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Abstract

The alternating direction method of multipliers (ADMM) has been extensively inves-

tigated in the past decades for solving separable convex optimization problems, and sur-

prisingly, it also performs efficiently for nonconvex programs. In this paper, we propose

a symmetric ADMM based on acceleration techniques for a family of potentially nonsmooth

and nonconvex programming problems with equality constraints, where the dual variables

are updated twice with different stepsizes. Under proper assumptions instead of the so-

called Kurdyka-Lojasiewicz inequality, convergence of the proposed algorithm as well as

its pointwise iteration-complexity are analyzed in terms of the corresponding augmented

Lagrangian function and the primal-dual residuals, respectively. Performance of our algo-

rithm is verified by numerical examples corresponding to signal processing applications in

sparse nonconvex/convex regularized minimization.

Mathematics subject classification: 47A30, 65Y20, 90C26, 90C90.

Key words: Nonconvex optimization, Symmetric ADMM, Acceleration technique, Com-

plexity, Signal processing.

1. Introduction

We consider a potentially nonsmooth and nonconvex separable optimization problem subject

to linear equality constraints
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min{f(x) + g(y)}
s.t. Ax +By = b, x ∈ Rm, y ∈ Rn,

(1.1)

where f : Rm → (−∞,+∞] is a proper lower semicontinuous function, g : Rn → (−∞,+∞) is

a continuously differentiable function with its gradient ∇g being Lg-Lipschitz continuous, A ∈
Rl×m, B ∈ Rl×n, b ∈ Rl are given matrices and vector, respectively. Minimization problems

of the form (1.1) appear in various applications in science and engineering. For example, the

following l1-regularized problem arises in signal processing and statistical learning [4, 5, 28]:

min
x∈Rm

1

2
‖Ax− c‖2 + µ‖x‖1, (1.2)

where c ∈ Rl is the observation vector, A ∈ Rl×m is the data matrix and µ > 0 denotes

the regularization parameter and is often set as µ = 0.1µmax, where µmax = ‖ATc‖∞ (see

e.g. [12, 28]). Due to the convexity of the problem (1.2), it can be handled by a number

of standard methods, to list a few, including the alternating direction method of multipliers

(ADMM, [10, 13, 14]), proximal point algorithm [4, 10], interior point method [28] and primal-

dual hybrid gradient method [2, 45]. However, in many cases the l1-regularization has been

shown to be sub-optimal. For instance, it cannot recover a signal with the fewest measurements

when applied in compressed sensing [7]. Therefore, an acceptable improvement is to adopt the

l1/2-regularization term, which results in the following problem:

min
x∈Rm

1

2
‖Ax− c‖2 + µ‖x‖

1

2

1

2

, (1.3)

where,

‖x‖ 1

2

=

(
n∑

i=1

|xi|
1

2

)2

is a nonconvex function characterizing the sparsity, and it has been verified [42] practically to

be better than l1-norm. Clearly, by introducing an auxiliary variable, the above problem (1.3)

can be converted to a special case of (1.1), i.e.

min

{
µ‖x‖

1

2

1

2

+
1

2
‖y − c‖2

}

s.t. Ax− y = 0.

(1.4)

The bold 0 denotes zero vector or matrix with proper dimensions. Another interesting example

is the regularized empirical risk minimization arising from big data applications, such as many

kinds of classification and regression models in machine learning [37, 41]. The l1/2-regularized

reformulation is of the form

min

{
µ‖x‖

1

2

1

2

+
1

N

N∑

j=1

gj(y)

}

s.t. x− y = 0,

(1.5)

where N is a large number, gj(y) = log(1 + exp(−bia
T

i y)) denotes the logistic loss function on

the feature-label pair (aj , bj) with aj ∈ Rl and bj ∈ {−1, 1}.
In the literature, the most standard approach for solving the equality constrained problem

(1.1) is the augmented Lagrangian method (ALM) which firstly solves a joint minimization
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problem

min
x,y

Lβ(x,y, λ) := f(x) + g(y)− 〈λ,Ax +By − b〉+ β

2
‖Ax+By − b‖2, (1.6)

and then updates the Lagrange multiplier λ based on the newest iteration of other variables. The

penalty factor β > 0, in each iterative loop, can be set as a tuned reasonable value or updated

adaptively according to the ratio of the primal residual to the dual residual of the problem.

However, ALM does not make full use of the separable structure of the objective function of

(1.1) and hence, could not take advantage of the special properties of each component objective

function. This would make it very expensive even infeasible for problems involving big data and

nonconvex objectives. By contrast, a powerful first-order method, that is ADMM, aims to split

the joint core problem (1.6) into relatively simple and lower-dimensional subproblems so that

variables can be updated separately to make full use of special properties of each component.

Another feature of ADMM is that the resultant subproblems could admit closed-form solution in

special applications, or in a linearized update for the differentiable objective/quadratic penalty

term. We refer the interested readers to, e.g. [4, 5, 11, 15, 21, 23, 24, 40] for reviews on ADMM.

Interestingly, under the existence assumption of a solution to the Karush-Kuhn-Tucker

condition of the two-block separable convex optimization problem, it was explained [13] that

the original ADMM amounts to the Douglas-Rachford splitting method (DRSM, [9,30]) when it

is applied to a stationary system to the dual of the problem. Moreover, as elaborated in [13], if

applying the classic Peaceman-Rachford splitting method (PRSM, [30,35]) to the dual problem,

we obtain the following iterative scheme:





xk+1 = argmin
x

Lβ(x,yk, λk),

λk+ 1

2

= λk − β(Axk+1 +Byk − b),

yk+1 = argmin
y

Lβ

(
xk+1,y, λk+ 1

2

)
,

λk+1 = λk+ 1

2

− β(Axk+1 +Byk+1 − b).

(1.7)

Unfortunately, the scheme (1.7) is not convergent under the standard convexity assumptions

as ADMM [8]. However, it was verified [16] that (1.7) could perform faster than ADMM

when its global convergence is ensured. In view of this, He et al. [22] proposed and studied

the convergence of a strictly contractive Peaceman-Rachford splitting method (also called the

symmetric version of ADMM)





xk+1 = argmin
x

Lβ(x,yk, λk),

λk+ 1

2

= λk − αβ(Axk+1 + Byk − b),

yk+1 = argmin
y

Lβ

(
xk+1,y, λk+ 1

2

)
,

λk+1 = λk+ 1

2

− αβ(Axk+1 +Byk+1 − b),

(1.8)

where α ∈ (0, 1) is the relaxation parameter. Later, He et al. [23] improved the scheme (1.8)

to the case with larger range of relaxation parameters, which was generalized by Bai et al. [3]

to the multi-block separable convex programming. Besides, Chang et al. [6] also suggested

a generalization of linearized ADMM for two-block separable convex minimization model by

adding a proper proximal term to each core subproblem.

Convergence analysis of ADMM (or its variant) for the nonconvex case is much more chal-

lenging. However, for some special nonconvex problems, one can establish convergence of



4 J.C. BAI ET AL.

ADMM by making full use of special structures of the problems, e.g. see [25] for the con-

sensus and sharing problems. Another widely used technique to prove convergence of ADMM

for nonconvex optimization problems relies on the assumption that the objective function of

(1.1) satisfies the so-called Kurdyka-Lojasiewicz (KL) inequality [1], which aligns with many

important classes of functions [18–20,29,40,41,43]. The recent progress on ADMM for solving

two-block and multi-block nonconvex optimization problems can be found, in e.g. [27, 38, 44],

and the convergence of ADMM-type methods [38, 44] also depends on the KL property. With-

out assuming the KL property and convexity of the objective function, recently, Goncalves

et al. [17] established convergence rate bounds of the classical ADMM with proximal terms for

solving nonconvex linearly constrained optimization problem (1.1). In addition, by linearizing

the smooth part in the objective and quadratic penalty term, Liu et al. [31] proposed a two-block

linearized ADMM for the problem (1.1) with b = 0 and extended the method to a multi-block

version, but convergence of their extended method holds with an extra hypothesis on the full

column rank of the matrix B compared to (A1) (see Section 3).

Motivated by the above mentioned works [17,31] and the empirical validity of the symmet-

ric ADMM, we present a two-stage accelerated symmetric ADMM (abbreviated as TAS-ADM)

for solving the problem (1.1), whose framework is provided in Algorithm 1.1. Our algorithm

combines both the so-called Nesterov’s acceleration technique explained in (3.24) and the re-

laxation scheme, in e.g. [10, 11]. By adding a proper proximal term for the first x-subproblem,

this possibly nonsmooth and nonconvex subproblem will turn to a proximity operator shown

in (3.7), which admits closed-form solution if f is well defined. Step 7 actually uses the idea

of convex combination for fast convergence. Although we consider problem (1.1) with vector

variables, the subsequent convergence results are applicable for the general case with matrix

variables.

Algorithm 1.1: TAS-ADM for Solving Problem (1.1).

1 Initialize (x0,y0, λ0) ∈ Rm ×Rn ×Rl and set (x−1,y−1) = (x0,y0).

2 Choose parameters β > 0, γk ∈ [0, 1/2), G � 0 and

(τ, α) ∈ D := {(τ, α) | 0 < τ + α < 1}. (1.9)

3 for k = 0, 1, . . . , do

4 xmd
k = xk + γk(xk − xk−1).

5 xk+1 = argmin
x

{
Lβ(x,yk, λk) +

1

2

∥∥x− xmd
k

∥∥2
G

}
.

6 λk+ 1

2

= λk − τβ (Axk+1 +Byk − b) .

7 xad
k+1 = αAxk+1 + (1− α)(b −Byk).

8 yk+1 = argmin
y

{
g(y) −

〈
λk+ 1

2

, By
〉
+

β

2

∥∥xad
k+1 +By − b

∥∥2
}
.

9 λk+1 = λk+ 1

2

− β
(
xad
k+1 +Byk+1 − b

)
.

10 end

11 Output (xk+1,yk+1).

Remark 1.1. Notice that by forcing γk = 0 and τ = 0, Algorithm 1.1 would reduce to the

linearized version of generalized ADMM [11], but the method in [11] focuses only on the convex
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case of (1.1). Compared to the proximal symmetric ADMM [22] (that is the scheme (1.8)),

two extra acceleration steps are employed in Algorithm 1.1 for solving the general nonconvex

problem (1.1). Recently, a symmetric ADMM was considered in [41] for solving the nonconvex

problem (1.1) and it can be treated as Algorithm 1.1 without the acceleration techniques and

proximal term. Moreover, convergence theories of these two algorithms are established under

different conditions: the so-called KL property was used in [41], but not used for Algorithm 1.1.

The remaining parts of this paper are organized as follows. In Section 2, preliminaries for

convergence analysis of Algorithm 1.1 are presented. In Section 3, we show its convergence

properties and its pointwise iteration complexity based on the analysis of the augmented La-

grangian sequence {Lβ(wk)}, where wk := (xk,yk, λk). Section 4 presents numerical examples

in solving the popular sparse signal recovery problem with different regularization terms, and

comparisons with the popular CVX toolbox and well-established methods are included. Finally,

we conclude the paper in Section 5.

2. Preliminaries

Throughout this paper, R,Rn and Rm×n represent the sets of real numbers, n-dimensional

real column vectors and m × n real matrices, respectively. The symbol I denotes the identity

matrix with proper dimensions and σB denotes the smallest positive eigenvalue of the matrix

BBT. For any symmetric matrices A and B whose dimensions are the same, A ≻ B (A � B)

means A − B is a positive definite (semidefinite) matrix. We also denote ‖x‖2G = xTGx for

any symmetric matrix G, and ‖x‖G =
√
xTGx, if G � 0. We simply use ‖ · ‖ to represent the

standard Euclidean norm equipped with inner product 〈· , ·〉. The image space of A ∈ Rm×n

is defined as Im(A) := {Az | z ∈ Rn} and a function f : S → R is lower semicontinuous at

x̄ ∈ S if and only if limx→x̄ inf f(x) = f(x̄). The distance from any point z to the set S ⊆ Rn

is defined as dist(z,S) := inf{‖z − y‖ | y ∈ S}.

Definition 2.1 ([33, 36]). Let f : Rm → R be a proper lower semicontinuous function.

(a) For a given x ∈ dom(f), the Frechet subdifferential of f at x, written as ∂̂f(x), is the set

of all vectors s ∈ Rm, which satisfies

lim
y→x

inf
y 6=x

f(y)− f(x)− 〈s, y − x〉
‖y − x‖ ≥ 0,

and we let ∂̂f(x) = ∅, when x /∈ dom(f).

(b) The limiting subdifferential or the subdifferential of f at x ∈ Rm, written as ∂f(x), is

defined as

∂f(x) =
{
s ∈ Rm | ∃xk → x, f(xk) → f(x), ∂̂f(xk) ∋ sk → s as k → ∞

}
.

(c) A point x∗ is called critical point or stationary point of f(x) if 0 ∈ ∂f(x∗).

Definition 2.2. A triple w∗ := (x∗,y∗, λ∗) ∈ Rm ×Rn ×Rl is a stationary point of (1.1) if

ATλ∗ ∈ ∂f(x∗), BTλ∗ = ∇g(y∗), Ax∗ +By∗ − b = 0.

The following lemmas are provided to simplify convergence analysis in the sequel sections.
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Lemma 2.1 ([17, Lemma A.2]). Let A ∈ Rm×n be a nonzero matrix and PA be the Eu-

clidean projection onto Im(A). Then, for any u ∈ Rn we have

‖PA(u)‖ ≤ 1√
σA

‖ATu‖.

Lemma 2.2. For any vectors a, b, c ∈ Rn and symmetric matrix 0 � M ∈ Rn×n, it holds

〈
a− b,M(a− c)

〉
=

1

2

(
‖c− a‖2M + ‖a− b‖2M − ‖c− b‖2M

)
. (2.1)

3. Theoretical Results

In this section, by making use of the following primal-dual iterative residuals:

△xk = xk − xk−1, △yk = yk − yk−1, △λk = λk − λk−1, (3.1)

the proposed algorithm will be demonstrated to be convergent according to a quasi-monotoni-

cally nonincreasing property of the sequence {Lβ(wk)}, and its pointwise iteration-complexity

will be established in detail. To proceed, we first state our assumptions.

(A1) B is full column rank and Im(B) ⊃ (b ∪ Im(A)).

(A2) The penalty parameter β satisfies

β >
Lg√

1− τ − ασB

, (τ, α) ∈ D

with D given in (1.9).

(A3) ḡ = inf
(x,y)

{
g(y)− 1

2Lg
‖∇g(y)‖2

}
> −∞.

(A4) lim
‖x‖→∞

inf f(x) = +∞.

Note that (A1) and (A2) are commonly used in the convergence analysis of ADMM-type meth-

ods for nonconvex programs, see e.g. [17,19,29,31,40,41,44], although the restrictions on β are

different. Similar assumptions to (A3) and (A4) can be found in [29]. Based on (A1), we have

△λk+1 ∈ Im(B), which together with Lemma 2.1 implies

‖△λk+1‖2 ≤ σ−1
B

∥∥BT△λk+1

∥∥2. (3.2)

Indeed, we can check that assumptions (A1)-(A3) hold for the two examples mentioned in the

introduction. Hereafter, we denote w = (x,y, λ).

Lemma 3.1. Let {wk} be generated by Algorithm 1.1. Then, under (A2) we have

∥∥BT△λk+1

∥∥ ≤ Lg‖△yk+1‖. (3.3)

Proof. According to the optimality condition of y-subproblem, it holds

∇g(yk+1)−BTλk+ 1

2

+ βBT
(
xad
k+1 +Byk+1 − b

)
= 0. (3.4)
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So, we have by the update of λk+1 that

BTλk+1 = BT

[
λk+ 1

2

− β
(
xad
k+1 +Byk+1 − b

)]
= ∇g(yk+1), (3.5)

which further gives

BTλk = ∇g(yk). (3.6)

Subtracting (3.6) from (3.5) and taking norm on both sides, it follows from the Lg-Lipschitz

continuity of ∇g that ‖BT△λk+1‖ ≤ Lg‖△yk+1‖. The proof is complete. �

Note that optimality condition of the following problem is the same as (3.4):

min
y

{
g(y) +

β

2
‖By − cy‖2

}
,

where

cy = b+
λk+ 1

2

β
− xad

k+1.

Hence, this problem is equivalent to the y-subproblem in Algorithm 1.1. When g is linearized

(if it is smooth) and B has full column rank, the above problem will have closed-form solution.

In addition, by choosing G = σI − βATA with σ ≥ β‖ATA‖, the quadratic term ‖Ax‖2 will

be canceled in the iteration. As a result, the x-subproblem in Algorithm 1.1 is converted to

a proximity operator as follows:

Proxf,σ(cx) := argmin
{
f(x) +

σ

2
‖x− cx‖2

}
, (3.7)

where

cx = xmd
k − 1

σ

(
βAT

(
Axmd

k +Byk − b
)
−ATλk

)
.

Since f is a proper lower semicontinuous function and bounded from below (in view of assump-

tion (A3)), by the proximal behavior in [36] the set Proxf,σ(cx) is nonempty and compact.

Now, adding the update of λk+1/2 to the update of λk+1, we have

1

β
△λk+1 = −τ(Axk+1 +Byk − b)−

[
αAxk+1 + (1− α)(b −Byk) +Byk+1 − b

]

= −(τ + α)(Axk+1 +Byk − b)−B△yk+1,

which by τ + α > 0 gives the following lemma immediately.

Lemma 3.2. Assume τ + α > 0, then the sequence {wk} generated by Algorithm 1.1 satisfies

Axk+1 +Byk − b = − 1

τ + α

(
1

β
△λk+1 +B△yk+1

)
. (3.8)

Next, we present a fundamental lemma that plays a key role in analyzing convergence and

convergence rate bound of Algorithm 1.1.

Lemma 3.3. Under assumptions (A1) and (A2), there exist three constants ζ0≥0 and ζ1, ζ2>0

such that

L̃β(wk)− L̃β(wk+1) ≥ ζ1‖△xk+1‖2G + ζ2‖△yk+1‖2, (3.9)

where

L̃β(wk) := Lβ(wk) + ζ0‖△xk‖2G.
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Proof. The inequality (3.9) can be proved by the following four steps.

Step 1. By the update of x-subproblem together with the way of generating xmd
k , we have

Lβ(xk,yk, λk)− Lβ(xk+1,yk, λk)

≥ 1

2

[∥∥xk+1 − xmd
k

∥∥2
G
−
∥∥xk − xmd

k

∥∥2
G

]

=
1

2

[
‖xk+1 − xk‖2G + 2

〈
xk+1 − xk, G

(
xk − xmd

k

)〉]

=
1

2

[
‖△xk+1‖2G − 2γk〈△xk+1, G△xk〉

]

≥ 1

2

[
‖△xk+1‖2G − γk

(
‖△xk+1‖2G + ‖△xk‖2G

)]

= ζ0
[
‖△xk+1‖2G − ‖△xk‖2G

]
+ ζ1‖△xk+1‖2G, (3.10)

where

ζ0 =
γk
2

≥ 0, ζ1 =
1− 2γk

2
> 0. (3.11)

Step 2. By the update of y-subproblem we obtain

g(yk)−
〈
λk+ 1

2

, Byk

〉
+

β

2

∥∥xad
k+1 +Byk − b

∥∥2

≥ g(yk+1)−
〈
λk+ 1

2

, Byk+1

〉
+

β

2

∥∥xad
k+1 +Byk+1 − b

∥∥2,

which, by Lemma 2.2, is equivalently expressed as

g(yk)− g(yk+1) +
〈
λk+ 1

2

, B△yk+1

〉
+

β

2
‖B△yk+1‖2

≥ β
〈
B△yk+1,x

ad
k+1 +Byk+1 − b

〉
. (3.12)

Therefore, it can be deduced that

Lβ

(
xk+1,yk, λk+ 1

2

)
− Lβ

(
xk+1,yk+1, λk+ 1

2

)

= g(yk)− g(yk+1)+
〈
λk+ 1

2

, B△yk+1

〉

+
β

2

(
‖Axk+1+Byk − b‖2 − ‖Axk+1 +Byk+1 − b‖2

)

= g(yk)− g(yk+1) +
〈
λk+ 1

2

, B△yk+1

〉

− β
〈
B△yk+1, Axk+1 +Byk+1 − b

〉
+

β

2
‖B△yk+1‖2

≥ β
〈
B△yk+1,x

ad
k+1 +Byk+1 − b

〉
− β

〈
B△yk+1, Axk+1 +Byk+1 − b

〉

= β(α− 1)
〈
B△yk+1, Axk+1 +Byk − b

〉

=
1− α

τ + α

[
β‖B△yk+1‖2 +

〈
△yk+1, B

T△λk+1

〉]
, (3.13)

where the second equality follows from Lemma 2.2, the first inequality is based on (3.12), the

third equality uses the update of xad
k+1 and the final equality applies (3.8).

Step 3. Note that

Lβ(xk+1,yk, λk)− Lβ

(
xk+1,yk, λk+ 1

2

)
+ Lβ

(
xk+1,yk+1, λk+ 1

2

)
− Lβ(xk+1,yk+1, λk+1)
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=
〈
λk+ 1

2

− λk, Axk+1 +Byk − b
〉
−
〈
λk+ 1

2

− λk+1, Axk+1 +Byk+1 − b
〉

=
〈
λk+ 1

2

− λk, Axk+1 +Byk − b
〉
−
〈
λk+ 1

2

−λk + λk︸ ︷︷ ︸−λk+1, Axk+1 +Byk+1 − b
〉

=
〈
λk+ 1

2

− λk,−B△yk+1

〉
+
〈
△λk+1, Axk+1 +Byk+1 − b

〉

= τβ
〈
Axk+1 +Byk − b, B△yk+1

〉
+
〈
△λk+1, Axk+1 +Byk+1 +Byk −Byk︸ ︷︷ ︸−b

〉

=
〈
Axk+1 +Byk − b,△λk+1 + τβB△yk+1

〉
+
〈
△λk+1, B△yk+1

〉

= − 1

τ + α

〈
1

β
△λk+1 +B△yk+1,△λk+1 + τβB△yk+1

〉
+
〈
△λk+1, B△yk+1

〉

= − τβ

τ + α
‖B△yk+1‖2 −

1

(τ + α)β
‖△λk+1‖2 −

1− α

τ + α

〈
△λk+1, B△yk+1

〉
, (3.14)

where the sixth equality is based on (3.8).

Step 4. Summing the inequalities (3.10), (3.13) and the equality (3.14), we get

Lβ(xk,yk, λk)− Lβ(xk+1,yk+1, λk+1)

≥ ζ0
[
‖△xk+1‖2G − ‖△xk‖2G

]
+ ζ1‖△xk+1‖2G +R△,

where

R△ =
( 1

τ + α
− 1
)
β‖B△yk+1‖2 −

1

(τ + α)β
‖△λk+1‖2

≥
( 1

τ + α
− 1
)
β‖B△yk+1‖2 −

1

(τ + α)βσB

∥∥BT△λk+1

∥∥2

≥
( 1

τ + α
− 1
)
β‖B△yk+1‖2 −

L2
g

(τ + α)βσB
‖△yk+1‖2

≥
( 1

τ + α
− 1
)
βσB‖△yk+1‖2 −

L2
g

(τ + α)βσB
‖△yk+1‖2

= ζ2‖△yk+1‖2

with

ζ2 =
(1− τ − α)β2σ2

B − L2
g

(τ + α)βσB
> 0, [due to (A2)].

Here, the first inequality of R△ follows from (3.2) and the third inequality is due to (A1). As

a result, the whole proof is complete with the previous notation L̃β(wk). �

Theorem 3.1. Let {wk} be generated by Algorithm 1.1. Then, under (A1)-(A4) we have:

• The sequence {L̃β(wk)} is convergent.

• The residuals ‖△xk+1‖G, ‖△yk+1‖, and ‖△λk+1‖ converge to zero as k → ∞.

Proof. To show convergence of {L̃β(wk)}, we need to ensure that the sequence {wk} is

bounded first. By (A2), it holds

Lg <
√
1− τ − αβσB < βσB . (3.15)
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We know from Lemma 3.3 that

L̃β(x0,y0, λ0) ≥ Lβ(xk,yk, λk) + ζ0‖△xk‖2G ≥ Lβ(xk,yk, λk)

= f(xk) + g(yk)−
1

2β
‖λk‖2 +

β

2

∥∥∥∥Axk +Byk − b− λk

β

∥∥∥∥
2

≥ f(xk) + g(yk)−
1

2βσB

∥∥BTλk

∥∥2 + β

2

∥∥∥∥Axk +Byk − b− λk

β

∥∥∥∥
2

= f(xk) +

(
g(yk)−

1

2Lg

∥∥∇g(yk)
∥∥2
)
+

(
1

2Lg
− 1

2βσB

)∥∥BTλk

∥∥2

+
β

2

∥∥∥∥Axk +Byk+1 − b− λk

β

∥∥∥∥
2

≥ f(xk) + ḡ +

(
1

2Lg
− 1

2βσB

)∥∥BTλk

∥∥2 + β

2

∥∥∥∥Axk +Byk − b − λk

β

∥∥∥∥
2

. (3.16)

The assumption (A4) implies that infx f(x) > −∞. Then we know from (3.16) that {xk},
{‖BTλk‖} and {‖Axk +Byk − b− λk/β‖} are all bounded. Since λk ∈ Im(B), it follows from

Lemma 2.1 that {λk} is bounded. The boundedness of {xk} and {λk} leads to the boundedness

of {yk} because B has full column rank. Hence, the sequence {wk} is bounded.

Since {wk} is bounded, {L̃β(wk)} is also bounded from below and there exists at least one

limit point. Without loss of generality, let w∗ be the limit point of {wk} whose subsequence is

{wkj}. Then, the lower semicontinuity of {L̃β(w)} indicates

L̃β(w∗) ≤ lim
j→+∞

inf L̃β(wkj ).

That is, {L̃β(wkj )} is bounded from below, which further implies convergence of {L̃β(wk)}
based on Lemma 3.3.

Now, summing the inequality (3.9) over k = 0, 1, . . . ,∞, we have by the convergence of

{L̃β(wk)} that

ζ1

∞∑

k=0

‖△xk+1‖2G + ζ2

∞∑

k=0

‖△yk+1‖2 ≤ Lβ(w0)− L̃β(wk+1) < ∞,

which suggests ‖△xk+1‖G → 0 and ‖△yk+1‖ → 0. So, in view of Lemma 3.1 and (3.2), the

following holds:

‖△λk+1‖ ≤ 1√
σB

∥∥BT△λk+1

∥∥ ≤ Lg√
σB

‖△yk+1‖ → 0. (3.17)

The proof is complete. �

Theorem 3.1 indicates that the augmented Lagrangian function of the problem (1.1) is

convergent, and the primal and dual residuals converge to zero. In what follows, we present

a key theorem about pointwise iteration-complexity of the proposed algorithm with respect to

the primal-dual residuals. Actually, the following first assertion implies that any accumulation

point of {wk} is a stationary point of {Lβ(wk)} compared to Definition 2.2.
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Theorem 3.2. Let {wk} be generated by Algorithm 1.1. Then, under assumptions (A1)-(A4)

• It holds

lim
k→∞

dist
(
0, ∂Lβ(w

k+1)
)
= 0. (3.18)

• The sequence {f(xk+1) + g(yk+1)} is convergent.

• Let C0 := L̃β(w0) − ḡ − infx f(x). Then, for any integer k ≥ 1, there exists j ≤ k and

ζi > 0, i = 1, 2, 3, such that

‖△xj‖2G ≤ C0

ζ1(k + 1)
, ‖△yj‖2 ≤ C0

ζ2(k + 1)
, ‖△λj‖2 ≤ C0

ζ3(k + 1)
. (3.19)

Proof. Using (3.8) again, we have

Axk+1 +Byk+1 − b = − 1

τ + α

(
1

β
△λk+1 +B△yk+1

)
+B△yk+1,

which by the second result of Theorem 3.1 suggests

lim
k→∞

Axk+1 +Byk+1 − b = 0. (3.20)

Therefore,

lim
k→∞

∇λLβ(wk+1) = lim
k→∞

−(Axk+1 +Byk+1 − b) = 0. (3.21)

By the first-order optimality condition of y-subproblem, it holds

0 = ∇g(yk+1)−BTλk+ 1

2

+ βBT
(
xad
k+1 +Byk+1 − b

)

= ∇g(yk+1)−BTλk+1 + βBT(Axk+1 +Byk+1 − b)

+BT
(
λk+1 − λk+ 1

2

)
+ βBT

(
xad
k+1 −Axk+1

)

= ∇g(yk+1)−BTλk+1 + βBT(Axk+1 +Byk+1 − b)

− βBT(Axk+1 +Byk+1 − b),

which gives

lim
k→∞

∇yLβ(wk+1) = lim
k→∞

βBT(Axk+1 +Byk+1 − b) = 0. (3.22)

Analogously, by the update of x-subproblem, there exists dk+1 ∈ ∂f(xk+1) such that

0 = dk+1 −ATλk+1 + βAT(Axk+1 +Byk − b) +G
(
xk+1 − xmd

k

)

= dk+1 −ATλk+1 + βAT(Axk+1 +Byk+1 − b)

+ βATB(yk − yk+1) +G(xk+1 − xk − γk△xk)

= dk+1 −ATλk+1 + βAT(Axk+1 +Byk+1 − b)

− βATB△yk+1 −G(γk△xk −△xk+1).

By defining

dk+1 := dk+1 −ATλk+1 + βAT(Axk+1 +Byk+1 − b),

we have dk+1 ∈ ∂xLβ(wk+1) and furthermore

lim
k→∞

dk+1 = lim
k→∞

βATB△yk+1 +G(γk△xk −△xk+1) = 0. (3.23)

Thus, it follows from (3.21)-(3.23) that (3.18) holds.
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For the second assertion, since

f(xk+1) + g(yk+1) = Lβ(wk+1) +
〈
λk+1, Axk+1 +Byk+1 − b

〉

− β

2
‖Axk+1 +Byk+1 − b‖2,

the sequence {f(xk+1) + g(yk+1)} is convergent by the first conclusion of Theorem 3.1, the

boundedness of {λk} and (3.20).

We finally prove the pointwise iteration complexity in (3.19). Recall that infx f(x) > −∞,

employing (3.16) again yields

−L̃β(wk+1) ≤ −ḡ − inf
x
f(x).

Then, for any k ≥ 0, it follows from Lemma 3.3 that

k∑

j=0

(
ζ1‖△xj‖2G + ζ2‖△yj‖2

)
≤ L̃β(w0)− ḡ − inf

x
f(x) = C0,

which shows there exists j ≤ k such that

‖△xj‖2G ≤ C0

ζ1(k + 1)
, ‖△yj‖2 ≤ C0

ζ2(k + 1)
.

The final convergence rate bound in (3.19) can be also verified by (3.17) with ζ3 = L2
g/(σBζ2).

The proof is complete. �

In order to reduce error bounds of the primal-dual residuals, the following remark provides

an adaptive way to update the parameter γk related to ζ1 by making use of the so-called Nes-

terov’s acceleration (proposed originally in [34]), and it also suggests how to choose reasonable

values of the parameters τ and α.

Remark 3.1. By the above convergence analysis, if G ≻ 0, then convergence of Algorithm 1.1

can be guaranteed by γk ∈ [0, 1/2). In such case we can update γk adaptively

γk =
θk−1 − 1

2θk
, θk =

1

2

(
1 +

√
1 + 4θ2k−1

)
, θ−1 := 1. (3.24)

Note that

ζ2 = −βσB +
1

τ + α

[
βσB − L2

g

βσB

]

is inversely proportional to (τ + α) since Lg < βσB . Together with the connection ζ3 = L2
g/ζ2,

we can choose (τ +α) → 1 to get smaller error bound of ‖△λj‖2 in (3.19). In the next section,

numerical experiments will show how to determine reasonable values of τ and α in detail.

4. Numerical Experiments

In this section, we apply the proposed algorithm to solve a class of signal processing prob-

lems to investigate its numerical performance. All experiments are conducted on a PC with

Windows 10 operating system and MATLAB R2018a (64-bit), with an Intel i7-8700K CPU and

16 GB memory.
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Applying Algorithm 1.1 to the nonconvex problem (1.4), we have by (3.7) that

xk+1 = Prox
‖x‖

1/2

1/2
,σ/µ

(
xmd
k − 1

σ

(
βAT

(
Axmd

k − yk − b
)
−ATλk

))
,

which is the half shrinkage operator [42] defined as

Prox
‖x‖

1/2

1/2
,ν
(x) =

(
lν(x1), lν(x2), · · · , lν(xm)

)T
,

where

lν(xi) =





2xi

3

[
1 + cos

2

3

(
π − φ(xi)

)]
, if |xi| >

3 3
√
2

4
ν

2

3 ,

0, otherwise,

and

φ(xi) = arccos

(
ν

8

( |xi|
3

)− 3

2

)
.

Note that assumption (A4) holds since here f(x) = µ‖x‖1/21/2. Besides, it is easy to obtain

yk+1 =
c+ βxad

k+1 − λk+1/2

1 + β
.

Similar way can be used for the compared algorithms to solve (1.3) and its l1-regularization

model.

Aiming to achieve fast convergence and make Algorithm 1.1 less independent on initial guess

of the penalty parameter β, as suggested by He et al. [24] we adopt the following technique to

update it adaptively:

βk+1 =





ηincrβk, if ‖rk‖2 > ν‖sk‖2,
βk/η

decr, if ‖sk‖2 > ν‖rk‖2,
βk, otherwise,

(4.1)

where ν, ηincr and ηdecr are three positive parameters with values larger than 1, for instance,

ν = 10, ηincr = ηdecr = 2. To solve (1.1) using Algorithm 1.1, we have

‖rk‖ = ‖Axk+1 +Byk+1 − b‖, (4.2)

and

‖sk‖ =
∥∥AT△λk+1 + βAT(Axk+1 +Byk − b) +G(△xk+1 − γk△xk)

∥∥,

which represent the equality constrained error and the optimality error, respectively. Here, it

is easy to check that 0 ∈ ∂f(xk+1)−ATλk+1+sk. In order to satisfy assumption (A2), we need

to update

β = min

(
βk+1,

1.01Lg√
1− τ − ασB

)

at each iteration. For the problem (1.4), we have Lg = 1 and σB = 1, and thus assumption

(A3) holds. If not specified, the initial penalty parameter β0 is chosen as 0.04, the starting

points (x0,y0) and λ0 are respectively set as vector of ones with proper length and zero, and

the matrix G = σI − βATA with σ = 1.01β‖ATA‖. The parameter γk is updated adaptively
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according to (3.24). Throughout the experiments we use the following stopping criterion (see

also [29, 41]):

IRE(k) :=
max

{
‖xk − xk−1‖, ‖yk − yk−1‖, ‖λk − λk−1‖

}

max
{
‖xk−1‖, ‖yk−1‖, ‖λk−1‖, 1

} < ǫ, (4.3)

where ǫ is a given tolerance error. Note that this stopping criterion corresponds to the pointwise

iteration complexity (3.19), so it is well defined.

4.1. Basic experiments

We first consider the reformulated sparse signal recovery problem (1.4) with an original signal

x ∈ R3072 containing 160 spikes with amplitude ±1. The measurement matrix A ∈ R1024×3072

is drawn firstly from the standard norm distribution N (0, 1) and then each of its columns is

normalized. Specifically, we use the following MATLAB codes to generate the original signal

xorig, the data A, c and µ:

randn(’state’, 0); rand(’state’,0);

l = 1024; m = 3072;

T = 160; % number of spikes

x_orig = zeros(m,1); q = randperm(m);

x_orig(q(1:T)) = sign(randn(T,1)); % original signal

A = randn(l,m);

A = A*spdiags(1./sqrt(sum(A.^2))’,0,m,m); % normalize columns

sig = 0.01; % noise standard deviation

c = A*x_orig + sig*randn(l,1); % noisy observations

mu_max = norm( A’*c,’inf’);

mu = 0.1*mu_max; % regularization parameter

Setting the tolerance ǫ = 10−15, we evaluate the effect of parameters (τ, α) restricted in (1.9)

on the numerical performance of Algorithm 1.1 (in fact, we choose parameter values around

(τ, α) = (0.3, 0.32), because we find that this setting performs slightly better than some pairs

after running a lot of values restricted in (1.9)). We also randomly choose four pairs of (τ, α)

to carry out the experiments.

Table 4.1 reports computational results1) of several quality measurements, including “IT”,

“CPU”, “IRE”, “EQU”, which denote respectively the iteration number, the CPU time in

seconds, the final relative iterative error IRE(k) defined in (4.3) and the final feasibility error

‖rk‖ defined in (4.2). We use l2-error (defined as ‖xk − xorig‖/‖xorig‖) to represent the relative

error to measure recovery quality of a signal. As shown in Table 4.1, setting (τ, α) = (0.65, 0.32)

would be a reasonable choice for Algorithm 1.1 to solve (1.4), because the resulting iteration

number and the CPU time are relatively smaller while the results in each of the last three

columns are nearly the same when the stopping criterion is satisfied. Hence, in the following

experiments, Algorithm 1.1 uses the default parameters (τ, α) = (0.65, 0.32).

Next, we use the aforementioned code to investigate the effect of regularization parame-

ter µ on Algorithm 1.1 for solving the problem (1.4) with a large data A ∈ R2048×5000 and

the same spikes, and the tolerance is now set as ǫ = 10−12. Fig. 4.1 depicts convergence

1) “−” means that the stopping criterion is not satisfied after 800 iterations, and the bold number in that row

indicates the best result obtained by changing (τ, α) belong to (0, 1).
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Table 4.1: Results of Algorithm 1.1 with different (τ, α) for solving problem (1.4).

(τ, α) IT CPU IRE EQU l2-error

(0.3, 0.10) 472 22.67 9.47e-16 6.10e-14 6.79e-2

(0.3, 0.15) 443 21.12 9.23e-16 5.18e-14 6.79e-2

(0.3, 0.20) 500 24.11 9.77e-16 4.82e-14 6.79e-2

(0.3, 0.25) 379 18.23 9.79e-16 6.33e-14 6.79e-2

(0.3, 0.30) 350 16.79 9.78e-16 5.88e-14 6.79e-2

(0.3, 0.32) 344 16.66 9.45e-16 6.33e-14 6.79e-2

(0.3, 0.35) 544 26.17 9.79e-16 3.28e-14 6.79e-2

(0.3, 0.40) 510 24.30 8.87e-16 5.11e-14 6.79e-2

(0.3, 0.45) 485 23.28 9.93e-16 3.34e-14 6.79e-2

(0.3, 0.50) 458 21.95 9.34e-16 3.24e-14 6.79e-2

(0.3, 0.55) 433 20.86 9.58e-16 3.29e-14 6.79e-2

(0.3, 0.60) 413 20.30 9.45e-16 3.24e-14 6.79e-2

(0.3, 0.65) 396 19.24 9.33e-16 3.26e-14 6.79e-2

(0.3, 0.68) 387 18.66 8.91e-16 3.37e-14 6.79e-2

(-0.3, 0.32) − − − − −

(-0.2, 0.32) − − − − −

(-0.1, 0.32) 695 33.51 9.95e-16 5.41e-14 6.79e-2

(0, 0.32) 498 23.77 9.99e-16 8.38e-14 6.79e-2

(0.1, 0.32) 697 33.49 9.33e-16 5.68e-14 6.79e-2

(0.2, 0.32) 391 18.93 9.54e-16 7.85e-14 6.79e-2

(0.3, 0.32) 344 16.62 9.45e-16 6.33e-14 6.79e-2

(0.4, 0.32) 502 24.16 8.85e-16 4.01e-14 6.79e-2

(0.5, 0.32) 451 21.61 9.49e-16 2.97e-14 6.79e-2

(0.6, 0.32) 404 19.52 9.64e-16 3.74e-14 6.79e-2

(0.62, 0.32) 397 19.20 9.71e-16 4.34e-14 6.79e-2

(0.65, 0.32) 279 13.52 9.98e-16 3.19e-14 6.79e-2

(0.67, 0.32) 318 15.59 8.43e-16 3.11e-14 6.79e-2

(0.90, 0.05) 396 19.06 9.26e-16 3.27e-14 6.79e-2

(0.80, 0.15) 396 19.02 9.33e-16 3.28e-14 6.79e-2

(0.01, 0.90) 411 19.78 9.63e-16 3.10e-14 6.79e-2

(0.05, 0.70) 485 24.62 9.62e-16 3.10e-14 6.79e-2

Fig. 4.1. Convergence behaviors of the equality constraint error ‖rk‖ (left), the iterative error IRE(k)

(middle) and the recovery signal quality ek (right) by Algorithm 1.1 for solving (1.4) with (l,m) =

(2048, 5000) but with different regularization parameters.
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behaviors of the equality constraint error ‖rk‖, the iterative error IRE(k) and the recovery

signal quality ek:= log10(‖xk−xorig‖/‖xorig‖) along the iteration process using Algorithm 1.1

with µ=0.1µmax, 0.05µmax, 0.01µmax, respectively. Fig. 4.2 plots the results to visualize the

recovery quality of the signal versus the original signal, where the upper-left plot shows the

minimum energy reconstruction signal A†c (which is the point satisfying ATAx = ATc) versus

the original signal. An outstanding observation from Fig. 4.1 is that the smaller the value of

µ is, the smaller the iteration number is (and the better the recovery quality of the signal is).

After identifying the nonzero positions in the reconstructed signal, it always has the correct

number of spikes for the case with µ = 0.01µmax and is closer to the original signal.

Fig. 4.2. Comparison between the original signal and reconstructed signal by Algorithm 1.1 for solving

(1.4) with (l, m) = (2048, 5000) but with different regularization parameter µ.

4.2. Comparative experiments

In the following, we compare Algorithm 1.1 with the regularized ADMM (RADMM, [26])

for solving two different cases of the sparse signal recovery problem:

Case 1. The nonconvex problem (1.4) with l1/2-regularization term.

Case 2. The convex problem (1.2)1) with l1-regularization term.

We also apply the Bregman modification of ADMM (BADMM, [39]) and the symmetric

ADMM (SADMM, [41]) to solve the problems (1.2) and (1.3) by introducing auxiliary variable

y = x for the sparse objective function. The proximal matrix in [26] is G = αI − βATA,

where (α, β) = (2.5, 0.12). The Bregman distance and related parameters of [39] use the default

settings as mentioned therein, while the penalty parameter is set as 0.15 since it performs better

1) Note that this is also a special case of (1.1) with f(x) = µ‖x‖1, g(y) = ‖y − c‖2/2, B = −I and b = 0.
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than using the value 10. As explained in [41], the involved stepsize parameter uses the tuned

value α = 0.7, the penalty parameter is initialized as β = 0.1β̂ where β̂ = 2λmax(A
TA)/(1− α)

and then it is updated as min(2β, 1.01β̂) whenever some certain conditions hold. For BADMM

and SADMM, we define ‖rk‖ = ‖xk+1 − yk+1‖. Table 4.2 reports the corresponding numerical

Table 4.2: Comparative results of the state-of-the-art algorithms under ǫ = 10−15.

l1/2-regularizer l1-regularizer

(l, m) IT CPU EQU l2 error IT CPU EQU l2 error

Algorithm 1.1

(1024, 3000) 358 16.37 4.60e-14 1.20e-2 501 22.60 1.93e-14 3.70e-2

(1024, 4000) 367 25.93 4.18e-14 1.28e-2 507 35.61 4.78e-14 4.26e-2

(2048, 5000) 215 30.65 2.84e-14 1.08e-2 250 36.01 3.27e-14 2.66e-2

(2048, 6000) 222 37.43 3.98e-14 1.20e-2 266 44.96 3.47e-14 3.07e-2

(3000, 7000) 201 58.08 2.71e-14 1.17e-2 231 66.91 2.93e-14 2.60e-2

(3000, 8000) 205 71.36 3.77e-14 1.10e-2 230 79.55 3.62e-14 2.58e-2

(4000, 9000) 199 90.51 3.29e-14 1.11e-2 231 105.35 2.87e-14 2.69e-2

(4000, 10000) 202 118.62 2.37e-14 1.03e-2 231 135.72 2.91e-14 2.51e-2

RADMM

(1024, 3000) 562 12.51 4.82e-14 1.20e-2 677 14.91 1.04e-13 3.70e-2

(1024, 4000) 570 17.29 5.57e-14 1.28e-2 729 21.81 6.54e-14 4.26e-2

(2048, 5000) 486 37.19 7.62e-14 1.08e-2 553 41.95 5.87e-14 2.66e-2

(2048, 6000) 492 45.15 5.57e-14 1.20e-2 567 51.95 6.58e-14 3.07e-2

(3000, 7000) 462 70.99 4.01e-14 1.17e-2 516 78.47 5.06e-14 2.60e-2

(3000, 8000) 461 81.13 5.98e-14 1.10e-2 508 89.06 6.27e-14 2.58e-2

(4000, 9000) 456 123.31 5.49e-14 1.11e-2 513 138.54 6.85e-14 2.69e-2

(4000, 10000) 455 137.83 5.95e-14 1.03e-2 513 154.81 5.26e-14 2.51e-2

BADMM

(1024, 3000) 4809 14.84 8.36e-14 1.20e-2 5264 13.08 6.30e-14 3.70e-2

(1024, 4000) 5144 31.09 8.35e-14 1.28e-2 5635 30.02 8.12e-14 4.26e-2

(2048, 5000) 4384 42.45 8.40e-14 1.08e-2 4349 38.08 8.21e-14 2.66e-2

(2048, 6000) 4583 65.08 8.34e-14 1.20e-2 4489 56.54 8.20e-14 3.07e-2

(3000, 7000) 4365 84.15 8.39e-14 1.17e-2 4209 73.20 8.24e-14 2.60e-2

(3000, 8000) − 247.04 1.04e-14 1.10e-2 5932 136.45 8.25e-14 2.58e-2

(4000, 9000) 4385 130.59 8.38e-14 1.11e-2 4151 109.92 8.27e-14 2.69e-2

(4000, 10000) − 359.94 1.03e-13 1.03e-2 − 340.95 9.74e-14 2.51e-2

SADMM

(1024, 3000) − 26.95 5.72e-15 1.20e-2 − 26.64 5.76e-15 3.70e-2

(1024, 4000) − 34.54 5.34e-15 1.28e-2 − 32.40 5.33e-15 4.26e-2

(2048, 5000) − 114.23 7.54e-15 1.08e-2 − 109.13 7.58e-15 2.66e-2

(2048, 6000) − 130.03 7.64e-15 1.20e-2 − 121.74 7.61e-15 3.07e-2

(3000, 7000) − 243.01 9.34e-15 1.17e-2 − 232.76 9.42e-15 2.60e-2

(3000, 8000) − 266.43 9.21e-15 1.10e-2 − 253.38 9.12e-15 2.58e-2

(4000, 9000) − 420.45 1.58e-14 1.11e-2 − 407.61 1.62e-14 2.69e-2

(4000, 10000) − 450.26 1.55e-14 1.03e-2 − 436.87 1.58e-14 2.51e-2
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results, where the problem size varies from 3000 to 10000 with respect to the dimension of the

signal, the regularization parameter is fixed as µ = 0.01µmax and all algorithms are terminated

when the tolerance ǫ = 10−15 or maximum iteration number 10000 is reached. Fig. 4.3 shows the

comparison between the original signal and the reconstructed signal when the signal dimension

is m = 9000.

First of all, it can be seen from Table 4.2 that all algorithms are feasible for solving both the

nonconvex and convex sparse signal recovery problems, but the proposed algorithm performs

better than others with a higher tolerance. However, under a smaller tolerance such as ǫ = 10−5,

the SADMM would perform better than Algorithm 1.1 in terms of CPU. Besides, we observe

that l1/2-regularizer performs significantly better than l1-regularizer in signal recovery, which

could be checked from the results of the iteration number, the CPU time and the recovery

quality (i.e. l2 error). In terms of BADMM, the symbol “−” means that the maximum iteration

number of 10000 is reached, which implies BADMM performs the worst for solving large-scale

problem.

Finally, we would apply the proposed algorithm to solve the direction-of-arrival (DOA)

estimation problem [32] with a single snapshot. Here we consider a uniform linear array of

M = 100 sensors with half-wavelength inter-element spacing. Let θ = [θ1, · · · , θL]T denote

the L angles of interest in [−π/2, π/2]. Denote x = [x1, · · · , xL]
T as the amplitudes of the

potential signals from the L incoming angles. Thus, the received signal at the sensor array

is given by: y = Ax + n, where y = [y1, · · · , yM ]T, n = [n1, · · · , nM ]T, the steering matrix

A = [a(θ1), · · · , a(θL)] and a(θl) = [1, exp(−jπ sin(θl)), · · · , exp(−jπ(M − 1) sin(θl))]
T.

Fig. 4.3. Original signal and reconstructed signal by different algorithms for solving the sparse signal

recovery problem with (l, m) = (4000, 9000): the left is the case with l1/2-norm and the right is the

case with l1-norm.
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We consider the narrowband scenario with K = 2 uncorrelated far-field source signals with

normalized DOA parameters −π/6 and π/4. To run the proposed method, we divide the

potential angle region [−π/2, π/2] into L = 180 uniform grid points, i.e.

θ =
π

180
[−90,−89, . . . , 89, 90]T.

When the signal-to-noise-ratio (SNR) varies from −5 dB to 20 dB, i.e. {−5, 0, 5, 10, 15, 20} dB,
we implement the proposed Algorithm 1.1 and the well-known CVX toolbox (available at

http://cvxr.com/cvx/) for 100 Monte Carlo runs, and compute their root mean square errors

and running time, as plotted in Fig. 4.4. The CVX is directly used to solve the problem in [32],

but Algorithm 1.1 deals with the problem with l1/2-regularization. We plot the result of a single

trial in the case of 5dB, in Fig. 4.5. From Figs. 4.4 and 4.5, we can see that:

• The accuracy of the two methods increases with SNR.

• The implementation of the proposed method is faster than that of CVX.

• In terms of DOA resolution and the estimation accuracy of the incoming signal power,

the proposed method is superior to CVX.

Fig. 4.4. The left and right are the errors and average run time versus SNR.

Fig. 4.5. DOAs at SNR= 5dB.
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5. Conclusion Remarks

In this paper, we construct a symmetric alternating direction method of multipliers for

solving a family of possibly nonconvex and nonxmooth optimization problems. Two different

acceleration techniques are designed for fast convergence. Under proper assumptions, conver-

gence of the proposed algorithm as well as its pointwise iteration complexity are analyzed. By

testing the so-called sparse signal recovery problem in signal processing with nonconvex/convex

regularization terms and by using adaptively updating strategy for the penalty parameter, nu-

merical results demonstrate the feasibility and efficiency of the new algorithm and further show

that the l1/2-regularization term is better than the l1-regularization term in terms of CPU

time, iteration number and recovery error. Our future work will focus on solving stochastic

nonconvex optimization problems by using a similar first-order algorithm to ADMM.
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