̃1

(Y −

1 )).

5 Calculate control point Y −

2 :

6 Y −

2 = ExpY +

1

(((dϕX̃1
)Y −

1

(γ̇(1, X̃0, Y
−

1 ))− 4γ̇(0, Y −

1 , Ỹ1))/3).

7 for i = 2 : N − 2 do

8 Y +
i = ExpX̃i

(−Exp−1

X̃1

(Y −

i )).

9 Y −

i+1 = ExpY +

i
((dϕX̃i

)Y −

i
(γ̇(1, Y +

i−1, Y
−

i ))− 2γ̇(0, Y −

i , X̃i)).

10 end

11 Calculate control point Y +
N−1:

12 Y +
N−1 = ExpX̃N−1

(−(2/3)Exp−1

X̃N−1

(Y −

N−1)).

13 return Y .

The proof is complete. �

5. Experiments

We consider numerical and real-world examples where data pointsX0, X1, · · · , XN on a man-

ifold M are not necessarily parametric. So we can not restrict applications to a class of Xi. We

display some examples of random points on a Stiefel manifold M in Fig. 5.1. For each point Xi,

we plot the components (Xi[1]), (Xi[2]) and (Xi[3]) in blue, green and red, respectively. The

coordinates are then connected with edges to show the shape of the triangle. This illustration

outlines how the positions (components) change and how the shape of the triangle evolves from

one point to another. We also note that those points are random inside a geodesic ball so that

all the properties detailed in the previous sections are satisfied in order to define an interpo-

lating spline between them. Examples are random and different which capture large variability
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for illustration. Moreover, Fig. 5.2 shows examples from real-world data. We can observe that

the numerical examples, even random, provide good candidates for tests.

In the rest of this section, we illustrate the performance of the proposed method via differ-

ent experiments. In all cases, we have considered a finite set of data points X0, X1, · · · , XN on

a Stiefel manifold M. Each data point Xi is given at a fixed time instant ti with i = 0, 1, . . . , N

and (t0, tN ) = (0, 1), for simplicity. In the first setting, we consider a very common situation

where data points are elements on St(n, 1) = Sn−1. This situation is standard in many applica-

tions. To cite but a few popular ones: Normalized directions, longitudinal data, and rotations

which is equivalent to SO(n). In the second regression setting, we consider another example

where data points are elements on St(n, p) with p = 2 and n = 3.

Fig. 5.1. Random numerical examples on M = St(3, 2).

Fig. 5.2. Real data examples on M = St(3, 1).

5.1. Case 1: Numerical examples on St(3, 1)

These experiments concern the problem where observations are on the finite unit sphere.

We consider this case for two reasons: i) First it is possible to visualize a path on the sphere
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and ii) we validate our solution on the simplest example of Stiefel manifolds. Actually, this is

a very common problem in many applications, e.g. virtual reality, autonomous driving, and

robot navigation [4]. It is very known that geodesics exist and are unique for non antipodal

points. Both the Riemannian exponential and its inverse are diffeomorphisms inside a ball of

radius π. In all examples, we display the resulting path using the algorithm detailed in the paper

and not a specific formulation for spherical data. We remind that the problem of regression

with cubic splines can be efficiently solved in this case. However, our strategy is different: We

show that the proposed method produces good estimators when the Stiefel manifold coincides

with the sphere. Thus, and for visualization purposes, we consider the case (n, p) = (3, 1) and

show original data points (black) and the optimal α (red) with different values of N . The time

instants are uniformly spaced in [0, 1]. See the three different examples in Fig. 5.3.

Fig. 5.3. Examples with different data points on M = St(3, 1).

5.2. Case 2: Numerical examples on St(3, 2)

These experiments concern the nonlinear regression problem where observations are elements

of M = St(3, 2). They can be also considered as elements on the unit sphere, modulo rigid

transformations, usually denoted Σp
n and called the Kendall space. They were largely studied for

analyzing biological data [12]. We remind that our main objective is to show that the proposed

method is successful in the case of St(3, 2) and remains more general for other cases. Otherwise,

geodesics, the exponential map, log map are detailed in [12]. We display the resulting path

using the algorithm detailed in the paper and not a specific formulation for this manifold when

equipped with a different structure. Our strategy is different: Demonstrate that the proposed

method produces good estimators when the Stiefel manifold coincides with this manifold. For

visualization purposes, we consider the case (n, p) = (3, 2) and show the original data points and

the optimal path α with different values of N . The time instants are uniformly spaced in [0, 1].

See Fig. 5.4 for an example of α interpolating (X0, X1, X2, X3) ∈ St(3, 2) at t ∈ {0, 1/3, 2/3, 1}.

Following the same idea from the previous example in Fig. 5.4, we show another inter-

polating α using 5 points on M = St(3, 2) in Fig. 5.5. In the first example (X1, X2, X3)

are generated randomly in the ball (X0, 0.5π). In the second example (X1, X2, X3, X4) are

generated randomly in the ball (X0, 0.25π). Considering the shape of the triangles and the

coordinates (colored points) we can see that points in the first example are distant from each

other compared to the second example but the changes along the path are smooth. Moreover,

in the second example, X2 and X3 are very close and we observe the α(t) between them is

quasi-constant. Same between X3 and X4, red and blue points are quasi-fixed while the green

points are moving in the right direction smoothly. Another way to visualize the smoothness of α

in the second example is to plot the norm of the first and second derivatives. We illustrate this
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idea in Fig. 5.6 (top). In the same figure, we show the norm of the first and second derivatives

of a piecewise geodesic path for comparison. We can easily check that the proposed solution is

better.

Fig. 5.4. Example of α(t), t ∈ {0, 1/15, . . . , 1} on M = St(3, 2). The original observations are given on

the diagonal (red) at t ∈ {0, 1/3, 2/3, 1}. All α(t) are uniformly spaced in [0, 1].

Fig. 5.5. Example of α(t), t ∈ {0, 1/25, . . . , 1} on M = St(3, 2). The original observations are given on

the diagonal (red) and all α(t) are uniformly spaced in [0, 1].
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(a) (b)

Fig. 5.6. The norm of the first derivative (a) and the second derivative (b) of interpolating paths α(t),

t ∈ [0, 1] using the same example in Fig. 5.5. Top is the proposed solution and bottom is a piecewise

geodesic path.

5.3. Case 3: Application on real data

A problem of great importance, and of current interest in the scientific community, is study-

ing and exploiting electrocardiograms as a non-invasive methodology to detect heart diseases.

While there are many successful works in the literature to study cardiological problems by

means of static observations, there is still a need for mathematical models to study dynamic

spatio-temporal changes. Thus, evolution between subjects or temporal observations for the

same subject can help capture cross-sectional and functional variabilities [8]. In a medical con-

text, such models can assist physicians in the interpretation of sequences. For example, they

can be used to highlight changes during different temporal observations of the same subject.

In this spirit, we present a new trajectory-based approach that can smoothly interpolate se-

quences observed from different subjects to study inter-subject variability (stages). We remind

that our main goal is restricted to illustrating potential real applications without any medical

interpretation of results.

We consider a real dataset of vectocardiograms (VCG) from children with ages varying

between 2 and 19 where each observation Xi = (x1
i , x

2
i ) belongs to M = St(3, 2) [30]. Each

element describes the unitary vectors: x1
i as the direction to the apex and x2

i as the direction of

motion. Fig. 5.7 represents each matrix observation Xi = (x1
i , x

2
i ) by a points in M = St(3, 2).

They are then interpolated by a path α in M = St(3, 2). The observations are displayed in

red on the diagonal and all points α(t) are uniformly spaced in [0, 1]. To better visualize the

dynamics along α, we show the norm of the first and second derivatives in Fig. 5.8 (top). We

also show a piecewise geodesic path for comparison (bottom).
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Fig. 5.7. Example of α(t), t ∈ {0, 1/25, . . . , 1} on M = St(3, 2). The original observations are given on

the diagonal (red) and all α(t) are uniformly spaced in [0, 1].

(a) (b)

Fig. 5.8. The norm of the first derivative (a) and the second derivative (b) of interpolating paths α(t),

t ∈ [0, 1] using the same example in Fig. 5.7. Top is the proposed solution and bottom is piecewise

geodesic path.

6. Conclusions

Given X0, · · · , XN a set of (N + 1) distinct points on Stiefel and Grassmann manifolds M

and t0 < t1 < · · · < tN as an increasing sequence of time instants, we have introduced a new



20 I. ADOUANI AND C. SAMIR

framework for approximating a smooth curves that interpolate the given set of data points.

We consider the Stiefel manifold as a quotient manifold of the orthogonal Lie group equipped

with the inherited metric. With this geometric interpretation, we derive the explicit equations

that generate control points of interpolating C1 curves on Stiefel manifolds and C2 splines on

Grassmann manifolds due to the nice properties of this symmetric space. Our method is shown

to posses a relatively low computational complexity and to be robust. The generalization of

our method in general Homogeneous space is the major target of our future research.

Appendix A. C2 Bézier Spline on R
n

Let us consider the Euclidean case Rn. Given a list of (N+1) interpolation points p0, · · · , pN
and for simplicity of the exposition we will assume that the time instants are ti = i. In our

case, throughout the construction of the piecewise-Bézier curve β : [0, N ] −→ R
n, we will only

set k ∈ {2, 3} such that the segment joining p0 and p1, as well as the segment joining pN−1

and pN are Bézier curves of order two, while all the other segments are Bézier curves of order

three. βk are defined with a number of control points b̂i represented as their coefficients in the

Bernstein basis polynomials Bk
i . Explicitly, this means that

βk

(
t; b̂0, · · · , b̂k

)
=

k∑

i=0

b̂iB
k
i (t).

Therefore, it is easily seen that the way we choose to define control points fully determines the

curve β. In this case, we assume that there is two artificial control points (̂b−i , b̂
+
i ) on the left-

and on the right-hand side of the interpolation point pi, i = 1, . . . , N − 1. Consequently, β on

R
n is given by

β(t) =





β2

(
t; p0, b̂

−

1 , p1
)
, if t ∈ [0, 1],

β3

(
t− (i − 1); pi−1, b̂

+
i−1, b̂

−

i , pi
)
, if t ∈ [i − 1, i], i = 2, . . . , N − 1,

β2

(
t− (N − 1); pN−1, b̂

+
N−1, pN

)
, if t ∈ [N − 1, N ].

It is easy to check that the interpolation conditions β(ti) = pi holds and that β|[ti,ti+1] is

smooth. Furthermore, to ensure that β is C1, we shall make the following assumption:

β̇ki

(
b̂i0, · · · , b̂

i
ki ; t− i+ 1

)∣∣
t=i

= β̇ki+1

(
b̂i+1
0 , · · · , b̂i+1

ki+1 ; t− i
)∣∣

t=i
, i = 0, . . . , N − 2. (A.1)

This differentiability condition allows us to express b̂+i in terms of b̂−i as

b̂+1 =
5

3
p1 −

2

3
b̂−1 , (A.2)

b̂+i = 2pi − b̂−i , i = 2, . . . , N − 2, (A.3)

b̂+N−1 =
5

2
pN−1 −

3

2
b̂−N−1. (A.4)

Hence, the task now is reduced to search only control points b̂−i , i = 1, . . . , N − 1, that generate

the C1 Bézier spline β in R
n. Replacing the new optimization variables in problem (1.1) gives

(3.1), which is merely the problem of minimization of the mean square acceleration of the Bézier
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curve β in the Euclidean space R
n

min
b̂
−

1
,··· ,̂b

−

N−1

E
(
b̂−1 , · · · , b̂

−

N−1

)
:= min

b̂
−

1
,··· ,̂b

−

N−1

∫ 1

0

∥∥β̈0
2

(
t; p0, b̂

−

1 , p1
)∥∥2

+

N−2∑

i=1

∫ 1

0

∥∥β̈i
3

(
t; pi, b̂

−

i , b̂
−

i+1, pi+1

)∥∥2

+

∫ 1

0

∥∥ ¨βN−1
2

(
t; pN−1, b̂

−

N−1, pN
)∥∥2. (A.5)

Minimizing the functional E requires the computation of its gradient and then the search of its

critical points. As the energy is based on polynomials, it is possible to compute the analytical

expression of its gradient. We first compute the acceleration on respective intervals and then

evaluate the integral of each term of Eq. (A.5). For brevity, we skip the details and we give

just the final formulation of Eq. (A.5) which allows us to determine the optimal solution. After

simplification, we have

min
b̂
−

1
,··· ,̂b

−

N−1

E
(
b̂−1 , · · · , b̂

−

N−1

)
:= 4

(
− 4pT0 b̂

−

1 + 4b̂−T
1 b̂−1 − 4pT1 b̂

−

1

)

+

N−2∑

i=1

36
(
− pTi b̂

+
i + b̂+T

i b̂+i − b̂+T
i b̂−i+1 + b̂−T

i+1b̂
−

i+1 − b̂−T
i+1pi+1

)

+ 4
(
− 4pTN−1b̂

+
N−1 + 4b̂+T

N−1b̂
+
N−1 − 4pTN b̂+N−1

)
+K, (A.6)

whereK denotes a constant term involving all pi. Next we replace b̂
+
i ’s by b̂−i ’s using Eqs. (A.2)-

(A.4). Then the optimal solution is given by

∂E

∂b̂−1
= 4

(
8b̂−1 − 4p0 − 4p1

)
+ 36

(
−
14

9
p1 +

8

9
b̂−1 +

6

9
b̂−2

)
= 0,

∂E

∂b̂−2
= 36

(
−
5

3
p1 +

2

3
b̂−1 + 2b̂−2 − p2

)
+ 36

(
− 3p2 + 2b̂−2 + b̂−3

)
= 0,

∂E

∂b̂−j
= 36

(
− 3pj + 2b̂−j + b̂−j+1

)

+ 36
(
− 2pj−1 + b̂−j−1 + 2b̂−j − pj

)
= 0, j = 2, . . . , N − 2,

∂E

∂b̂−N−1

= 36
(
− 2pn−2 + b̂−N−2 + 2b̂−N−1 − pN−1

)
+ 4

(
− 24pN−1 + 18b̂−N−1 + 6pN

)
= 0.

(A.7)

The optimal solution Y = [̂b−1 , · · · , b̂
−

N−1]
T ∈ R

(N−1)×m of that problem is the unique

solution of a tridiagonal linear system

Y = A−1CP = DP with

j=N+1∑

j=0

dij = 1, (A.8)

where A is a tridiagonal sparse square matrix of size (N−1)×(N−1) with a dominant diagonal,

C a matrix of size (N − 1)× (N + 1) and P the matrix of pi’s of size (N + 1)×m given by

A(1,1:2) = [16 6], (A.9)
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A(2,1:3) = [6 36 9], (A.10)

A(i,i−1:i+1) = [9 36 9], (A.11)

A(n−1,n−2:n−1) = [9 36], (A.12)

C(1,1:2) = [16 6], (A.13)

C(2,2:3) = [6 36 9], (A.14)

C(i,i:i+1) = [9 36 9], i = 3, . . . , n− 2. (A.15)

C(n−1,n−1:n+1) = [9 36]. (A.16)

We may now write the C2 differentiability condition. It is obvious that with this C2 condition

the position of the control points b̂−i and b̂+i that generate the curve β will be modified. There-

fore, it is more convenient to use another notation. Let us denote by b−i and b+i the new control

points on the left- and on the right-hand side of the interpolation point pi, i = 1, . . . , N − 1.

Computing the acceleration of β on respective intervals and taking into account that β is C1,

we shall replace b+1 by (A.2), b+i by (A.3), and b+N−1 by (A.4). We deduce that

b−2 =
1

3
p0 −

1

2
b−1 +

8

3
p1, (A.17)

b−i+1 = b+i−1 + 4pi − 4b−i , i = 2, . . . , N − 2, (A.18)

pN = 2pN−1 + 2b+N−1 − 6b−N−1 + 3b+N−2. (A.19)

We see at once that points that will be modified by the additional C2 condition are b̂−i and hence,

b̂+i , i = 2, . . . , N−1. The point b̂−1 remains invariant and consequently it will be the case for b̂+1 .

According to the C1 differentiability condition ensured at the first step, one can take b−1 = b̂−1 ,

with b̂−1 is the first row of the matrix Y obtained as a solution of the optimization problem

(3.1). However, the endpoint pn is affected as we can deduce from Eq. (A.19). Nevertheless, it

follows that giving the control point b−1 allows us to find all the other control points including

b−2 with Eq. (A.17) and hence, b+2 with (A.3), then b−i+1, i = 2, . . . , N − 2 with (A.18) and

therefore b+i , i = 3, . . . , N − 2 with (A.3) and b+N−1 with (A.4).

Appendix B. Proof of Theorem 4.2

We now prove Theorem 4.2. The proof is based on the following two results given in [33].

Lemma B.1. Let X1 ∈ M.

1. (dϕX1
)−1
X2

= (dϕX1
)ϕX1

(X2) for all X2 ∈ M.

2. (dϕX1
)ExpX1

(H) ◦ (dExpX1
)H = −(dExpX1

)−H for all H ∈ TX1
M.

Theorem B.1. Let t −→ αj(t, V0, · · · , Vj) be the Bézier curve of order j on M with a number

of control points Vj , i = 0, . . . , j. Then αj(t;V0, · · · , Vj) satisfies

1.
D

dt

∣∣∣
t=0

α̇j(t;V0, · · · , Vj) = j(j − 1)Ω0, where

Ω0 :=

{
γ̇(0, V1, V2), if V0 = V1,(
dExpV0

)−1

γ̇(0,V0,V1)

(
γ̇(0, V1, V2)− γ̇(1, V0, V1)

)
, if V0 6= V1.
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2.
D

dt

∣∣∣
t=1

α̇j(t;V0, · · · , Vj) = j(j − 1)Ωj, where

Ωj :=

{
−α̇

(
0, Vj−2, Vj−1

)
, if Vj−1 = Vj ,(

dExpVj

)−1

−α̇(1,Vj−1,Vj)

(
α̇(0, Vj−1, Vj)− α̇(1, Vj−2, Vj−1)

)
, if Vj−1 6= Vj .

We will exploit a modified form of the Theorem B.1 to obtain the proof of Theorem 4.1.

Proof of Theorem 4.1. The Bézier curve α is C2 on M if and only if it satisfies the C2

differentiability condition at joint points X̃i, i = 1, . . . , n− 1. At the point X̃1, this means

D

dt

∣∣∣
t=1

α̇2

(
t; X̃0, Y

−

1 , X̃1

)
=

D

dt

∣∣∣
t=0

α̇3

(
t; X̃1, Y

+
1 , Y −

2 , X̃2

)
. (B.1)

Applying Theorem B.1 yields: α is C2 on X̃1 if and only if Ω2 − 3Ω0 = 0 with

Ω2 − 3Ω0 =
(
dExpX̃1

)−1

−γ̇(1,Y −

1
,1̃)

(
γ̇
(
0, Y −

1 , X̃1

)
− γ̇

(
1, X̃0, Y

−

1

))

− 3
(
dExpX̃1

)−1

γ̇(0,X̃1,Y
+

1
)

(
γ̇
(
0, Y +

1 , Y −

2

)
− γ̇

(
1, X̃1, Y

+
1

))
. (B.2)

Since β1 is a C1 Bézier curve on TX1
M, we have that γ̇(1, Y −

1 , X̃1) = γ̇(0, Ỹ1, Y
+
1 ). By

Lemma B.1, we have

(
dExpX̃1

)−1

γ̇(0,X̃1,Y
+

1
)

(
γ̇
(
0, Y +

1 , Y −

2

)
− γ̇

(
1, X̃1, Y

+
1

))

= −
(
dExpX̃1

)−1

−γ̇(0,X̃1,Y
+

1
)

(
(dϕX̃1

)Y +

1

(
γ̇
(
0, Y +

1 , Y −

2

)
− α̇

(
1, X̃1, Y

+
1

)))
.

It follows that

Ω2 − 3Ω0 =
(
dExpX̃1

)−1

−γ̇(0,X̃1,Y
+

1
)

(
γ̇
(
0, Y −

1 , X̃1

)
− γ̇

(
1, X̃0, Y

−

1

))

+ 3
(
dExpX̃1

)−1

−γ̇(0,X̃1,Y
+

1
)

(
(dϕX̃1

)Y +

1

(
γ̇
(
0, Y +

1 , Y −

2

)
− γ̇

(
1, X̃1, χ

+
1

)))

=
(
dExpX̃1

)−1

−γ̇(0,X̃1,Y
+

1
)

[
3(dϕX̃1

)Y +

1

(
γ̇
(
0, Y +

1 , Y −

2

))
− 3(dϕX̃1

)Y +

1

(
γ̇
(
1, X̃1, Y

+
1

))

+ γ̇
(
0, Y −

1 , X̃1

)
− γ̇

(
1, X̃0, Y

−

1

)]
.

Hence, Ω2 − 3Ω0 = 0 if and only if

3(dϕX̃1
)Y +

1

(
γ̇
(
0, X+

1 , Y −

2

))
− 3(dϕX̃1

)Y +

1

(
γ̇
(
1, X̃1, Y

+
1

))

+ α̇
(
0, Y −

1 , X̃1

)
− γ̇

(
1, X̃0, Y

−

1

)
= 0. (B.3)

Nevertheless

ϕX̃1

(
γ
(
t, X̃1, Y

+
1

))
= α

(
1− t, Y −

1 , X̃1

)
, ∀t ∈ [0, 1].

Differentiate this identity with respect to t, we obtain

(dϕX̃1
)Y +

1

(
γ̇
(
1, X̃1, Y

+
1

))
= −γ̇

(
0, Y −

1 , X̃1

)
.

Accordingly, Eq. (B.3) becomes

3(dϕX̃1
)Y +

1

(
γ̇
(
0, Y +

1 , Y −

2

))
= γ̇

(
1, X̃0, Y

−

1

)
− 4γ̇

(
0, Y −

1 , X̃1

)
. (B.4)
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Now, Lemma B.1 shows that

(dϕX̃1
)Y +

1

(
γ̇
(
0, Y +

1 , Y −

2

))
= (dϕX̃1

)
ϕX̃1

(
Y

−

1

)
(
γ̇
(
0, Y +

1 , Y −

2

))

= (dϕX̃1
)−1

Y
−

1

(
γ̇
(
0, Y +

1 , Y −

2

))
.

It follows that

(dϕX̃1
)−1

Y
−

1

(
γ̇
(
0, Y +

1 , Y −

2

))
=

1

3

(
γ̇
(
1, X̃0, Y

−

1

)
− 4γ̇

(
0, Y −

1 , X̃1

))
.

Consequently, with the exponential map at the point χ+
1 , we get

Y −

2 = ExpY +

1

(
1

3

(
(dϕX̃1

)Y −

1

(
γ̇(1, X̃0, Y

−

1 )
)
− 4α̇

(
0, Y −

1 , X̃1

)))
. (B.5)

The proof of Part (iii) follows in much the same way as Part (ii). �
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Bézier Splines Interpolation on Stiefel and Grassmann Manifolds 25

[16] P.-Y. Gousenbourger, C. Samir, and P.A. Absil, Piecewise-Bézier C1 Interpolation on Riemannian
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[33] T. Popiel and L. Noakes, Bézier curves and C2 interpolation in Riemannian manifolds, J. Approx.

Theory, 148:2 (2007), 111–127.

[34] Q. Rentmeesters, A gradient method for geodesic data fitting on some symmetric Riemannian

manifolds, in: Proceedings of the IEEE Conference on Decision and Control, (2011), 7141–7146.

[35] Q. Rentmeesters, P.A Absil, P. Van Dooren, K. Gallivan, and A. Srivastava, An efficient parti-

cle filtering technique on the Grassmann manifold, in: 2010 IEEE International Conference on

Acoustics, Speech and Signal Processing, (2010), 3838–3841.

[36] C. Samir, P.-A. Absil, A. Srivastava, and E. Klassen, A gradient-descent method for curve fitting

on Riemannian manifolds, Found. Comput. Math., 12 (2012), 49–73.

[37] T. Shingel, Interpolation in special orthogonal groups, IMA J. Numer. Anal., 29:3 (2009), 731–

745.

[38] F. Silva Leite and L. Machado, Fitting smooth paths on Riemannian manifolds, Int. J. Appl.



26 I. ADOUANI AND C. SAMIR

Math. Stat., 06:4 (2006), 25–53.

[39] A. Srivastava and E. Klassen, Functional and Shape Data Analysis, Springer, 2016.

[40] G. Sundaramoorthi, A. Mennucci, S. Soatto, and A.J. Yezzi, A new geometric metric in the

space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM

J. Imaging Sci., 4:1 (2011), 109–145.

[41] J. Wallner, E. Nava Yazdani, and P. Grohs, Smoothness properties of Lie group subdivision

schemes, Multiscale Model. Simul., 6:2 (2007), 493–505.

[42] R. Zhang, L. Xuelong, H. Zhang, and Z. Jiao, Geodesic multi-class SVM with Stiefel manifold

embedding, IEEE Trans. Pattern Anal. Mach. Intell., 2021. doi: 10.1109/TPAMI.2021.3069498

[43] R. Zimmermann, A matrix-algebraic algorithm for the Riemannian logarithm on the Stiefel man-

ifold under the canonical metric, SIAM J. Matrix Anal. Appl., 38:2 (2017), 322–342.


