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Abstract

This paper considers the finite element approximation to parabolic optimal control

problems with measure data in a nonconvex polygonal domain. Such problems usually

possess low regularity in the state variable due to the presence of measure data and the

nonconvex nature of the domain. The low regularity of the solution allows the finite

element approximations to converge at lower orders. We prove the existence, uniqueness

and regularity results for the solution to the control problem satisfying the first order

optimality condition. For our error analysis we have used piecewise linear elements for the

approximation of the state and co-state variables, whereas piecewise constant functions

are employed to approximate the control variable. The temporal discretization is based on

the implicit Euler scheme. We derive both a priori and a posteriori error bounds for the

state, control and co-state variables. Numerical experiments are performed to validate the

theoretical rates of convergence.
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1. Introduction

The aim of this paper is to study both a priori and a posteriori error analysis of finite

element approximations to the following model control problem:

min
u∈Uad

J(y, u), (1.1)

where

J(y, u) :=
1

2

∫ T

0

‖y − yd‖2L2(Ω)dt+
Λ

2

∫ T

0

‖u‖L2(Ω)dt

with u represents the control variable and y indicates the associated state variable. The state

equation is given by














∂y

∂t
−∆y = στ + u in ΩT ,

y = 0 on ΓT ,

y(·, 0) = y0 in Ω.

(1.2)

In the above, Ω is a nonconvex polygonal domain in R
2 with Lipschitz boundary ∂Ω. Set

ΩT = Ω × (0, T ] and ΓT = ∂Ω × (0, T ]. The boundary ∂Ω can be expressed as ∂Ω = ∪m
j=1Γj
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with Γj , j = 1, 2, . . . ,m, are edges of the polygon. The constraints on the control variable are

specified through the closed and convex subset of L2(0, T ;L2(Ω)) as follows:

Uad :=
{

u ∈ L2
(

0, T ;L2(Ω)
)

: ua ≤ u(x, t) ≤ ub for a. a. (x, t) ∈ ΩT

}

. (1.3)

Assume that the given functions y0 ∈ L2(Ω), yd ∈ H1(0, T ;L2(Ω)), σ ∈ C([0, T ];L2(Ω)) and

τ ∈ B[0, T ], where B[0, T ] is the space of real and regular Borel measures in [0, T ]. Further,

the constants ua, ub ∈ R satisfy ua < ub, the regularization parameter Λ > 0 and the final time

T < ∞.

Optimal control problems are widely used in scientific and engineering applications [26,36].

The numerical study of such type of problems began in early 1970s [16, 17]. Thereafter there

have been several notable contributions to this discipline and it is impossible to list all of

them. Nevertheless, for the development of the finite element approach for parabolic optimal

control problems (POCPs), see [19, 23, 32, 37, 42] and references therein. The authors of [33,

34] have utilized discontinuous Galerkin technique for temporal discretization and established

convergence results for space-time finite element discretizations for POCPs. In [35], the authors

have adopted Petrov-Galerkin Crank-Nicolson method for discretization of the control problem

and derived related error estimates. The sparse POCPs have been analyzed by the authors

of [11], where the control variable is taken to be an element of the measure space. They have

provided a priori error estimates for the control problem.

Following the work of Babuška and Rheinboldt [4], the adaptive finite element method has

grown popularity in scientific computing. It is well known that a posteriori error estimation is

a necessary part of adaptivity for mesh refinement. The pioneer work has been made by Liu and

Yan [28] for residual based a posteriori error estimates, Becker et al. [7] for dual-weighted goal

oriented adaptivity and Li et al. [25] for recovery type a posteriori error estimators. A posteriori

error analysis for optimal control problems governed by parabolic equation have been extensively

investigated by numerous authors in [29, 31, 40, 41, 43].

POCPs are widely encountered in mathematical models representing groundwater contam-

ination transmission, environmental modeling, petroleum reservoir simulation, and a variety of

other applications. There are several real-world applications for POCPs when the state vari-

able possesses less regularity due to the support of the source. Essentially, the support for the

source function must be relatively tiny in comparison to the real size of the domain Ω. This

feature drives us to explore control problems in which the source functions are measure data

(elements from B(Ω)). The POCPs with measure data encounter environmental concerns such

as air pollution and waste-water treatment. Due to the presence of measure data, the solution

of the state variable possesses less regularity which makes finite element error analysis more

challenging. Therefore, an attempt has been made to study the convergence properties of the

finite element method for such problems.

The study of optimal control problems governed by partial differential equations over a non-

smooth domain is a difficult task. The existence of re-entrant corners in the domain causes

both theoretical and numerical analysis to be complicated. However, although there is a sig-

nificant amount of research on the numerical analysis of the elliptic problem with a nonconvex

domain [3, 5, 6, 20, 21] and quite a few works on the parabolic problem [12, 13]. For optimal

control problems, there was not much work done in the nonconvex polygonal domain. In re-

cently published article [2], Apel et al. developed a priori error estimates for the optimal control

problem on a nonconvex domain.
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The numerical analysis of the problem under consideration is difficult because of the presence

of measure data and the nonconvex nature of the domain. The low regularity of the solution

allows the numerical approximations to converge at lower orders. This study aims to look at

the finite element approximation and mathematical formulation of the model problem. The re-

sults regarding the existence and uniqueness of the solution to the control problem are proved.

Based on the necessary optimality condition, the regularity results for the control problem are

explored. For the control variable, piecewise constant functions are utilized, whereas piece-

wise linear and continuous functions are used to approximate the state and co-state variables.

The backward-Euler technique is used for temporal discretization. We studied completely dis-

crete finite element approximations of the POCP (1.1)-(1.3) and established both a priori and

a posteriori error bounds for the state, co-state and control variables.

We mention [8, 9] for a great introduction to nonlinear parabolic equations with measure

data. The author of [10] have addressed the semilinear parabolic problems with measure data.

Additionally, the asymptotic behavior of a parabolic equation involving measure data has been

studied by Gong [18]. For recent research on POCPs with measure data, we refer to [38, 39].

The paper is structured as follows: We introduce some function spaces and preliminary

material in Section 2. We discuss the weak formulation and investigate the existence, uniqueness

and regularity results of the solution to the control problem (1.1)-(1.3). The convergence

analysis for the a priori error estimates of the space-time finite element approximation to the

control problem is discussed in Section 4. In Section 5, we derived a posteriori error estimates

for the control problem. In the last section, we perform numerical experiments to demonstrate

the theoretical findings.

2. Notation and Wellposedness

This section introduces some function spaces to be used in our analysis. It also contains the

existence, uniqueness, and regularity results of the solutions to the POCP (1.1)-(1.3).

For bounded polygonal domain Ω, let the inner angles of corners of the domain be denoted

by ωj . Set β = maxj(π/ωj) ∈ (1/2, 1). For simplicity, it is assumed that there is only one

re-entrant corner with angle ω such that π < ω < 2π. For example, the interior angle for

L-shape domain ω = 3π/2, and hence β = 2/3 < 1. Let C(Ω) denote the space of continuous

functions defined on Ω. The space Wm,p(Ω) indicates the usual Sobolev spaces [1] with norm

‖ · ‖Wm,p(Ω) and semi-norm | · |Wm,p(Ω). Define

Wm.p
0 (Ω) := {v ∈ Wm,p(Ω) : v = 0 on ∂Ω}.

For p = 2, the spaces Wm,p(Ω) and Wm,p
0 (Ω) are represented by Hm(Ω) and Hm

0 (Ω), respec-

tively with norm ‖·‖Hm(Ω) and semi-norm |·|Hm(Ω). In particular, for 0 < s < 1 and 1 < p ≤ ∞,

the norm on the fractional order Sobolev space W s,p(Ω) is given by

‖v‖W s,p(Ω) =

(

‖v‖p
Lp(Ω) +

∫

Ω

∫

Ω

|v(x)− v(y)|p
|x− y|2+ps

dx dy

)
1
p

.

Set Hm,m′

(ΩT ) = L2(0, T ;Hm(Ω)) ∩Hm′

(0, T ;L2(Ω)) with the standard norm

‖w‖Hm,m′ (ΩT ) :=

(

∫ T

0

‖w(·, t)‖2Hm(Ω)dt+

∫

Ω

‖w(x, ·)‖2
Hm′ ([0,T ])

dx

)
1
2

,

where ‖ · ‖Hm′([0,T ]) denote the norm on Hm′

([0, T ]).
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Further, let X (0, T ), X̂ (0, T ) and W (0, T ) denote L2(0, T ;H1
0(Ω)) ∩ H1(0, T ;H−1(Ω)),

L2(0, T ;H1+s(Ω) ∩ H1
0 (Ω)) ∩ H1(0, T ;L2(Ω)) and L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)), respec-

tively for s ∈ (1/2, β). The symbols (· , ·) and (· , ·)ΩT
denote the L2-inner product on L2(Ω)

and L2(0, T ;L2(Ω)), respectively. Hereafter C denotes a positive generic constant which is

independent of the mesh parameters h and k, which may depend on final time T .

We employ the transposition approach developed by Lions and Magenes (cf. [27]) to assertion

that the state equation (1.2) has a unique solution. The weak form of (1.2) is stated as: Find

y ∈ W (0, T ) such that

−
(

y,
∂w

∂t

)

ΩT

+ (∇y,∇w)ΩT
= 〈στ, w〉ΩT

+ (u,w)ΩT
+
(

y0, w(·, 0)
)

, ∀w ∈ X (0, T ), (2.1)

where we utilized w(·, T ) = 0 and 〈στ, w〉ΩT
is defined as

〈στ, w〉ΩT
=

∫ T

0

∫

Ω

σ(x, t)w(x, t)dx dτ(t), ∀w ∈ C
(

[0, T ];L2(Ω)
)

.

In the subsequent theorem, we provide a priori bounds for the state variable which are essential

to our analysis. For a proof, see [39].

Theorem 2.1. For u ∈ L2(0, T ;L2(Ω)) ∩ L∞(0, T ;L2(Ω)), assume that the given functions

σ ∈ C([0, T ];L2(Ω)), τ ∈ B[0, T ] and y0 ∈ L2(Ω). Then, the unique solution y ∈ W (0, T ) of the

problem (1.2) exists and satisfies a priori bound

‖y‖L2(0,T ;H1
0
(Ω)) + ‖y‖L∞(0,T ;L2(Ω))

≤ C
(

‖σ‖L∞(0,T ;L2(Ω))‖τ‖B [0,T ] + ‖u‖L2(0,T ;L2(Ω)) + ‖y0‖L2(Ω)

)

.

The weak formulation of the control problem (1.1)-(1.3) is as follows:






















minu∈Uad
J(y, u),

−
(

y,
∂w

∂t

)

ΩT

+ (∇y,∇w)ΩT

= 〈στ, w〉ΩT
+ (u,w)ΩT

+
(

y0, w(·, 0)
)

, ∀w ∈ X (0, T ),

(2.2)

where w(·, T ) = 0 and 〈στ, w〉ΩT
is defined as before.

From the standard arguments, there exists a unique solution (y, u) for the problem (2.2). Let

J (u) := J(y(u), u) denote the reduced cost functional, where for each u ∈ L2(0, T ;L2(Ω)) the

state y(u) is the weak solution of (2.1). It should be noted that the cost functional of the optimal

control problem (2.2) is strictly convex and hence, in light of the Theorem 2.1, it is bounded.

This ensures the existence of an optimal solution. Since J is twice Fréchet differentiable convex

function and Uad is a closed convex subset of L2(0, T ;L2(Ω)), the existence of unique control

is guaranteed. For further reading, we refer to [30].

We now state the first-order optimality condition which is necessary and sufficient for the

optimal control problem (2.2).

Lemma 2.1. The optimal control problem (2.2) has a unique solution (y, u). Then there exists

a co-state variable φ ∈ X̂ (0, T ) which is the solution of







−
(

∂φ

∂t
, w

)

+ (∇φ,∇w) = (y − yd, w), ∀w ∈ L2
(

0, T ;H1
0(Ω)

)

,

φ(·, T ) = 0 in Ω.

(2.3)
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Moreover, the following variational inequality is satisfied:

J ′(u)(û− u) =

∫ T

0

(Λu+ φ, û − u) dt ≥ 0, ∀û ∈ Uad. (2.4)

Proof. Let û ∈ Uad be arbitrary and let u be the optimal solution. Since Uad is convex, for

λ∈(0, 1], we have (u+λ(û−u))∈Uad. Note that u is optimal, this implies J (u+λ(û−u)) ≥ J (u)

and hence,
1

λ

(

J
(

u+ λ(û− u)
)

− J (u)
)

≥ 0, λ ∈ (0, 1].

Letting λ → 0, we get J ′(u)(û− u) ≥ 0, which validates (2.4). �

It is easy to verify that the variational inequality (2.4) implies

u = P[ua,ub]

(

−φ

Λ

)

, (2.5)

where P[ua,ub] indicates the point-wise projection on Uad, and is defined by

P[ua,ub]

(

ũ(x, t)
)

:= min
(

ub,max
(

ua, ũ(x, t)
))

. (2.6)

Moreover, there exists a positive constant γ such that the following holds:

J ′′(u)(ũ, ũ) ≥ γ‖ũ‖2L2(0,T ;L2(Ω)), ∀ũ ∈ L2
(

0, T ;L2(Ω)
)

. (2.7)

We now state the regularity results associated with the backward parabolic problem without

proof. The proof of which can be found in [13].

Proposition 2.1. For g ∈ L2(0, T ;L2(Ω)), let η ∈ X̂ (0, T ) be the solution of















−∂η

∂t
−∆η = g in Ω× [0, T ),

η = 0 on ∂Ω× [0, T ),

η(·, T ) = 0 in Ω.

(2.8)

Thus, we have the following a priori bounds:

‖η‖H1(0,T ;L2(Ω)) + ‖η‖L2(0,T ;H1+s(Ω)) ≤ CR‖g‖L2(0,T ;L2(Ω)),

‖η(·, 0)‖H1(Ω) ≤ CR‖g‖L2(0,T ;L2(Ω)),

where CR is a positive regularity constant.

Now, we discuss the regularity of the solution to the problems (2.2) and (2.3) in the following

lemma.

Lemma 2.2. Let (y, u) be the solution of the optimization problem (2.2), and let φ be the

solution of (2.3). Then, we have

(y, u, φ) ∈ W (0, T )× X̂ (0, T )× X̂ (0, T ).

Proof. We deduce from Theorem 2.1 that y ∈ W (0, T ). For yd ∈ L2(0, T ;L2(Ω)) implies

φ ∈ X̂ (0, T ), which together with (2.5) gives u ∈ X̂ (0, T ). �
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3. Finite Element Discretization

This section is focused on the approximation of the POCP (2.2) using the finite element

technique.

Let h = maxK∈Th
diam(K) be the maximum diameter of the triangles formed by the quasi-

uniform triangulation Th of Ω. Let Eh indicate the set of all interior edges. For a piecewise

scalar function v, the jump of v across an edge e is given by [[v]] = v|K+ − v|K− , where K+

and K− are two triangles that share the common edge e. The finite element spaces defined for

a particular triangulation Th are given as

Wh := {wh ∈ C(Ω) : wh|K is a linear polynomial},
Uad,h := {ûh ∈ Uad : ûh|K is a constant}.

With Wh defined as above, set W
0
h = Wh ∩ H1

0 (Ω). The following inverse estimate holds for

wh ∈ Wh (cf. [15]):

‖wh‖Hp2 (Ω) ≤ Chp1−p2‖wh‖Hp1 (Ω), 0 ≤ p1 ≤ p2 ≤ 1, ∀wh ∈ Wh. (3.1)

In the following lemmas, we recall the approximation properties associated with the elliptic

projection and the L2-projection (cf. [13, 14]).

Lemma 3.1. The elliptic projection P1
h : H1

0 (Ω) → W
0
h is defined as

(

∇
(

P1
hw − w

)

,∇wh

)

= 0, ∀wh ∈ W
0
h.

Then, for s ∈ (1/2, β), we have

∥

∥w − P1
hw
∥

∥

L2(Ω)
+ hs

∥

∥∇w −∇P1
hw
∥

∥

L2(Ω)
≤ Ch2s‖w‖H1+s(Ω).

Moreover,
∥

∥w − P1
hw
∥

∥

L2(Ω)
≤ Chs‖w‖H1(Ω).

Lemma 3.2. The L2-projection P0
h : L2(Ω) → Wh is defined as

(

P0
hw − w,wh

)

= 0, ∀wh ∈ Wh. (3.2)

Then, for s ∈ (1/2, β), we have the following estimates:

∥

∥w − P0
hw
∥

∥

H−1(Ω)
+ hs

∥

∥w − P0
hw
∥

∥

L2(Ω)
≤ Ch2s‖w‖H1(Ω),

∥

∥w − P0
hw
∥

∥

H1(Ω)
≤ Ch2s−1‖w‖H1+s(Ω).

With yh,0 = P0
hy0, the spatially discrete approximation of the problem (2.2) is to find

(yh(t), uh(t)) ∈ L2(0, T ;W0
h)× L2(0, T ;Uad,h) such that

min
uh∈L2(0,T ;Uad,h)

Jh(yh, uh) =
1

2

∫ T

0

{

‖yh − yd‖2L2(Ω) + Λ‖uh‖2L2(Ω)

}

dt (3.3)

subject to the state equation

−
(

yh,
∂wh

∂t

)

ΩT

+ (∇yh,∇wh)ΩT
= 〈στ, wh〉ΩT

+ (uh, wh)ΩT
+
(

yh,0, wh(·, 0)
)

, (3.4)
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where wh(·, T ) = 0 and

〈στ, wh〉ΩT
=

∫ T

0

∫

Ω

σwh dx dτ(t), ∀wh ∈ H1
(

0, T ;W0
h

)

.

Next, we consider the completely discrete approximation of the spatially discrete problem

(3.3)-(3.4). For this, we introduce a partition of [0, T ] as 0 = t0 < t1 < · · · < tN−1 < tN = T .

Utilizing the time partition, we notice that the time interval [0, T ] is divided into subintervals

In = (tn−1, tn] with time step kn = tn − tn−1 and k = max1≤n≤N kn. We assume that the time

partition is quasi-uniform, i.e. there exist positive constants c1 and c2 such that c1kn ≤ k ≤ c2kn
holds for each n ∈ [1 : N ]. Set χn := χ(x, tn) for any sequence of functions {χn}Nn=0 defined

in Ω, and define Dkn
χn+1 = (χn+1 − χn)/kn. Construct the finite element space W

n
h ⊂ H1

0 (Ω)

related with the mesh T n
h . Similar to Eh, we indicate En

h as set of all internal edges of T n
h . For

n ∈ [1 : N ], define the discrete space for the control variable as

U
n
ad := {ũ ∈ Uad : ũ|In×K = constant, K ∈ T n

h }.

Let Vk indicate the space of piecewise constant functions on the time partition. Define Pn
k :

L2(0, T ) → In as

Pn
k v := (Pkv)(t)|In =

1

kn

∫

In

v(t) dt, t ∈ In,

and indicate Pk : L2(0, T ) → Vk such that Pkv|In = Pn
k v. Then, Pk fulfils

‖(I − Pk)v‖L2(0,T ;L2(Ω)) ≤ Ck‖vt‖L2(0,T ;L2(Ω)), ∀v ∈ H1
(

0, T ;L2(Ω)
)

. (3.5)

The completely discrete approximation of (3.3)-(3.4) is defined as: Find (ynh , u
n
h) ∈ W

n
h × U

n
ad

for n ∈ [1 : N ] such that

min
un
h
∈Un

ad

Jn

(

un
h

)

:= J
(

ynh , u
n
h

)

=
1

2

N
∑

n=1

∫ tn

tn−1

{

∥

∥ynh − Pn
k yd

∥

∥

2

L2(Ω)
+ Λ

∥

∥un
h

∥

∥

2

L2(Ω)

}

dt (3.6)

subject to
{

(

Dkn
ynh , wh

)

+
(

∇ynh ,∇wh

)

= 〈στ, wh〉In +
(

un
h, wh

)

, ∀wh ∈ W
n
h,

y0h = yh,0,
(3.7)

where 〈στ, wh〉In is given by

〈στ, wh〉In =
1

kn

∫ tn

tn−1

∫

Ω

σ(x, t)wh(x)dx dτ(t), ∀wh ∈ W
n
h .

In the following, we need to investigate the stability behaviour of the solution to the com-

pletely discrete state equation (3.7) concerning the initial value y0, the measure data στ and

the discrete control variable un
h.

Lemma 3.3. For n ∈ [1 : N ], consider yh,0 = P0
hy0 and let ynh ∈ W

n
h be the solution of (3.7).

Then, we have the following estimates:

N
∑

n=1

∥

∥ynh − yn−1
h

∥

∥

2

L2(Ω)
+ Ck

∥

∥yNh
∥

∥

2

H1(Ω)

≤ C
(

‖σ‖2L∞(0,T ;L2(Ω))‖τ‖2B [0,T ] + kh−2‖y0‖2L2(Ω)

)

+ Ck‖un
h‖2L2(0,T ;L2(Ω)),
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∥

∥yNh
∥

∥

2

L2(Ω)
+ C

N
∑

n=1

k
∥

∥ynh
∥

∥

2

H1(Ω)

≤ C
(

‖σ‖2
L∞

(

0,T ;L2(Ω)
)‖τ‖2

B [0,T ] + ‖y0‖2L2(Ω)

)

+ Ck
∥

∥un
h

∥

∥

2

L2(0,T ;L2(Ω))
.

Proof. The proof is similar to [39], hence we omit the details. �

The completely discrete POCP (3.6), (3.7) has a unique solution (ynh , u
n
h) for n ∈ [1 : N ]

such that the triplet (ynh , u
n
h, φ

n−1
h ) fulfils

(

Dkn
ynh , wh

)

+
(

∇ynh ,∇wh

)

= 〈στ, wh〉In +
(

un
h, wh

)

, ∀wh ∈ W
n
h, (3.8)

−
(

Dkn
φn
h , wh

)

+
(

∇φn−1
h ,∇wh

)

=
(

ynh − Pn
k yd, wh

)

, ∀wh ∈ W
n
h, (3.9)

φN
h = 0, (3.10)
(

Λun
h + φn−1

h , ûn
h − un

h

)

≥ 0, ∀ûn
h ∈ U

n
ad. (3.11)

4. A Priori Error Estimates

This section concerns a priori error estimates for the control, state and co-state variables.

For n ∈ [1 : N ], on each time interval In, define Yh(t) := ynh , Uh(t) := un
h, and continuous

piecewise linear interpolant Φh(t) as

Φh(t) :=
(tn − t)

kn
φn−1
h +

(t− tn−1)

kn
φn
h.

Here, we first introduce the auxiliary problems for the state and co-state variables as follows:

Find ynh(u) ∈ W
n
h such that

{

(

Dkn
ynh(u), wh

)

+
(

∇ynh(u),∇wh

)

= 〈στ, wh〉In + (u,wh), ∀wh ∈ W
n
h, n ≥ 1,

y0h(u) = yh,0,
(4.1)

and for n < N , let φn−1
h (u) ∈ W

n
h be the solution of

{

−
(

Dkn
φn
h(u), wh

)

+
(

∇φn−1
h (u),∇wh

)

=
(

ynh(u)− Pn
k yd, wh

)

, ∀wh ∈ W
n
h,

φN
h (u) = 0.

(4.2)

The preliminary error bounds for the state and co-state variables are provided in the next

lemma.

Lemma 4.1. Under the assumption of Theorem 2.1, let (y, φ) and (Yh(u),Φh(u)) be the solu-

tions (2.1), (2.3) and (4.1), (4.2), respectively. Then, for yd ∈ H1(0, T ;L2(Ω)) and s ∈ (1/2, β),

the following estimates:

‖y − Yh(u)‖L2(0,T ;L2(Ω))

≤ C
(

h2sk−
1
2 + k

1
2 + hs

){

‖y0‖L2(Ω) + ‖σ‖L∞(0,T ;L2(Ω))‖τ‖B [0,T ] + ‖u‖L2(0,T ;L2(Ω))

}

, (4.3)

‖φ− Φh(u)‖L2(0,T ;L2(Ω))

≤ C
(

h2sk−
1
2 + k

1
2 + hs

){

‖ynh(u)‖L2(0,T ;L2(Ω)) + ‖Pn
k yd‖L2(0,T ;L2(Ω))

}

+ Ck‖yd,t‖L2(0,T ;L2(Ω)) + C‖y − Yh(u)‖L2(0,T ;L2(Ω)) (4.4)

hold.
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Proof. Let η solves the problem (2.8) with g ∈ L2(0, T ;L2(Ω)). Analogously to (2.1) and

(4.1), we write

∫

ΩT

(

y − Yh(u)
)

g dxdt

=

∫ T

0

∫

Ω

(

y − Yh(u)
)

(

−∂η

∂t
−∆η

)

dxdt

= −
(

y,
∂η

∂t

)

ΩT

+ (∇y,∇η)ΩT
+

N
∑

n=1

∫ tn

tn−1

((

ynh(u),
∂η

∂t

)

−
(

∇ynh(u),∇η
)

)

dt

= 〈στ, η〉ΩT
+ (u, η)ΩT

+
(

y0, η(·, 0)
)

+

N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

ynh(u), η
n − ηn−1

)

−
(

∇ynh(u),∇η
)}

dt.

Use of summation by parts and ηN = 0 gives

∫

ΩT

(

y − Yh(u)
)

g dxdt

= 〈στ, η〉ΩT
+
(

y0, η(·, 0)
)

−
N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

ynh(u)− yn−1
h (u), ηn−1

)

+
(

∇ynh(u),∇η
)}

dt

+
(

yNh (u), ηN
)

−
(

yh,0, η(·, 0)
)

+ (u, η)ΩT

= −
N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

ynh(u)− yn−1
h (u), ηn−1

)

+
(

∇ynh(u),∇η
)}

dt

+ 〈στ, η〉ΩT
+
(

y0 − yh,0, η(·, 0)
)

+ (u, η)ΩT
. (4.5)

Utilize (4.1) to have

N
∑

n=1

{

(

Dkn
ynh(u), P

n
k P1

hη
)

+
(

∇ynh(u),∇Pn
k P1

hη
)

}

=

N
∑

n=1

〈

στ, Pn
k P1

hη
〉

In
+

N
∑

n=1

(

u, Pn
k P1

hη
)

. (4.6)

Applications of (4.5) and (4.6) together with the fact
∫ tn

tn−1
(η − Pn

k η) dt = 0 lead to

∫

ΩT

(

y − Yh(u)
)

g dxdt

= −
N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

ynh(u)− yn−1
h (u), ηn−1 − Pn

k P1
hη
)

+
(

∇ynh(u),∇
(

Pn
k η − Pn

k P1
hη
))

}

dt

+

{

〈στ, η〉ΩT
−

N
∑

n=1

∫ tn

tn−1

〈

στ, Pn
k P1

hη
〉

In
dt
}

+
{(

y0 − yh,0, η(·, 0)
)

}

+

{

(u, η)ΩT
−

N
∑

n=1

∫ tn

tn−1

(

u, Pn
k P1

hη
)

dt

}

=: I1 + I2 + I3 + I4. (4.7)
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For I1, using the definition of elliptic projection and the fact ynh(u) ∈ W
n
h, we obtain

∫ tn

tn−1

(

∇ynh(u),∇
(

Pn
k η − Pn

k P1
hη
))

dt = 0.

Apply the Cauchy-Schwarz inequality to have

|I1| =
∣

∣

∣

∣

∣

−
N
∑

n=1

∫ tn

tn−1

{

kn
−1
(

ynh(u)− yn−1
h (u), ηn−1 − Pn

k P1
hη
)

}

dt

∣

∣

∣

∣

∣

≤ F1 · F2,

where

F1 =

(

N
∑

n=1

∥

∥ynh(u)− yn−1
h (u)

∥

∥

2

L2(Ω)

)

1
2

, F2 =

(

N
∑

n=1

∥

∥ηn−1 − Pn
k P1

hη
∥

∥

2

L2(Ω)

)

1
2

.

The application of Lemma 3.3 yields

F1 ≤ C
(

k
1
2 h−1‖y0‖L2(Ω) + ‖σ‖L∞(0,T ;L2(Ω))‖τ‖B [0,T ] + k

1
2 ‖u‖L2(0,T ;L2(Ω))

)

.

To estimate F2, we first use the triangle inequality and Lemma 3.1 to have
∥

∥ηn−1 − Pn
k P1

hη
∥

∥

L2(Ω)
≤
∥

∥ηn−1 − Pn
k η
∥

∥

L2(Ω)
+
∥

∥Pn
k η − Pn

k P1
hη
∥

∥

L2(Ω)

≤
∥

∥ηn−1 − Pn
k η
∥

∥

L2(Ω)
+ Ch2s

∥

∥Pn
k η
∥

∥

H1+s(Ω)
. (4.8)

We know that
∥

∥ηn−1 − Pn
k η
∥

∥

L2(Ω)
≤ Ck

1
2
n ‖ηt‖L2(In;L2(Ω)), (4.9)

∥

∥Pn
k η
∥

∥

H1+s(Ω)
≤ Ck

− 1
2

n ‖η‖L2(In;H1+s(Ω)). (4.10)

Using (4.9)-(4.10) in (4.8), we get

|F2| ≤ C

(

N
∑

n=1

h4s
∥

∥Pn
k η
∥

∥

2

H1+s(Ω)
+ kn‖ηt‖2L2(In;L2(Ω))

)

1
2

≤ C

(

N
∑

n=1

h4sk−1
n

∥

∥Pn
k η
∥

∥

2

L2(In;H1+s(Ω))
+ kn‖ηt‖2L2(In;L2(Ω))

)

1
2

≤ C
(

h2sk−
1
2 + k

1
2

)

‖g‖L2(0,T ;L2(Ω)),

the last inequality is obtained by use of Proposition 2.1. Combining the bounds of F1 and F2,

we find that

|I1| ≤ C
(

h2sk−
1
2 + k

1
2

)

(

k
1
2h−1‖y0‖L2(Ω) + ‖σ‖L∞(0,T ;L2(Ω))‖τ‖B [0,T ]

+ k
1
2 ‖u‖L2(0,T ;L2(Ω))

)

‖g‖L2(0,T ;L2(Ω)). (4.11)

For I2 we observe that

|I2| =
∣

∣

∣

∣

∣

〈στ, η〉ΩT
−

N
∑

n=1

∫ tn

tn−1

〈

στ, Pn
k P1

hη
〉

In
dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

∫ tn

tn−1

∫

Ω

σ(x, t)
(

η − Pn
k P1

hη
)

(x)dx dτ(t)

∣

∣

∣

∣

∣

≤ C‖σ‖L∞(0,T ;L2(Ω))‖τ‖B [0,T ]

∥

∥η − Pn
k P1

hη
∥

∥

L∞(0,T ;L2(Ω))
. (4.12)
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Since
∥

∥η − Pn
k P1

hη
∥

∥

L∞(0,T ;L2(Ω))
≤
∥

∥η − Pn
k η
∥

∥

L∞(0,T ;L2(Ω))
+
∥

∥Pn
k η − Pn

k P1
hη
∥

∥

L∞(0,T ;L2(Ω))

≤ Ck
1
2 ‖ηt‖L2(0,T ;L2(Ω)) + Chs

∥

∥Pn
k η
∥

∥

L∞(0,T ;H1(Ω))

≤ C
(

k
1
2 + hs

)

‖g‖L2(0,T ;L2(Ω)), (4.13)

substitution of (4.13) in (4.12) implies

|I2| ≤ C
(

k
1
2 + hs

)

‖σ‖L∞(0,T ;L2(Ω))‖τ‖B [0,T ]‖g‖L2(0,T ;L2(Ω)). (4.14)

For I3 use of duality pairing and Lemma 3.2 to have

|I3| ≤ Chs‖y0‖L2(Ω)‖g‖L2(0,T ;L2(Ω)). (4.15)

Finally, apply the Cauchy-Schwarz inequality to bound I4 as

|I4| ≤ ‖u‖L2(0,T ;L2(Ω))

∥

∥η − Pn
k P1

hη
∥

∥

L2(0,T ;L2(Ω))

≤ C
(

hs + k
1
2

)

‖u‖L2(0,T ;L2(Ω))‖g‖L2(0,T ;L2(Ω)), (4.16)

where we have used
∥

∥η − Pn
k P1

hη
∥

∥

L2(0,T ;L2(Ω))
≤ C

∥

∥η − Pn
k P1

hη
∥

∥

L∞(0,T ;L2(Ω))

and (4.13). Combine (4.11), (4.14)-(4.16) together with (4.7), and the definition of L2(0, T ;

L2(Ω))-norm produces the desired estimate (4.3).

To prove the estimate (4.4), first we introduce the following auxiliary problem: For g̃ ∈
L2(0, T ;L2(Ω)), find ξ ∈ X̂ (0, T ) such that















∂ξ

∂t
−∆ξ = g̃ in ΩT ,

ξ = 0 on ΓT ,

ξ(·, 0) = 0 in Ω.

(4.17)

An application of Proposition 2.1 gives

‖ξ‖H1(0,T ;L2(Ω)) + ‖ξ‖L2(0,T ;H1+s(Ω)) ≤ CR‖g̃‖L2(0,T ;L2(Ω)). (4.18)

Set g̃ = φ−Φh(u) in (4.17). Then multiply the resulting equation by φ and use integration by

parts formula to have

∫

ΩT

(

φ− Φh(u)
)

g̃dx dt =

∫ T

0

∫

Ω

(

φ− Φh(u)
)

(

∂ξ

∂t
−∆ξ

)

dx dt

=

(

φ,
∂ξ

∂t

)

ΩT

+ (∇φ,∇ξ)ΩT
−

N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

φn−1
h (u), ξn − ξn−1

)

+
(

∇φn−1
h (u),∇ξ

)

}

dt

= (y − yd, ξ)ΩT
+

N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

φn
h(u)− φn−1

h (u), ξn
)

−
(

∇φn−1
h (u),∇ξ

)

}

dt, (4.19)

where in the last step we have utilized (2.3). Notice that from (4.2) we get

−
N
∑

n=1

(

Dkn
φn
h(u), P

n
k P1

hξ
)

+
(

∇φn−1
h (u),∇Pn

k P1
hξ
)

=

N
∑

n=1

(

ynh(u)− Pn
k yd, P

n
k P1

hξ
)

. (4.20)
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Utilize (4.19) and (4.20) to obtain
∫

ΩT

(

φ− Φh(u)
)

g̃ dxdt

= (y − yd, ξ)ΩT
−

N
∑

n=1

∫ tn

tn−1

(

ynh(u)− Pn
k yd, P

n
k P1

hξ
)

dt

+

N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

φn
h(u)− φn−1

h (u), ξn − Pn
k P1

hξ
)

−
(

∇φn−1
h (u),∇

(

ξ − Pn
k P1

h(u)
))

}

dt

=: Ĩ1 + Ĩ2. (4.21)

The estimate of Ĩ2 follows by argument similar to the proof of I1 and hence use of (4.18) leads to

|Ĩ2| ≤ C
(

h2sk−
1
2 + k

1
2

)

‖g̃‖L2(0,T ;L2(Ω)

(

∥

∥ynh(u)
∥

∥

L2(0,T ;L2(Ω))
+
∥

∥Pn
k yd

∥

∥

L2(0,T ;L2(Ω))

)

, (4.22)

where we have utilized the stability estimate of (4.2), which is easily obtained by an application

of Lemma 3.3, is stated as

N
∑

n=1

∥

∥φn
h(u)− φn−1

h (u)
∥

∥

2

L2(Ω)
+ Ck

∥

∥φ0
h(u)

∥

∥

2

H1(Ω)

≤ Ckn

(

∥

∥ynh(u)
∥

∥

L2(0,T ;L2(Ω))
+
∥

∥Pn
k yd

∥

∥

L2(0,T ;L2(Ω))

)

.

The Cauchy-Schwarz inequality and simple calculations give

|Ĩ1| =
∣

∣

∣

∣

∣

(y − yd, ξ)ΩT
−

N
∑

n=1

∫ tn

tn−1

(

ynh(u)− Pn
k yd, P

n
k P1

hξ
)

dt

∣

∣

∣

∣

∣

≤
(

∥

∥y − ynh(u)
∥

∥

L2(0,T ;L2(Ω))
+
∥

∥yd − Pn
k yd

∥

∥

L2(0,T ;L2(Ω))

)

‖ξ‖L2(0,T ;L2(Ω))

+
(

∥

∥ynh(u)
∥

∥

L2(0,T ;L2(Ω))
+
∥

∥Pn
k yd

∥

∥

L2(0,T ;L2(Ω))

)

∥

∥ξ − Pn
k P1

hξ
∥

∥

L2(0,T ;L2(Ω))
. (4.23)

Utilize (3.5),
∥

∥ξ − Pn
k P1

hξ
∥

∥

L2(0,T ;L2(Ω))
≤ C

∥

∥ξ − Pn
k P1

hξ
∥

∥

L∞(0,T ;L2(Ω))

and (4.13) to have

|Ĩ1| ≤ C
(

∥

∥y − ynh(u)
∥

∥

L2(0,T ;L2(Ω))
+ k‖yd‖H1(0,T ;L2(Ω))

)

‖g̃‖L2(0,T ;L2(Ω))

+ C
(

hs + k
1
2

)

‖g̃‖L2(0,T ;L2(Ω))

(

∥

∥ynh(u)
∥

∥

L2(0,T ;L2(Ω))
+
∥

∥Pn
k yd

∥

∥

L2(0,T ;L2(Ω))

)

. (4.24)

Combine (4.21), (4.22), (4.24) and use the definition of L2(0, T ;L2(Ω))-norm to obtain (4.4).

This completes the proof. �

To estimate the error in the control variable, it is required to introduce the completely

discretized control problem as

Jh,k(uρ) = Jh,k(yρ, uρ) subject to uρ ∈ U
n
ad, (4.25)

where the discretization parameters h and k are gathered under the subscript ρ. The unique

solution uρ of (4.25) satisfies the optimality condition

J ′
h,k(uρ)(ũρ − uρ) =

N
∑

n=1

∫ tn

tn−1

(Λuρ + φρ)(ũρ − uρ)dt ≥ 0, ∀ũρ ∈ U
n
ad. (4.26)

Define the L2-projection Πn
d : L2(0, T ;L2(Ω)) → U

n
ad. Notice that Πn

dUad ⊂ U
n
ad, n ∈ [1 : N ].
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We now prove the following error bound for the control variable.

Theorem 4.1. Let u and uρ be the solutions of (2.2) and (4.25), respectively. Consider the

sufficient optimality condition (2.7) is true. Then, for s ∈ (1/2, β), the estimate

‖u− uρ‖L2(0,T ;L2(Ω)) ≤ C̃
hs

√
γ
+ C

(

h2sk−
1
2 + k

1
2 + hs

)

γ

is valid. Here, C̃ and C̄ are given by

C̃ := C
(

‖σ‖L∞(0,T ;L2(Ω)), ‖τ‖B [0,T ], ‖y0‖L2(Ω), ‖yd‖L2(0,T ;L2(Ω)),Λ
)

, (4.27)

C = C
(

‖y0‖L2(Ω), ‖σ‖L∞(0,T ;L2(Ω)), ‖τ‖B [0,T ], ‖u‖L2(0,T ;L2(Ω)), ‖yd‖H1(0,T ;L2(Ω)), T
)

. (4.28)

Proof. To prove this, we introduce an auxiliary problem as follows: Find ũn
h ∈ U

n
ad such that

min
un
h
∈Un

ad

J
(

un
h

)

, (4.29)

here, only the control variable is discretized. As a result, the optimality condition

J ′
(

ũn
h

)(

Πn
du− ũn

h

)

≥ 0, ∀Πn
du ∈ U

n
ad (4.30)

is satisfied. We decompose the error as follows:

u− uρ =
(

u− ũn
h

)

+
(

ũn
h − uρ

)

. (4.31)

To estimate the first term of (4.31), utilize (2.7) for any ũ ∈ Uad to have

γ
∥

∥u− ũn
h

∥

∥

2

L2(0,T ;L2(Ω))
≤ J ′′(ũ)

(

u− ũn
h, u− ũn

h

)

= J ′(u)
(

u− ũn
h

)

− J ′
(

ũn
h

)(

u− ũn
h

)

= J ′(u)
(

u− ũn
h

)

− J ′
(

ũn
h

)(

u−Πn
du
)

− J ′
(

ũn
h

)(

Πn
du− ũn

h

)

.

An application of (2.4) and (4.30) yields

J ′(u)
(

u− ũn
h

)

≤ 0, −J ′
(

ũn
h

)(

Πn
du− ũn

h

)

≤ 0.

The properties of Πn
d and the Young’s inequality result in

γ
∥

∥u− ũn
h

∥

∥

2

L2(0,T ;L2(Ω))
≤ −J ′

(

ũn
h

)(

u−Πn
du
)

= −
∫ T

0

(

Λũn
h + φ

(

ũn
h

)

, u−Πn
du
)

dt

= −
∫ T

0

(

φ
(

ũn
h

)

−Πn
dφ
(

ũn
h

)

, u−Πn
du
)

dt

≤
∫ T

0

{

1

2

∥

∥φ
(

ũn
h

)

−Πn
dφ
(

ũn
h

)∥

∥

2

L2(Ω)
+

1

2

∥

∥u−Πn
du
∥

∥

2

L2(Ω)

}

dt.

Use of Lemma 3.2 gives

∥

∥u− ũn
h

∥

∥

L2(0,T ;L2(Ω))
≤
∫ T

0

{

C√
γ
hs
∥

∥φ(ũn
h)
∥

∥

H1(Ω)
+

C√
γ
hs‖u‖H1(Ω)

}

dt ≤ C̃√
γ
hs
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with C̃ is defined in (4.27). Using the optimality condition (4.26), we notice that

J ′
h,k(uρ)

(

uρ − ũn
h

)

≤ 0 ≤ J ′
(

ũn
h

)(

uρ − ũn
h

)

.

We have the second-order optimality condition for the problem (4.25) as

J ′′
h,k(uρ)

(

ûn
h, û

n
h

)

≥ γ
∥

∥ûn
h

∥

∥

2

L2(0,T ;L2(Ω))
. (4.32)

Utilize (4.32) for any ûn
h ∈ U

n
ad to obtain

γ
∥

∥uρ − ũn
h

∥

∥

2

L2(0,T ;L2(Ω))
≤ J ′′

h,k

(

ûn
h

)(

uρ − ũn
h, uρ − ũn

h

)

= J ′
h,k(uρ)

(

uρ − ũn
h

)

− J ′
h,k

(

ũn
h

)(

uρ − ũn
h

)

≤ J ′
(

ũn
h

)(

uρ − ũn
h

)

− J ′
h,k

(

ũn
h

)(

uρ − ũn
h

)

≤ C
(

h2sk−
1
2 + k

1
2 + hs

)∥

∥uρ − ũn
h

∥

∥

L2(0,T ;L2(Ω))
,

where the last step follows by using (2.4), (4.26) and (4.4), which completes the rest of the

proof. �

Now, we are in a position to estimate the error in the state variable in the L2(0, T ;L2(Ω))-

norm.

Theorem 4.2. Under the assumption of Theorem 2.1, let y and Yh be the solutions (2.1), and

(3.7), respectively. So, for s ∈ (1/2, β) the following is true:

‖y − Yh‖L2(0,T ;L2(Ω)) ≤ C
(

h2sk−
1
2 + k

1
2 + hs

)

×
{

‖y0‖L2(Ω) + ‖σ‖L∞(0,T ;L2(Ω))‖τ‖B [0,T ] + ‖u‖L2(0,T ;L2(Ω))

}

+ C
∥

∥u− un
h

∥

∥

L2(0,T ;L2(Ω))
.

Proof. Let η solves the problem (2.8) with g ∈ L2(0, T ;L2(Ω)). The duality argument with

(2.1) leads to the assertion that

∫

ΩT

(y − Yh)g dxdt =

∫ T

0

∫

Ω

(y − Yh)

(

−∂η

∂t
−∆η

)

dxdt

= −
(

y,
∂η

∂t

)

ΩT

+ (∇y,∇η)ΩT

+

N
∑

n=1

∫ tn

tn−1

{(

ynh ,
∂η

∂t

)

−
(

∇ynh ,∇η
)

}

dt

= −
N
∑

n=1

∫ tn

tn−1

{

kn
−1
(

ynh − yn−1
h , ηn−1

)

+
(

∇ynh ,∇η
)}

dt

+
(

y0 − yh,0, η(·, 0)
)

+ 〈στ, η〉ΩT
+ (u, η)ΩT

. (4.33)

From (3.7) we have

N
∑

n=1

{(

Dkn
ynh , P

n
k P1

hη
)

+
(

∇ynh ,∇Pn
k P1

hη
)}

=

N
∑

n=1

〈

στ, Pn
k P1

hη
〉

In
+

N
∑

n=1

(

un
h, P

n
k P1

hη
)

. (4.34)
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Utilize (4.33) and (4.34) to achieve that
∫

ΩT

(y − Yh)g dxdt

= −
N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

ynh − yn−1
h , ηn−1 − Pn

k P1
hη
)

+
(

∇ynh ,∇
(

Pn
k η − Pn

k P1
hη
))}

dt

+

{

〈στ, η〉ΩT
−

N
∑

n=1

∫ tn

tn−1

〈

στ, Pn
k P1

hη
〉

In
dt

}

+
{(

y0 − yh,0, η(·, 0)
)}

+

{

(u, η)ΩT
−

N
∑

n=1

∫ tn

tn−1

(

un
h, P

n
k P1

hη
)

dt

}

=: I1 + I2 + I3 + Ĩ4. (4.35)

The bounds of I1, I2, I3 are found in Lemma 4.1. Now, we estimate Ĩ4 as follows:

|Ĩ4| =
∣

∣

∣

∣

∣

N
∑

n=1

∫ tn

tn−1

(u, η)dt−
N
∑

n=1

∫ tn

tn−1

(

un
h, P

n
k P1

hη
)

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

∫ tn

tn−1

(

u, η − Pn
k P1

hη
)

dt+

N
∑

n=1

∫ tn

tn−1

(

u− un
h, P

n
k P1

hη
)

dt

∣

∣

∣

∣

∣

.

The Cauchy-Schwarz inequality, Poincaré inequality, Proposition 2.1 and (4.13) together with
∥

∥∇Pn
k P1

hη
∥

∥

L2(0,T ;L2(Ω))
≤ C‖∇η‖L2(0,T ;L2(Ω))

implies

|Ĩ4| ≤ C
(

‖u‖L2(0,T ;L2(Ω))

∥

∥η − Pn
k P1

hη
∥

∥

L∞(0,T ;L2(Ω))
+
∥

∥u− un
h

∥

∥

L2(0,T ;L2(Ω))
‖∇η‖L2(0,T ;L2(Ω))

)

≤ C
{

(

hs + k
1
2

)

‖u‖L2(0,T ;L2(Ω)) +
∥

∥u− un
h

∥

∥

L2(0,T ;L2(Ω))

}

‖g‖L2(0,T ;L2(Ω)),

where we have used
∥

∥η − Pn
k P1

hη
∥

∥

L2(0,T ;L2(Ω))
≤ C

∥

∥η − Pn
k P1

hη
∥

∥

L∞(0,T ;L2(Ω))
.

Combining all the estimates of I1, I2, I3 and Ĩ4 together with (4.35) and the definition of

L2(0, T ;L2(Ω))-norm yields the desired estimate. �

The next theorem is devoted to the error estimate for the co-state variable. We omit the

details of the proof.

Theorem 4.3. Let φ and Φh be the solutions of (2.3) and (3.9), (3.10), respectively. Then,

we have

‖φ− Φh‖L2(0,T ;L2(Ω)) ≤ C
(

h2sk−
1
2 + k

1
2 + hs

)

×
{

∥

∥ynh
∥

∥

L2(0,T ;L2(Ω))
+
∥

∥Pn
k yd

∥

∥

L2(0,T ;L2(Ω))

}

+ k‖yd,t‖L2(0,T ;L2(Ω)) + ‖y − Yh‖L2(0,T ;L2(Ω)).

Remark 4.1. With k = O(h2s), Theorems 4.1-4.3 yield the following error estimate:

‖y − Yh‖L2(0,T ;L2(Ω)) + ‖u− uρ‖L2(0,T ;L2(Ω)) + ‖φ− Φh‖L2(0,T ;L2(Ω)) ≤ Chs,

where ρ acquires the discretization parameters h, k.



16 P. SHAKYA

5. A Posteriori Error Estimates

A posteriori error estimates for the control, co-state, and state variables are derived in this

section. For n ∈ [1 : N ], Y 0
h (x) = yh,0(x) and ΦN

h (x) = 0, we recast the optimality conditions

(3.8)- (3.11) in terms of Yh,Φh, Uh as

(

Dkn
Y n
h , wh

)

+
(

∇Y n
h ,∇wh

)

= 〈στ, wh〉In + (Uh, wh), ∀wh ∈ W
n
h, (5.1)

−
(

Dkn
Φn

h, wh

)

+
(

∇Φn−1
h , wh

)

=
(

Y n
h − Pn

k yd, wh

)

, ∀wh ∈ W
n
h, (5.2)

(

ΛUh +Φn−1
h , ûn

h − Uh

)

≥ 0, ∀ûn
h ∈ U

n
ad. (5.3)

In the following, we recall two lemmas that are essential for obtaining a posteriori error bounds.

Lemma 5.1 ([15]). For w ∈ H1+s(K), let K ∈ Th and m = 0 or 1. Then

‖w −Πhw‖Hm(K) ≤ CI,mh1+s−m
K |w|H1+s(K), ∀w ∈ H1+s(K),

where Πh : C0(Ω) → W
0
h be the nodal interpolation operator.

Lemma 5.2 ([24]). For K ∈ Th, 1 ≤ p < ∞, we have

‖w‖Lp(e) ≤ CI,e

(

h
− 1

p

K ‖w‖Lp(K) + h
1− 1

p

K |w|W 1,p(K)

)

, ∀w ∈ W 1,p(Ω).

The error between y and Yh is determined with the help of intermediate error estimates. For

this, we introduce the auxiliary problems: For Uh ∈ U
n
ad, let y(Uh) ∈ W (0, T ) be the solution of

−
(

y(Uh),
∂w

∂t

)

ΩT

+
(

∇y(Uh),∇w
)

ΩT

= 〈στ, w〉ΩT
+
(

y0, w(·, 0)
)

+ (Uh, w)ΩT
, ∀w ∈ X (0, T ) (5.4)

with w(·, T ) = 0, and let φ(Uh) ∈ X̂ (0, T ) satisfy










−
(

∂Φ(Uh)

∂t
, w

)

ΩT

+
(

∇φ(Uh),∇w
)

ΩT
=
(

y(Uh)−yd, w
)

ΩT
, ∀w ∈ L2

(

0, T ;H1
0(Ω)

)

,

φ(Uh)(·, T ) = 0.

(5.5)

To find the error bounds, we first split the errors and use triangle inequality to have

∥

∥Y n
h − y

∥

∥

L2(0,T ;L2(Ω))
≤
∥

∥Y n
h − y(Uh)

∥

∥

L2(0,T ;L2(Ω))
+ ‖y(Uh)− y‖L2(0,T ;L2(Ω)), (5.6)

‖Φh − φ‖L2(0,T ;L2(Ω)) ≤ ‖Φh − φ(Uh)‖L2(0,T ;L2(Ω)) + ‖φ(Uh)− φ‖L2(0,T ;L2(Ω)). (5.7)

To begin with we first determine the error bound for the control variable.

Lemma 5.3. Let (y, u, φ) be the solution of (2.2), (2.3), and let (Yh, Uh,Φh) be the solution of

(5.1)-(5.3). Assume that (ΛUh +Φn−1
h )|K ∈ H1(K) and for ũ ∈ Uad, the following:

∣

∣

∣

∣

∣

∫ T

0

(

ΛUh +Φn−1
h , ũ− Uh

)

dt

∣

∣

∣

∣

∣

≤ C1

∫ T

0

∑

K∈Th

hK

∣

∣ΛUh +Φn−1
h

∣

∣

H1(K)
‖u− Uh‖L2(K)dt (5.8)

holds for some positive constant C1. Then, we have

‖u− Uh‖2L2(0,T ;L2(Ω)) ≤ C2
2

(

ξn1 + ‖Φh − φ(Uh)‖2L2(0,T ;L2(Ω))

)

, (5.9)
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where

C2 =

√

3

2
max{1, C1}, ξn1 :=

(

∫ T

0

∑

K∈Th

h2
K

∣

∣ΛUh +Φn−1
h

∣

∣

2

H1(K)
dt

)

,

and φ(Uh) be the solution of (5.5).

Proof. Inviting the optimality condition (2.4) we obtain

(Λu, u− Uh) ≤ −(φ, u− Uh). (5.10)

Then use of (5.10) results in
∫ T

0

‖u− Uh‖2L2(Ω)dt ≤
∫ T

0

{

−
(

φ

Λ
, u− Uh

)

− (Uh, u− Uh)

}

dt.

And hence,

Λ

∫ T

0

‖u− Uh‖2L2(Ω)dt =

∫ T

0

{

− (φ, u − Uh)− (ΛUh, u− Uh)
}

dt

= −
∫ T

0

(

Φn−1
h + ΛUh, u− ũn

h

)

dt−
∫ T

0

(

ΛUh +Φn−1
h , ũn

h − Uh

)

dt

+

∫ T

0

(

Φn−1
h − φ(Uh), u − Uh

)

dt+

∫ T

0

(

φ(Uh)− φ, u − Uh

)

dt.

An application of (5.3) yields

Λ

∫ T

0

‖u− Uh‖2L2(Ω)dt ≤
∫ T

0

(

ΛUh +Φn−1
h , ũn

h − u
)

dt+

∫ T

0

(

Φn−1
h − φ(Uh), u− Uh

)

dt

+

∫ T

0

(

φ(Uh)− φ, u − Uh

)

dt =: E1 + E2 + E3. (5.11)

It is clear from the assumption (5.8) that

|E1| =
∣

∣

∣

∣

∣

∫ T

0

(

ΛUh +Φn−1
h , ũn

h − u
)

dt

∣

∣

∣

∣

∣

≤
∫ T

0

{

∑

K∈Th

C1hK

∣

∣ΛUh +Φn−1
h

∣

∣

H1(K)
‖u− Uh‖L2(K)

}

dt

≤ 3C2
1

4
ξn1 +

1

4
‖u− Uh‖2L2(0,T ;L2(Ω)). (5.12)

Additionally, it is obvious that

|E2| =
∣

∣

∣

∣

∣

∫ T

0

(

Φn−1
h − φ(Uh), u− Uh

)

dt

∣

∣

∣

∣

∣

≤ 3

4

∫ T

0

∥

∥Φn−1
h − φ(Uh)

∥

∥

2

L2(Ω)
dt+

1

4

∫ T

0

‖u− Uh‖2L2(Ω)dt. (5.13)

Utilize (2.1) and (5.4) to write the expression of E3 as

E3 =

∫ T

0

(

u− Uh, φ(Uh)− φ
)

dt

=

∫ T

0

{

−
(

y − y(Uh),
∂φ(Uh)

∂t
− ∂φ

∂t

)

+
(

∇
(

y − y(Uh)
)

,∇
(

φ(Uh)− φ
))

}

dt,
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which combine with (2.3) and (5.5) gives E3 ≤ 0. The proof is accomplished by combining the

estimates of E1, E2 and E3. �

The main theorem of this section will be derived by use of intermediate error estimates

provided in the next two lemmas.

Lemma 5.4. Under the assumption of Theorem 2.1, let y(Uh) ∈ W (0, T ) and Y n
h ∈ W

n
h be the

solutions of (5.4) and (5.1), respectively. Then, for n ∈ [1 : N ] we have

N
∑

n=1

∫ tn

tn−1

∥

∥Y n
h − y(Uh)

∥

∥

2

L2(Ω)
dt ≤ C2

3

N
∑

n=1

{

kn
(

ξn2 + ξn3 + ξn5
)

+ ξn4
}

,

where

ξn2 :=
∑

K∈T n
h

h
2(1+s)
K

∥

∥k−1
n

(

Y n
h − Y n−1

h

)

−∆Y n
h − Uh

∥

∥

2

L2(K)
+
∑

e∈En
h

h1+2s
e

∥

∥

∥

∥

[[

∂Y n
h

∂n

]]
∥

∥

∥

∥

2

L2(e)

,

ξn3 :=
∥

∥Y n
h − Y n−1

h

∥

∥

2

L2(Ω)
, ξn4 :=

∥

∥y0 − Y 0
h

∥

∥

2

L2(Ω)
,

ξn5 :=

N
∑

n=1

∑

K∈T n
h

(

h2
K‖σ‖2L∞(In;L2(K)) + kn

∥

∥σ − Pn
k σ
∥

∥

2

L∞(In;L2(K))

)

‖τ‖2
B (In)

,

and C3 = CR max{1, CI , CI,0, CI,2, CI,3, CI,eCI,0}.

Proof. Let η be the solution of problem (2.8) with g ∈ L2(0, T ;L2(Ω)). It should be noted

that η = 0 on ∂Ω, ηN = η(·, T ) = 0. Use of (5.4) and integrating by parts yields

∫

ΩT

(

Y n
h − y(Uh)

)

g dxdt =

∫ T

0

∫

Ω

(

Y n
h − y(Uh)

)

(

− ∂η

∂t
−∆η

)

dxdt

=

(

y(Uh),
∂η

∂t

)

ΩT

−
(

y(Uh),−∆η
)

ΩT

−
N
∑

n=1

∫ tn

tn−1

((

Y n
h ,

∂η

∂t

)

−
(

∇Y n
h ,∇η

)

)

dt

= −〈στ, η〉ΩT
+
(

Y 0
h − y0, η(·, 0)

)

− (Uh, η)ΩT

+

N
∑

n=1

∫ tn

tn−1

{

k−1
n

(

Y n
h − Y n−1

h , ηn−1
)

+ (∇Y n
h ,∇η)

}

dt. (5.14)

We indicate Πn
h as the Lagrange interpolation operator onto W

n
h and define ηI such that

ηI |In := Πn
h

(

Pn
k η
)

∈ W
n
h

for each time interval In. From Eq. (5.1), we obtain

N
∑

n=1

{

k−1
n

(

Y n
h − Y n−1

h , ηI
)

+
(

∇Y n
h ,∇ηI

)}

=

N
∑

n=1

〈στ, ηI〉In +

N
∑

n=1

(Uh, ηI). (5.15)

Then we have

∫

ΩT

(

Y n
h − y(Uh)

)

g dxdt =

N
∑

n=1

∫ tn

tn−1

k−1
n

(

Y n
h − Y n−1

h , ηn−1 − ηI
)

dt



Error Analysis for Parabolic Optimal Control Problems 19

+

N
∑

n=1

∫ tn

tn−1

{(

∇Y n
h ,∇(η − ηI)

)

− (Uh, η − ηI)
}

dt

−
(

y0 − Y 0
h , η(·, 0)

)

− 〈στ, η〉ΩT
+

N
∑

n=1

∫ tn

tn−1

〈στ, ηI〉Indt

=: Ẽ1 + Ẽ2 + Ẽ3 + Ẽ4. (5.16)

The terms Ẽi, i = 1, . . . , 4, are estimated separately. Using Lemma 5.1 and integration by parts

we arrive at

|Ẽ1| =
∣

∣

∣

∣

∣

N
∑

n=1

∫ tn

tn−1

k−1
n

(

Y n
h − Y n−1

h , ηn−1 − Pn
k η + Pn

k (η −Πn
hη)
)

dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

∫ tn

tn−1

∫

Ω

k−1
n

(

Y n
h − Y n−1

h

)(

ηn−1 − Pn
k η
)

dxdt

+

N
∑

n=1

∫ tn

tn−1

∫

Ω

k−1
n

(

Y n
h − Y n−1

h

)

Pn
k

(

η −Πn
hη
)

dxdt

∣

∣

∣

∣

∣

≤ max{CI , CI,0}
[

kn

(

∥

∥Y n
h − Y n−1

h

∥

∥

2

L2(Ω)

+
∑

K∈T h
n

h
2(1+s)
K

∥

∥k−1
n (Y n

h − Y n−1
h )

∥

∥

2

L2(K)

)]
1
2

‖g‖L2(0,T ;L2(Ω)), (5.17)

where we have utilized the properties of Pn
k and Proposition 2.1

∥

∥ηn−1 − Pn
k η
∥

∥

L2(0,T ;L2(Ω))
≤ CIkn‖η‖H1(0,T ;L2(Ω)),

∥

∥Pn
k (η −Πn

hη)
∥

∥

L2(Ω)
≤
∥

∥η −Πn
hη
∥

∥

L2(Ω)
≤ CI,0h

1+s
K ‖η‖L2(0,T ;H1+s(Ω)).

To estimate Ẽ2, the properties of Πn
h now yields

∣

∣Ẽ2

∣

∣ =

∣

∣

∣

∣

∣

N
∑

n=1

∫ tn

tn−1

{(

∇Y n
h ,∇(η − ηI)

)

− (Uh, η − ηI)
}

dt

∣

∣

∣

∣

∣

≤
N
∑

n=1

∫ tn

tn−1

(

∑

K∈T n
h

∥

∥−∆Y n
h − Uh

∥

∥

L2(K)

∥

∥η −Πn
hη
∥

∥

L2(K)

+
∑

e∈En
h

∥

∥

∥

∥

[[

∂Y n
h

∂n

]]∥

∥

∥

∥

L2(e)

∥

∥η −Πn
hη
∥

∥

L2(e)

)

dt

≤ max{CI,0, CI,eCI,0}
[

N
∑

n=1

kn

(

∑

K∈T n
h

h
2(1+s)
K

∥

∥−∆Y n
h − Uh

∥

∥

2

L2(K)

+
∑

e∈En
h

h1+2s
e

∥

∥

∥

∥

[[

∂Y n
h

∂n

]]
∥

∥

∥

∥

2

L2(e)

)]
1
2

‖η‖L2(0,T ;H1+s(Ω)). (5.18)

The bound of Ẽ3 is obtained by the application of the Cauchy-Schwarz inequality

|Ẽ3| ≤
∥

∥Y 0
h − y0

∥

∥

L2(Ω)
‖η(·, 0)‖L2(Ω).
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For Ẽ4, adding and subtracting the suitable terms together with the definition of Pn
k we obtain

|Ẽ4| =
∣

∣

∣

∣

∣

〈στ, η〉ΩT
−

N
∑

n=1

∫ tn

tn−1

〈στ, ηI〉Indt
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N
∑

n=1

∫

Ω

∫ tn

tn−1

σ(x, t)η(x, t)dτ(t) dx −
N
∑

n=1

∫

Ω

∫ tn

tn−1

σ(x, t)Πn
h(P

n
k η)d τ(t)dx

∣

∣

∣

∣

∣

.

Hence,

|Ẽ4| =
∣

∣

∣

∣

∣

N
∑

n=1

{
∫

Ω

∫ tn

tn−1

σ(x, t)
(

η − Pn
k η
)

dτ(t)dx +

∫

Ω

∫ tn

tn−1

σ(x, t)Pn
k

(

η −Πn
hη
)

dτ(t)dx

}

∣

∣

∣

∣

∣

≤
N
∑

n=1

{

∑

K∈T n
h

(

∥

∥σ − Pn
k σ
∥

∥

L∞(In;L2(K))

∥

∥η − Pn
k η
∥

∥

L∞(In;L2(K))
‖τ‖B (In)

+ ‖σ‖L∞(In;L2(K))

∥

∥Pn
k (η −Πn

hη)
∥

∥

L∞(In;L2(K))
‖τ‖B (In)

)

}

≤ max{CI,2, CI,3}
N
∑

n=1

{

∑

K∈T n
h

(

kn
∥

∥σ − Pn
k σ
∥

∥

2

L∞(In;L2(K))
‖τ‖2

B (In)

+h2
K‖σ‖2L∞(In;L2(K))‖τ‖2B (In)

)

}
1
2

‖g‖L2(0,T ;L2(Ω)), (5.19)

where we used the Proposition 2.1 and the following properties:

∥

∥η − Pn
k η
∥

∥

L∞(In;L2(K))
≤ CI,2 k

1
2
n ‖η‖H1(0,T ;L2(K)),

∥

∥η −Πn
hη
∥

∥

L∞(In;L2(K))
≤ CI,3 hK‖η‖L∞(In;H1(K)).

Combining (5.16)-(5.19), we find that

‖Y n
h −y(Uh)‖L2(0,T ;L2(Ω))

≤ C3

[{

N
∑

n=1

kn

(

∑

K∈T n
h

h
2(1+s)
K

∥

∥k−1
n

(

Y n
h − Y n−1

h

)

−∆Y n
h − Uh

∥

∥

2

L2(K)

+
∑

e∈En
h

h1+2s
e

∥

∥

∥

∥

[[

∂Y n
h

∂n

]]
∥

∥

∥

∥

2

L2(e)

)}
1
2

+
∥

∥y0 − Y 0
h

∥

∥

L2(Ω)
+

(

N
∑

n=1

kn
∥

∥Y n
h − Y n−1

h

∥

∥

2

L2(Ω)

)
1
2

+

N
∑

n=1

{

∑

K∈T n
h

(

kn
∥

∥σ−Pn
k σ
∥

∥

2

L∞(In;L2(K))
‖τ‖2

B (In)
+h2

K‖σ‖2L∞(In;L2(K))‖τ‖2B (In)

)

}
1
2
]

.

The proof is now complete. �

The intermediate error estimate ‖Φh−φ(Uh)‖L2(0,T ;L2(Ω)) is obtained in the following lemma.
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Lemma 5.5. Let Φh and φ(Uh) be the solutions of (5.2) and (5.5), respectively. Then, we

have

‖Φh − φ(Uh)‖2L2(0,T ;L2(Ω)) ≤ C2
4

9
∑

i=6

ξni ,

where

ξn6 :=

{

∫ T

0

∑

K∈T n
h

h
2(1+s)
K

∥

∥− Φh,t −∆Φn−1
h − Y n

h + Pn
k yd

∥

∥

2

L2(K)
dt

+

∫ T

0

∑

e∈En
h

h1+2s
e

∥

∥

∥

∥

[[

∂Φn−1
h

∂n

]]∥

∥

∥

∥

L2(e)

dt

}

,

ξn7 :=
∥

∥Y n
h − y(Uh)

∥

∥

2

L2(0,T ;L2(Ω))
,

ξn8 :=
∥

∥yd − Pn
k yd

∥

∥

2

L2(0,T ;L2(Ω))
,

ξn9 :=
∥

∥Φh − Φn−1
h

∥

∥

2

L2(0,T ;H1(Ω))
,

and C4 = CR max{1,max{CI,0, CI,0CI,e}}.

Using Lemmas 5.3-5.5, we can obtain the required a posteriori error bounds.

Theorem 5.1. Let (y, u, φ) and (Yh, Uh,Φh) be the solutions of (2.1)-(2.4) and (5.1)-(5.3),

respectively. Assume that every requirement in Lemmas 5.3-5.5 is true. Then, we obtain

N
∑

n=1

∫ tn

tn−1

∥

∥Y n
h − y

∥

∥

2

L2(Ω)
dt+

N
∑

n=1

∫ tn

tn−1

‖Φh − φ‖2L2(Ω)dt+

N
∑

n=1

∫ tn

tn−1

‖u− Uh‖2L2(Ω)dt

≤ C2
2 ξ

n
1 + C2

3

N
∑

n=1

{

kn
(

ξn2 + ξn3 + ξn5
)

+ ξn4
}

+ C2
4

N
∑

n=1

{

ξn6 + ξn8 + ξn9
}

,

where ξn1 is defined in Lemma 5.3, ξni , i=2, 3, 4, 5, are defined in Lemma 5.4 and ξni , i=6, 7, 8, 9,

are defined in Lemma 5.5.

Proof. The proof begins with the use of triangle inequalities (5.6) and (5.7), as well as Theo-

rem 2.1 and Proposition 2.1. The rest of the proof is completed by using Lemmas 5.3-5.5. �

Remark 5.1. The estimators presented in Theorem 5.1 are contributed by the approximation

errors of the control, state, and co-state variables. The estimators are generally influenced by

the approximation errors for the state and co-state, whereas ξn1 is mostly determined by the

approximation error for the control variable. The co-state equation contributes the estimators

ξn6 , ξ
n
8 , ξ

n
9 , while the state equation contributes the estimators ξn2 , · · · , ξn5 . These estimators are

divided into three parts: the estimators ξn3 and ξn9 are generated by the approximation of time,

the estimators ξn2 , ξ
n
6 are caused by the discretization of space and the estimators ξn4 and ξn8 are

induced by the data approximation. For directing an adaptive algorithm, these estimators are

extremely useful.

Remark 5.2. We choose τ = δt∗ , where δt∗ stands for the Dirac measure focused at time

t = t∗. Consider the set of indices I for the time partitions where the emphasis of the measure

data δt∗ is placed. Let t∗ ∈ (tn−1, tn] for some n ∈ N. Then, ξn5 of Theorem 5.1 reduces to

ξn5 :=
∑

K∈Th,I

(

h2
K‖σ(·, t∗)‖2L2(K) + kI‖σ(·, t∗)‖2L2(K)

)

.
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6. Numerical Experiments

The numerical results for a two-dimensional problem are presented in this section to support

our theoretical conclusions. The projection gradient method is used to solve the optimization

problem. The numerical tests are performed by utilizing the software Free Fem++ [22] and

all the constants are taken to be one. If E is an error functional, then we define the order of

convergence between two mesh of sizes h1 > h2 as

order =
log
(

E(h1)/E(h2)
)

log(h1/h2)
.

Data of the problem and true solution. We use the example considered in [39] on L-

shape domain Ω = (0, 1)2 \ [1/2, 1]2. We have used the point-wise control constraints ua = −0.5

and ub = 0.1. The final time T = 1, and the remaining data of the problem are given as follows:

στ = sin
(

π
(

x2
1 + x2

2

))

δ 1
2
− u+ sin

(

π
(

x2
1 + x2

2

))

γ̂(t)

+
{

− 4π cos
(

π
(

x2
1 + x2

2

))

+ 4π2
(

x2
1 + x2

2

)

sin
(

π
(

x2
1 + x2

2

))}

˜̃γ(t)

with

γ̂(t) =











2t, t <
1

2
,

2t+ 2, t ≥ 1

2
,

and ˜̃γ(t) =











t2, t <
1

2
,

t2 + 2t, t ≥ 1

2
.

The desired state is

yd = sin
(

π
(

x2
1 + x2

2

))

+ 4πt cos
(

π
(

x2
1 + x2

2

))

+
(

˜̃γ(t)− 4π2t
(

x2
1 + x2

2

))

sin
(

π
(

x2
1 + x2

2

))

.

The exact state and co-state are given by

y = sin
(

π
(

x2
1 + x2

2

))

˜̃γ(t), φ = sin
(

π
(

x2
1 + x2

2

))

t,

and the exact control is calculated by the formula (2.5) and (2.6).

First, we validate the results obtained in Section 4. For the spatial discretization of the

state and co-state variables the continuous piecewise linear polynomials are utilized, whereas

the piecewise constant functions are used for the control variable. With a uniform time step

size of k ≈ h2s with s = 0.6, the backward Euler scheme is employed to approximate the time

derivative. Table 6.1 displays the order of convergence for various degrees of freedom (Dof)

together with the errors computed in the L2(0, T ;L2(Ω))-norm at final time T = 1. We observe

that near the L-shape corner, the regularity of the state, co-state and control variables is not

enough to get the linear rate of convergence. Table 6.1 demonstrates that the error decreases

as the Dof rises and we obtained the convergence rate matches with the results obtained in

Section 4. The exact and discrete control profiles are depicted in Fig. 6.1.

Next, we verify the findings from Section 5 of our studies. The error estimators derived in

Section 5, are utilized as the error indicator in the adaptive loop

SOLVE → ESTIMATE → MARK → REFINE.

The development of the space-time algorithm is based on [31]. To see the performance of

a posteriori error estimators, we set the time step size kn ≈ h2s
K with s = 0.6. The space and

time tolerances are taken to be 10−2. Table 6.2 shows the error and convergence rate for the
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state, co-state and control variables in the adaptive meshes. It has been noted that the local

refinement of the meshes improves the convergence rate. In Fig. 6.2, we present the adaptive

meshes at different level of refinements. Fig. 6.2 demonstrates how effectively the mesh adapts

in the vicinity of the L-shape corner and a large number of nodes is distributed along this

corner.

(a) Approximate control (b) Exact control

Fig. 6.1. The profiles of the control variable at T = 1 with 11785 Dof.

(a) Step-1 (b) Step-2

(c) Step-3 (d) Step-4

Fig. 6.2. Adaptive meshes for the state at different level of refinements at time T = 1.

Table 6.1: Errors of the state y, co-state φ and control u variables on uniform meshes.

Dof N ‖y − Yh‖L2(0,T ;L2(Ω)) Order ‖φ− Φh‖L2(0,T ;L2(Ω)) Order ‖u− Uh‖L2(0,T ;L2(Ω)) Order

25 4 9.43224 × 10−1 - 3.52156 × 10−1 - 1.96823 × 10−1 -

81 8 6.58948 × 10−1 0.6101 2.37896 × 10−1 0.6672 1.32783 × 10−1 0.6695

289 16 4.39783 × 10−1 0.6359 1.57783 × 10−1 0.6457 8.75573 × 10−2 0.6549

1089 32 2.82896 × 10−1 0.6652 9.98987 × 10−2 0.6891 5.64994 × 10−2 0.6604

4225 64 1.79678 × 10−1 0.6696 6.37896 × 10−2 0.6617 3.62287 × 10−2 0.6555
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Table 6.2: Errors of the state y, co-state φ and control u variables on adaptive meshes.

Dof N ‖y − Yh‖L2(0,T ;L2(Ω)) Order ‖φ− Φh‖L2(0,T ;L2(Ω)) Order ‖u− Uh‖L2(0,T ;L2(Ω)) Order

36 4 8.26735 × 10−1 - 1.39846 × 10−1 - 9.35682 × 10−1 -

209 8 3.29768 × 10−1 1.0451 5.95639 × 10−2 0.9705 4.17895 × 10−1 0.9166

417 16 2.25869 × 10−1 1.0957 4.19460 × 10−2 1.0153 2.96932 × 10−1 0.9894

615 32 1.86984 × 10−1 0.9725 3.39783 × 10−2 1.0844 2.43673 × 10−1 1.0175

1445 64 1.19182 × 10−1 1.0570 2.15249 × 10−2 1.0714 1.56695 × 10−1 1.0363
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