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Abstract

A time multipoint nonlocal problem for a Schrödinger equation driven by a cylindrical

Q-Wiener process is presented. The initial value depends on a finite number of future

values. Existence and uniqueness of a solution formulated as a mild solution is obtained.

A single-step implicit Euler-Maruyama difference scheme, a Rothe-Maryuama scheme, is

suggested as a numerical solution. Convergence rate for the solution of the difference

scheme is established. The theoretical statements for the solution of this difference scheme

is supported by a numerical example.
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1. Introduction

Typically, phenomena evolving in time in various fields such as natural sciences, engineering,

and finance are described in terms of differential equations. In models for which uncertainty is

needed to build into the model, inherent randomness is a natural additional ingredient.

The most well-known differential equations subjected to randomness are stochastic ordi-

nary differential equations of which among the most profound example model stock prices,

see e.g. [28]. Partial differential equations with uncertainty can also be handled as stochas-

tic partial differential equations, see e.g. [26] where applications to environmental pollution

models and bond market models appear. In the above examples the initial value is typically

independent of the time-evolving random noise. For backward stochastic differential equations,

suitable for stochastic control and option pricing, the final value is a random variable adapted

to the filtration at the final time point where the solution is nevertheless non-anticipating, see

e.g. [23, Section 3]. In [22, Chapter 3.3] a stochastic two point boundary problem is considered.

It is a finite-dimensional linear Stratonovich stochastic differential equation where the initial

value depends linearly on the final value and is therefore anticipating, existence and uniqueness
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of a solution is shown. For a shooting method as a numerical solution to a stochastic two-point

boundary value problem, see [6].

Existence and uniqueness of solution to evolution equations with nonlocal bondary condi-

tions, formulated as abstract nonlocal Cauchy problems, are typically shown by fixed point ar-

guments, see e.g. [2,3,11,16]; in [3] an application is given by a diffusion of a small amount of gas

in a transparent tube which allows measurements at different time points and not just at time

zero. In [8], a deterministic Schrödinger equation is studied where the initial value is a linear

combination of future values, i.e. there are non-local boundary conditions in time. Existence,

uniqueness, as well as stability of a numerical approximation is obtained. Also in [17,18], infinite

dimensional time-nonlocal problems for deterministic Schrödinger type equations is considered.

In [33] various applications of deterministic time-nonlocal dynamical systems are reviewed, also

including Schrödinger equations. Time-nonlocal dynamical systems allow couplings of the ini-

tial conditions with the system in a nonlocal manner, rather than at a single point [33]. Note

that time-nonlocal problems are generalisations of for instance periodic conditions, see e.g. [32].

The most applications refereed to are in quantum mechanics where for instance it can be seen

as a way to mitigate the influence of initial conditions, or include the ability to impose initial

and final boundary conditions on the evolution of a quantum system. For nonlocal in time

problems applied to radionuclides propagation in Stokes fluid and problems of predicting the

state of a medium see e.g. references in [9].

A stochastically dispersed Schrödinger equation with a linear diffusive term is known as

the Belavkin equation; for a rigorous treatment of such equations see e.g. [25]. For analysis of

stochastic Schrödinger equations with cubic nonlinear drift subjected to a multiplicative finite-

dimensional Wiener process and standard initial value condition, see for instance [1,10,15,30];

in [30] and its references, applications appear in optical fiber communication; in [15] stability

of finite element approximation in space combined with various time discretization schemes

such as explicit and implicit Euler and Crank-Nicolson schemes is obtained where the noise

is of Stratonovich type and the equation is formulated in a variational weak form; for more

references of numerics of stochastic nonlinear Schrödinger equations with given initial value

see for instance the references in [15]. In [5], an infinite-dimensional Q-Wiener process is

allowed where for the case of linear stochastic Schrödinger equation, temporal discretization

convergence of an exponential integrator scheme is obtained of order one for additive noise and

1/2 for multiplicative noise. In [12–14] strong and weak convergence rates of several numerical

schemes for stochastic nonlinear Schrödinger equations with non-monotone coefficients and

multiplicative noise with given initial value are derived. In [31], numerics for deterministic

nonlocal-in-time Schrödinger equations is considered.

In this paper, a stochastic Schrödinger equation with a time-dependent Gaussian excitation

and time non-local initial condition is considered, which, to our knowledge, is novel in combining

temporal discretization of a stochastic Schrödinger equation subjected to a cylindricalQ-Wiener

process with time multi-point initial condition. Since the initial value is a linear combination

of future values, the solution is not adapted to the given filtration. Here the drift is linear and

the dispersion is non-anticipating. That makes it possible to formulate a solution within the

framework of Itô-integrals in infinite dimensions, here in a mild form, which can be compared

to the finite-dimensional linear two-point boundary stochastic differential equation [22] where

a mild form is not needed.

The involved operator in [7] is self-adjoint positive definite while in [8] and in this paper

the operator is only assumed to be self-adjoint. In [7], writing the equation in a mild form, the
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equation is driven by a one-dimensional Wiener process. In this paper the solution is also in

a mild form driven by a noise of the type f(t)dW where W is a cylindrical Q-Wiener process

and f(t) fulfills a Hilbert-Schmidt boundedness making stochastic integrals
∫ t

0
f(s)dW (s) well-

defined. Existence and uniqueness is shown together with stability and convergence of a Rothe-

Maruyama difference scheme which is an implicit scheme of Euler-Maruyama type, here adapted

to the time multi-point boundary condition.

In Section 2, the stochastic Schrödinger problem is formulated. In Section 3, existence and

uniqueness result are obtained. In Section 4, the Rothe-Maruyama time multipoint boundary

together with convergence of the scheme is shown. In Section 5, the numerical scheme is applied

to a non-trivial example, including a spatial discretization scheme, supporting the convergence.

The paper ends with conclusions in Section 6.

2. Formulation of The Stochastic Shrödinger Equation

Let (Ω,F , P ) be a probability space with filtration {Ft}t∈[0,T ] ⊂ F and U and H sepa-

rable Hilbert spaces. Let (· , ·) denote the inner product and ‖.‖ denote the norm of H . For

an F -measurable random variable X with values in H let ‖X‖L2(Ω,H) = (E[‖X‖2])1/2.
Following [19, 27] we introduce a cylindrical Q-Wiener process which is said to be in U as

follows: Consider a linear self-adjoint, positive semidefinite operator Q : U 7→ U , not necessarily

with a finite trace. Then U0 := Q1/2(U) can be Hilbert-Schmidt embedded into a Hilbert

space U1 by a linear map J : U0 7→ U1, for which

∞
∑

i=1

‖Jei‖2U1
< ∞,

where {ei}∞i=1 denotes an orthonormal basis of U0 and ‖ · ‖U1
is the norm in U1. We let

throughout W = {W (t)}t∈[0,T ] be a cylindrical Q-Wiener process in U adapted to the filtration

{Ft}t∈[0,T ]. More explicitly, it means that the cylindrical Q-Wiener process can be represented

in the form

W (t) =

∞
∑

i=1

βi(t)Jei, ∀ t ∈ [0, T ],

where {βi}∞i=1 is a sequence of standard one-dimensional Wiener processes and the series is

convergent in U1 almost surely (which in fact means that W (t) takes values in U1 and not

necessarily in U). If Q has finite trace we can select J = I and U1 = U , [19, 27].

Let, as in [19, 27], L(U0, H) denote the set of linear maps U0 7→ H and NW be the set of

predictable processes Ψ : Ω×[0, T ] 7→L(U0, H) such that the probability P (
∫ T

0
‖Ψ(s)‖2

L0

2

ds<∞)

is one, where

‖Ψ(s)‖2L0

2

:=
∞
∑

i=1

‖Ψ(s)ei‖2

the squared Hilbert-Schmidt norm of Ψ(s) = Ψ(·, s). For stochastic processes ϕ in NW , the

H-valued Itô-integral
∫ T

0

Ψ(s)dW (s) :=

∫ T

0

Ψ(s) ◦ J−1dW (s)

with respect to the cylindrical Wiener process W is well-defined.

Denote by L(H) = L(H,H) the set of linear continuous maps G : H 7→ H with norm

‖G‖L(H) = sup{‖G(x)‖ : ‖x‖ = 1}.
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In this article, the time multipoint nonlocal problem for the stochastic Schrödinger equation






















idu(t) +Au(t)dt = f(t)dW (t), 0 < t < T,

u(0) =

p
∑

m=1

αmu(λm) + ϕ
(

W (λ1), · · · ,W (λp)
)

,

0 < λ1 < λ2 < · · · < λp ≤ T

(2.1)

is considered, where ϕ : Rp 7→ H is a map on H such that ‖ϕ(W (λ1), · · · ,W (λp))‖L2(Ω,H) < ∞,

i2 = −1, α1, · · · , αp are constants, and f ∈ NW . A is a linear not necessarily bounded self-

adjoint operator on H , domain of A is dense in H and p is a positive integer.

3. Time Nonlocal Problem

Since A is a self-adjoint operator on the Hilbert space H , by Stone’s theorem together

with [4, Example 4.12], the operators

eiAt :=

∞
∑

k=0

(iAt)k

k!

form a strongly continuous semigroup where eiAt is unitary and the adjoint of eiAt is

(eiAt)∗ = (eiAt)−1 = e−iAt.

The sum
∑∞

k=0((iAt)
k/k!) is uniformly convergent if A is bounded and strongly convergent if A

is unbounded. The operator iA is the infinitesimal generator of a strongly continuous semigroup

S(t) := eiAt. The domain of A,D(A), is dense in H and for any f ∈ D(A),

−i
d

dt
S(t)f = AS(t)f = S(t)Af,

see [4, Example 4.12]. Using the spectral representation of self-adjoint operator (see [4, p. 153]),

we have

‖eiAt‖L(H) = sup
λ∈σ(A)

|eiλt| ≤ 1,

where σ(A) is the spectrum of the a self-adjoint operatorA. See also [24] for a suitable reference.

Assume throughout that

sup
t∈[0,T ]

∫ t

0

E
[

∥

∥eiA(t−s)f(s)
∥

∥

2

L0

2

]

ds < ∞. (3.1)

Note that (3.1) implies that
∫ t

0 e
iA(t−s)f(s)dW (s) is a well-defined element in H , cf. [27]. Fur-

thermore, by the Itô-isomorphism [27],

E

(

∥

∥

∥

∥

∫ t

0

eiA(t−s)f(s)dW (s)

∥

∥

∥

∥

2
)

=

∫ t

0

E
(

∥

∥eiA(t−s)f(s)
∥

∥

2

L0

2

)

ds.

Definition 3.1 (Mild Solution). A solution to (2.1) is an H-valued process {u(t)}t∈[0,T ]

such that


















u(t) = eiAtu(0)− i

∫ t

0

eiA(t−s)f(s)dW (s), t ∈ [0, T ],

u(0) =

p
∑

m=1

αmu(λm) + ϕ
(

W (λ1), · · · ,W (λp)
)

(3.2)

is satisfied.
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Theorem 3.1. Assume
∑p

m=1 |αm| < 1. Then there exists a unique solution u(t) of the prob-

lem (2.1) and the following stability inequality is satisfied:

sup
t∈[0,T ]

‖u(t)‖L2(Ω,H) ≤
(

1−
m
∑

k=1

|αm|
)−1

×
(

sup
t∈[0,T ]

(
∫ t

0

E
(

∥

∥e−iA(t−s)f(s)
∥

∥

2

L0

2

)

ds

)
1

2

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)
∥

∥

L2(Ω,H)

)

. (3.3)

Note that u(0) 6∈ F0 which means the proof of Theorem 3.1 is somewhat different from stan-

dard proofs of existence and uniqueness of solutions of infinite dimensional stochastic differential

equations.

Proof. Firstly, existence of a mild solution will be shown. Since
∥

∥

∥

∥

∥

(

I −
p
∑

m=1

αmeiAλm

)

− I

∥

∥

∥

∥

∥

L(H)

≤
p
∑

m=1

|αm| ‖eiAλm‖L(H) ≤
p
∑

m=1

|αm| < 1,

the operator I −∑p
m=1 αmeiAλm : H 7→ H is bijective and has an inverse

J =

(

I −
p
∑

m=1

αmeiAλm

)−1

=

∞
∑

k=1

(

p
∑

m=1

αmeiAλm

)k

with

‖J‖L(H) ≤
∞
∑

k=1

∥

∥

∥

∥

∥

p
∑

m=1

αmeiAλm

∥

∥

∥

∥

∥

k

L(H)

≤
∞
∑

k=1

(

p
∑

m=1

|αm| ‖eiAλm‖L(H)

)k

≤
∞
∑

k=1

(

p
∑

m=1

|αm|
)k

=

(

1−
p
∑

m=1

|αm|
)−1

.

Since

−
p
∑

m=1

αm

∫ λm

0

eiA(λm−s)if(s)dWs + ϕ
(

W (λ1), · · · ,W (λp)
)

∈ H,

there exists a unique element ū0 in H such that

ū0 = J

(

−
p
∑

m=1

αm

∫ λm

0

eiA(λm−s)if(s)dWs + ϕ
(

W (λ1), · · · ,W (λp)
)

)

, (3.4)

i.e.
(

I −
p
∑

m=1

αmeiAλm

)

ū0 = −
p
∑

m=1

αm

∫ λm

0

eiA(λm−s)if(s)dW (s) + ϕ
(

W (λ1), · · · ,W (λp)
)

.

Consequently,

ū0 =

p
∑

m=1

αm

[

eiAλm ū0 −
∫ λm

0

eiA(λm−s)if(s)dWs

]

+ ϕ
(

W (λ1), · · · ,W (λp)
)

.
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For this unique ū0, we define u : Ω× [0, T ] 7→ H by

u(t) = eiAtū0 − i

∫ t

0

eiA(t−s)f(s)dW (s). (3.5)

In particular, u(0) = ū0. Hence,

u(t) = eiAtu(0)− i

∫ t

0

eiA(t−s)f(s)dW (s), (3.6)

and

u(0) =

p
∑

m=1

αm

[

eiAλmu(0)−
∫ λm

0

eiA(λm−s)if(s)dW (s)

]

+ ϕ
(

W (λ1), · · · ,W (λp)
)

(3.7)

can be written as

u(0) =

p
∑

m=1

αmu(λm) + ϕ
(

W (λ1), · · · ,W (λp)
)

.

It means that (2.1) has a mild solution.

Now assume that u is a solution of (3.2). The estimate (3.3) will be established of which

uniqueness follows. By applying the Itô-isomorphism to the second line of (3.2) in which we

have put the first line of (3.2), i.e. (3.7),

‖u(0)‖L2(Ω,H) ≤
p
∑

m=1

|αm|
[

‖eiAλmu(0)‖L2(Ω,H) +

∥

∥

∥

∥

∫ λm

0

eiA(λm−s)if(s)dW (s)

∥

∥

∥

∥

L2(Ω,H)

]

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)

≤
p
∑

m=1

|αm|
[

‖u(0)‖L2(Ω,H) +

(
∫ λm

0

E
[

∥

∥eiA(λm−s)f(s)
∥

∥

2

L0

2

]

ds

)
1

2

]

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)
.

Hence,

‖u(0)‖L2(Ω,H) ≤
(

p
∑

m=1

|αm|
(
∫ λm

0

E
∥

∥eiA(λm−s)f(s)
∥

∥

2

L0

2

ds

)
1

2

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)
∥

∥

L2(Ω,H)

)(

1−
p
∑

m=1

|αm|
)−1

. (3.8)

Similarly, for u(t) given by (3.6),

sup
t∈[0,T ]

‖u(t)‖L2(Ω,H) ≤ sup
t∈[0,T ]

(

‖eiAt‖2L(H)E ‖u(0)‖2
)

1

2

+ sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

eiA(t−s)f(s)dW (s)

∥

∥

∥

∥

L2(Ω,H)

≤ ‖u(0)‖L2(Ω,H) + sup
t∈[0,T ]

(
∫ t

0

E
[

∥

∥eiA(t−s)f(s)
∥

∥

2

L0

2

]

ds

)

1

2

. (3.9)
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Using (3.8) and utilizing

p
∑

m=1

|αm|
(

1−
p
∑

m=1

|αm|
)−1

+ 1 =

(

1−
p
∑

m=1

|αm|
)−1

,

we write

sup
t∈[0,T ]

‖u(t)‖L2(Ω,H)

≤
(

p
∑

m=1

|αm|
(
∫ λm

0

E
∥

∥eiA(t−s)f(s)
∥

∥

2

L0

2

ds

)
1

2

+‖ϕ(Wλ1
, · · · ,Wλp

)‖L2(Ω,H)

)(

1−
p
∑

m=1

|αm|
)−1

+ max
1≤m≤p

(
∫ λm

0

E
∥

∥eiA(λm−s)f(s)
∥

∥

2

L0

2

ds

)
1

2

≤
(

(

max
1≤m≤p

∫ λm

0

E
∥

∥eiA(λm−s)f(s)
∥

∥

2

L0

2

ds

)
1

2

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)
∥

∥

L2(Ω,H)

)(

1−
p
∑

m=1

|αm|
)−1

,

i.e. (3.3). Uniqueness of a mild solution follows directly from (3.3). �

Observe that for the proof of Theorem 3.1,
∑p

m=1 |αm| < 1 is a critical condition. However,

in [21, 32], a more general condition of the type

p
∑

m=1

|αm|edλm < 1

is allowed for a deterministic time non-local Schrödinger equation for a certain constant d > 0.

4. The Rothe-Maruyama Time Multipoint Boundary Scheme

To find an approximate solution for the time multipoint nonlocal boundary value problem

for stochastic Schrödinger equation (2.1), on the time interval [0, T ] we consider the uniform

grid space

[0, T ]τ = {tk = kτ, k = 0, 1, . . . , N, Nτ = T } (4.1)

with step size τ > 0 and N an arbitrary but fixed positive integer.

Let us associate the time multipoint non-local problem for the stochastic Schrödinger equa-

tion (2.1) with the corresponding first order implicit Rothe-Maruyama difference scheme











i(uk − uk−1) + τAuk = f(tk−1)(Wk −Wk−1), 1 ≤ k ≤ N,

u0 =

p
∑

m=1

αmulm + ϕ
(

W (λ1), · · · ,W (λp)
)

,
(4.2)

Nτ = T, tk = kτ,Wk = W (tk). Here lm = ⌊λm/τ⌋, the integer part of λm/τ for 1 ≤ m ≤ p.

Note that (4.2) is equivalent to























uk = Rku0 − i

k
∑

j=1

Rk−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

,

u0 =

p
∑

m=1

αmulm + ϕ
(

W (λ1), · · · ,W (λp)
)

.

(4.3)
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For deterministic differential equations the implicit Euler difference scheme is known under the

name Rothe scheme, [7,8]. The Euler type finite difference scheme, adapted for stochastic differ-

ential equations is known under the name Euler-Maruyama scheme, [20]. The Euler-Maruyama

scheme considered here is also implicit and is therefore named as the Rothe-Maruyama scheme

as in [29], where u(0) was given which is different from here where u(0) depends on a finite

number of future values. Since A is a self adjoint operator, all eigenvalues of A are real numbers.

Therefore, for τ > 0 the complex number iτ cannot be an eigenvalue of A. Hence I − iτA is

invertible. Furthermore, for its inverse R = (I − iτA)−1, with σ(A) its resolvent set,

‖R‖ = sup
µ∈σ(A)

|1− iτµ|−1 ≤ sup
µ∈R

|1− iτµ|−1 = |1 + τ2µ2|− 1

2 ≤ 1. (4.4)

Theorem 4.1. Assume
∑p

m=1 |αm| < 1 and

max
1≤m≤p

lm
∑

j=1

E
∥

∥Rlm−j+1f(tj−1)
∥

∥

2

L0

2

τ < ∞.

Then there exists a unique solution of (4.2).

Proof. Similar to the proof of Theorem 3.1, we first show existence of a solution. The

assumption
N
∑

k=1

E‖f(tk−1)‖2L0

2

τ < ∞

implies that the expression

N
∑

k=1

∫ tk

tk−1

f(tk−1)dW (s) =

N
∑

k=1

f(tk−1)
(

W (tk)−W (tk−1)
)

is well-defined in H . Since, by (4.4),

∥

∥

∥

∥

∥

(

I −
p
∑

m=1

αmRlm

)

− I

∥

∥

∥

∥

∥

L(H)

≤
p
∑

m=1

|αm| ‖R‖lmL(H) ≤
p
∑

m=1

|αm| < 1,

I −∑p
m=1 αmRlm has an inverse

D =

(

I −
p
∑

m=1

αmRlm

)−1

=

∞
∑

k=1

(

p
∑

m=1

αmRlm

)k

with

‖D‖L(H) ≤
∞
∑

k=1

(

p
∑

m=1

|αm| ‖R‖lmL(H)

)k

≤
∞
∑

k=1

(

p
∑

m=1

|αm|
)k

=

(

1−
p
∑

m=1

|αm|
)−1

.

Hence, there exists a unique element u0 in H such that

u0 = D

(

− i

p
∑

m=1

αm

lm
∑

j=1

Rlm−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

+ ϕ
(

W (λ1), · · · ,W (λp)
)

)

, (4.5)
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i.e.

(

I −
p
∑

m=1

αmRlm

)

u0 = −i

p
∑

m=1

αm

lm
∑

j=1

Rlm−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

+ϕ(Wλ1
, · · · ,Wλp

),

so that

u0 =

p
∑

m=1

αm

[

Rlmu0 − i

lm
∑

j=1

Rlm−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

]

+ ϕ
(

W (λ1), · · · ,W (λp)
)

.

(4.6)

For this u0 we define uk as

uk = Rku0 − i

k
∑

j=1

Rk−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

. (4.7)

Hence, (4.6) can be written as

u0 =

p
∑

m=1

αmulm + ϕ
(

W (λ1), · · · ,W (λp)
)

. (4.8)

From (4.7) we get for 1 ≤ k ≤ p,

uk = R

[

Rk−1u0 − i
k
∑

j=1

Rk−1−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

]

= R

[

Rk−1u0 − i

k−1
∑

j=1

Rk−1−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

− if(tk−1)
(

W (tk)−W (tk−1)
)

]

= R
[

uk−1 − if(tk−1)
(

W (tk)−W (tk−1)
)]

,

i.e.

(I − iτA)uk = uk−1 − if(tk−1)
(

W (tk)−W (tk−1)
)

.

We have shown that {uk}Nk=1 satisfies (4.2). The uniqueness of (4.3) follows since u0 is uniquely

defined as well as {uk}Nk=1. �

Theorem 4.2. Assume that
∑p

m=1 |αm| < 1. Then the unique solution of the difference scheme

(4.2) obeys the following stability inequality:

max
0≤k≤N

‖uk‖L2(Ω,H) ≤
(

1−
p
∑

i=1

|αm|
)−1(

max
1≤k≤N

(

k
∑

j=1

E
[

∥

∥Rk−j+1f(tj−1)
∥

∥

2

L0

2

]

τ

)
1

2

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)

)

. (4.9)
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Proof. By (4.6) and the Itô-isomorphism,

‖u0‖L2(Ω,H) ≤
p
∑

m=1

|αm|
[

∥

∥Rlmu0

∥

∥

L2(Ω,H)
+

∥

∥

∥

∥

∥

lm
∑

j=1

Rlm−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

∥

∥

∥

∥

∥

L2(Ω,H)

]

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)
∥

∥

L2(Ω,H)

≤
p
∑

m=1

|αm|
[

‖u0‖L2(Ω,H) + max
0≤m≤p

(

lm
∑

j=1

E
∥

∥Rlm−j+1f(tj−1)
∥

∥

2

L0

2

τ

)
1

2

]

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)
∥

∥

L2(Ω,H)
.

Hence,

(E‖u0‖2)
1

2 ≤
(

p
∑

m=1

|αm|
(

max
0≤m≤p

lm
∑

j=1

E
∥

∥Rlm−j+1f(tj−1)
∥

∥

2

L0

2

τ

)
1

2

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)

)(

1−
p
∑

m=1

|αm|
)−1

. (4.10)

Similarly, for uk given by (4.7),

max
0≤k≤N

‖uk‖L2(Ω,H) ≤ max
0≤k≤N

∥

∥Rku0

∥

∥

L2(Ω,H)

+ max
0≤k≤N

∥

∥

∥

∥

∥

k
∑

j=1

Rk−j+1f(tj−1)
(

W (tj)−W (tj−1)
)

∥

∥

∥

∥

∥

L2(Ω,H)

≤ ‖u0‖L2(Ω,H) + max
0≤k≤N

(

k
∑

j=1

E
∥

∥Rk−j+1f(tj−1)
∥

∥

L0

2

τ

)
1

2

.

Using the boundedness (4.10) of u0 and

p
∑

m=1

|αm|
(

1−
p
∑

m=1

|αm|
)−1

+ 1 =

(

1−
p
∑

m=1

|αm|
)−1

,

we obtain

max
0≤k≤N

‖uk‖L2(Ω,H)

≤
(

p
∑

m=1

|αm|
(

lm
∑

j=1

E
∥

∥Rlm−j+1f(tj−1)
∥

∥

2

L0

2

τ

)
1

2

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)

)

×
(

1−
p
∑

m=1

|αm|
)−1

+ max
1≤k≤N

(

k
∑

j=1

E
∥

∥Rk−j+1f(tj−1)
∥

∥

L0

2

τ

)
1

2

=

(

1−
p
∑

m=1

|αm|
)−1((

max
1≤k≤N

k
∑

j=1

E
∥

∥Rk−j+1f(tj−1)
∥

∥

2

L0

2

τ

)
1

2

+
∥

∥ϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)

)

.

The proof is complete. �



Time Multipoint Nonlocal Problem for a Stochastic Schrödinger Equation 11

4.1. Error analysis

Now we will show that the Rothe-Maruyama difference scheme approximation (4.2) for the

time nonlocal problem for the stochastic Schrödinger equation (2.1) has a strong convergence

of order 1/2. For this, we need some related estimates which will be stated in the following

lemma with the convention 00 = 1.

Lemma 4.1. Let A be a self-adjoint operator. Then the following estimates hold:

‖AαRk‖L(H) ≤ α
α
2 (
√
kτ)−α, k ≥ 1, 0 ≤ α < k, (4.11)

‖AkRk‖L(H) ≤ τ−k, k ≥ 1, (4.12)
∥

∥A−β
(

Rk − eikτA
)
∥

∥

L(H)
≤ β−1(2− β)

2−β
2 (

√
kτ)β , β 6= 0, 1− k < β ≤ 2, (4.13)

in particular this holds for k ≥ 1 and 0 < β ≤ 2. Moreover, for any ν ∈ [0, 1],

∥

∥A−ν(eitA − I)
∥

∥

L(H)
≤ 21+νtν . (4.14)

Proof. To prove (4.11) and (4.13), we modify the proof in [29], where the case of 0 ≤ α ≤ 1

and 1 ≤ β ≤ 2 was shown.

Proof of (4.11). We have

∥

∥(τA)αRk
∥

∥

L(H)
≤ sup

λ∈R

(τλ)α

(1 + τ2λ2)k/2
= sup

µ∈R

µα

(1 + µ2)k/2
.

With f(µ) = µα(1 + µ2)−k/2, for 0 ≤ α < k,

f ′(µ) = −(k − α)µα−1

(

µ2 − α

k − α

)

(1 + µ2)−1− k
2 ,

which gives maxima of f for µ∗ = (α/(k − α))1/2 with

f(µ∗) =

(
√

α/(k − α)
)α

(

1 + α/(k − α)
)k/2

=

(

k − α

k

)

k−α
2 (α

k

)
α
2 ≤

(α

k

)
α
2

= α
α
2

(
√
k
)−α

implying (4.11). For α = k, f ′(µ) ≥ 0 so

f(µ) ≤ lim
µ→∞

µk(1 + µ2)
k
2 = 1,

which means that (4.12) also holds.

Proof of (4.13). With Rk(s) = (1 − iτsA)−k,

∥

∥A−β
(

Rk − eikτA
)∥

∥

L(H)
=

∥

∥

∥

∥

A−β

∫ 1

0

d

ds

(

Rk(s)eikτ(1−s)A
)

ds

∥

∥

∥

∥

L(H)

=

∥

∥

∥

∥

A−β

∫ 1

0

ikτARk+1(s)eikτ(1−s)AiτsAds

∥

∥

∥

∥

L(H)

= kτ2
∥

∥

∥

∥

∫ 1

0

A2−βsRk+1(s)eikτ(1−s)Ads

∥

∥

∥

∥

L(H)

≤ kτ2
∫ 1

0

s
∥

∥A2−βRk+1(s)
∥

∥

L(H)
ds.
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For 0 ≤ 2− β < k + 1, i.e. for 1− k < β ≤ 2, in particular 0 < β ≤ 2, we get by (4.11),

∥

∥A−β
(

Rk − eikτA
)
∥

∥

L(H)
≤ kτ2

∫ 1

0

s
∥

∥A2−βRk+1(s)
∥

∥

L(H)
ds

≤ (2− β)
2−β
2 kτ2

∫ 1

0

s

(
√
k + 1sτ)2−β

ds

= (2− β)
2−β
2

k

(k + 1)1−β/2
τβ
∫ 1

0

sβ−1ds

= (2− β)
2−β
2 k

β
2

(

k

k + 1

)1− β
2

τβ
∫ 1

0

sβ−1ds

≤ (2− β)
2−β
2 β−1k

β
2 τβ .

The proof of (4.14) is a minor modification of [19, Lemma B.9(ii)].

∥

∥(tA)−ν(eitA − I)
∥

∥

L(H)
≤ sup

λ∈R\{0}

(tλ)−ν |eitλ − 1|

= sup
µ∈R\{0}

µ−ν |eitµ − 1|

= 2 sup
µ∈R\{0}

µ−ν | sin(µ/2)|

= 2 · 2γ sup
γ∈R\{0}

γ−ν | sin γ| = 21+ν ,

from which (4.14) follows. �

Theorem 4.3. Assume that

∥

∥Aϕ
(

W (t1), · · · ,W (tp)
)∥

∥

L2(Ω,H)
≤ M1, (4.15)

sup
τ∈[0,T ]

max
1≤k≤N

k
∑

j=1

E
[

∥

∥ARk−jf(tj−1)
∥

∥

2

L0

2

]

τ < ∞. (4.16)

Assume furthermore for 0 ≤ t1 < t2 ≤ T ,

∫ t2

t1

E
[

∥

∥eiA(t2−s)f(s)
∥

∥

2

L0

2

]

+ E
[

∥

∥AeiA(t2−s)f(s)
∥

∥

2

L0

2

]

ds ≤ M2|t2 − t1|, (4.17)

∫ t2

t1

∥

∥ei(t2−s)Af(s)− ei(t2−t1)Af(t1)
∥

∥

2

L2(Ω,L0

2
)
ds ≤ L1(t2 − t1)

2. (4.18)

Then the Rothe-Maruyama difference scheme (4.2) for the stochastic Schrödinger equation (2.1)

has a strong convergence of order 1/2 at the initial point t0. That is, at the initial point the

convergence estimate

‖u(t0)− u0‖L2(Ω,H) ≤ Mτ
1

2 (4.19)

holds. Here the positive constants L1,M1,M2,M do not depend on τ .

The temporal convergence order of 1/2 is in line with that of semilinear stochastic differ-

ential equations with Lipschitz assumptions on the drift and dispersion and a standard initial
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condition, see e.g. [19, Theorem 3.14]. Recall however that temporal discretization conver-

gence of an exponential integrator scheme for a stochastic Schrödinger equation with Cauchy

condition is obtained in [5] of order one for additive noise and 1/2 for multiplicative noise.

Clearly, (4.16) holds if

sup
τ∈[0,T ]

N
∑

j=1

E
[

‖Af(tj−1)‖2L0

2

]

τ < ∞. (4.20)

Similarly (4.17) holds if

sup
t∈[0,T ]

(

E
[

‖f(t)‖2L0

2

]

+ E
[

‖Af(t)‖2L0

2

])

< ∞. (4.21)

It is also clear that (4.18) holds under the Hölder-continuity of e−isAf(s) with exponent 1/2 in

the sense
∥

∥e−isAf(s)− e−itAf(t)
∥

∥

L2(Ω,L0

2
)
≤ L2|t− s| 12 (4.22)

for a constant L2. It is furthermore obvious that (4.22) holds if

sup
t∈[0,T ]

(

E
[

‖f(t)‖2L0

2

])

< ∞,

‖eitA − I‖L(H) ≤ Ct
1

2 , ‖f(t)− f(s)‖L0

2

≤ L3|t− s| 12 (4.23)

for constants C and L3 since

∥

∥e−isAf(s)− e−itAf(t)
∥

∥

L0

2

≤
∥

∥e−itA
(

ei(t−s)A − I
)

f(s)
∥

∥

L0

2

+
∥

∥e−itA
(

f(s)− f(t)
)∥

∥

L0

2

.

Proof. Using the expressions (3.4) and (4.5) we have

u(0)− u0 = (J −D)ϕ(Wλ1
, · · · ,Wλp

)− Ji

p
∑

m=1

αm

∫ λm

0

eiA(λm−s)f(s)dWs

+Di

p
∑

m=1

αm

lm
∑

j=1

Rlm−j+1f(tj−1)(Wtj −Wtj−1
)

= T1 + · · ·+ T7,

where

T1 = (J −D)ϕ
(

W (t1), · · · ,W (tp)
)

= DJ

p
∑

m=1

αm

(

eiAλm −Rlm
)

ϕ
(

W (t1), · · · ,W (tp)
)

, (4.24)

T2 = −iDJ

p
∑

n=1

αn

(

eiAλn −Rln
)

p
∑

m=1

αm

∫ λm

0

ei(λm−s)Af(s)dW (s), (4.25)

T3 = −iD

p
∑

m=1

αm

∫ λm

lmτ

ei(λm−s)Af(s)dW (s), (4.26)

T4 = −iD

p
∑

m=1

αm

∫ lmτ

0

[

ei(λm−s)A − ei(lmτ−s)A
]

f(s)dW (s) (4.27)
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T5 = −iD

p
∑

m=1

αm

(

lm
∑

j=1

∫ jτ

(j−1)τ

ei(lmτ−s)Af(s)dWs

−
lm
∑

j=1

∫ jτ

(j−1)τ

Rlm−jei(jτ−s)Af(s)dW (s)

)

, (4.28)

T6 = −iD

p
∑

m=1

αm

(

lm
∑

j=1

∫ jτ

(j−1)τ

Rlm−jei(jτ−s)Af(s)dW (s)

−
lm
∑

j=1

∫ jτ

(j−1)τ

Rlm−jeiτAf(tj−1)dW (s)

)

, (4.29)

T7 = −iD

p
∑

m=1

αm

lm
∑

j=1

Rlm−j
(

eiτA −R
)

f(tj−1)∆Wlj . (4.30)

Using (4.14) with ν = 1 and (4.13) with β = 1,

‖T1‖L2(Ω,H) =

∥

∥

∥

∥

∥

DJ

p
∑

m=1

αm

(

eiAλm −Rlm
)

ϕ
(

W (t1), · · · ,W (tp)
)

∥

∥

∥

∥

∥

L2(Ω,H)

≤ ‖D‖ ‖J‖
p
∑

m=1

|αm|
∥

∥A−1eiAlmτ
(

eiA(λm−lmτ) − I
)

Aϕ
(

W (t1), · · · ,W (tp)
)∥

∥

L2(Ω,H)

+ ‖D‖ ‖J‖
p
∑

m=1

|αm|
∥

∥A−1
(

eiAlmτ −Rlm
)

Aϕ
(

W (t1), · · · ,W (tp)
)
∥

∥

L2(Ω,H)

≤ ‖D‖ ‖J‖
p
∑

m=1

|αm|
(

|λm − lmτ |M1 +
√

lmτM1

)

≤ ‖D‖ ‖J‖
p
∑

m=1

|αm|
(

τM1 +
√
Tτ

1

2M1

)

≤ Mτ
1

2 .

We use the same approach to T1 – viz. (4.14) with ν = 1 and (4.13) with β = 1, the

inequalities λn − lnτ ≤ τ, lnτ ≤ T and (4.17) to get an estimate for T2 as follows:

‖T2‖L2(Ω,H) =

∥

∥

∥

∥

∥

DJ

p
∑

n=1

αn

(

eiAλn −Rln
)

p
∑

m=1

αm

∫ λm

0

ei(λm−s)Af(s)dW (s)

∥

∥

∥

∥

∥

L2(Ω,H)

≤ ‖D‖ ‖J‖
p
∑

n=1

|αn|
∥

∥

∥

∥

∥

eiAλnA−1
(

eiA(λn−lnτ) − I
)

×
p
∑

m=1

αm

∫ λm

0

Aei(λm−s)Af(s)dW (s)

∥

∥

∥

∥

∥

L2(Ω,H)

+ ‖D‖ ‖J‖
p
∑

n=1

|αn|
∥

∥

∥

∥

∥

eiAλnA−1
(

eiAlnτ − Rln
)

×
p
∑

m=1

αm

∫ λm

0

Aei(λm−s)Af(s)dW (s)

∥

∥

∥

∥

∥

L2(Ω,H)

≤ ‖D‖ ‖J‖
p
∑

n=1

|αn|(λn − lnτ)

∥

∥

∥

∥

∥

p
∑

m=1

αm

∫ λm

0

Aei(λm−s)Af(s)dW (s)

∥

∥

∥

∥

∥

L2(Ω,H)
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+ ‖D‖ ‖J‖
p
∑

n=1

|αn|
√

lnτ

∥

∥

∥

∥

∥

p
∑

m=1

αm

∫ λm

0

Aei(λm−s)Af(s)dW (s)

∥

∥

∥

∥

∥

L2(Ω,H)

≤ ‖D‖ ‖J‖
p
∑

n=1

|αn|
p
∑

m=1

|αm|
(
∫ T

0

E
[

∥

∥Aei(λm−s)Af(s)
∥

∥

2

L0

2

]

ds

)
1

2

τ

+ ‖D‖ ‖J‖
p
∑

n=1

|αn|
√
T
√
τ

p
∑

m=1

|αm|
(
∫ λm

0

E
[

∥

∥Aei(λm−s)Af(s)
∥

∥

2

L0

2

]

ds

)
1

2

≤ Mτ
1

2 .

By (4.17) and using |λm − lmτ | ≤ τ ,

‖T3‖L2(Ω,H) ≤ ‖D‖
p
∑

m=1

|αm|
∥

∥

∥

∥

∫ λm

lmτ

eiA(λm−s)f(s)dW (s)

∥

∥

∥

∥

L2(Ω,H)

= ‖D‖
p
∑

m=1

|αm|
(
∫ λm

lmτ

E
(

∥

∥eiA(λm−s)f(s)
∥

∥

2

L0

2

)

ds

)
1

2

≤ Mτ
1

2 .

By (4.14) with ν = 1, |λm − lmτ | ≤ τ and by (4.17)

‖T4‖L2(Ω,H) ≤ ‖D‖
p
∑

m=1

|αm|
∥

∥

∥

∥

∫ lmτ

0

[

ei(λm−s)A − ei(lmτ−s)A
]

f(s)dW (s)

∥

∥

∥

∥

L2(Ω,H)

= ‖D‖
p
∑

m=1

|αm|
(
∫ lmτ

0

∥

∥A−1
[

ei(λm−lmτ)A − I
]

Aei(lmτ−s)Af(s)
∥

∥

2

L0

2

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
(
∫ lmτ

0

(λm − lmτ)2
∥

∥Aei(lmτ−s)Af(s)
∥

∥

2

L0

2

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
(
∫ lmτ

0

∥

∥Aei(lmτ−s)Af(s)
∥

∥

2

L0

2

ds

)
1

2

τ ≤ Mτ.

By (4.13) with β = 1, (lm − j)τ ≤ T for j = 1, . . . , lm, and (4.17),

‖T5‖L2(Ω,H) ≤ ‖D‖
p
∑

m=1

|αm|
(

lm
∑

j=1

∫ jτ

(j−1)τ

∥

∥A−1(ei(lm−j)τA −Rlm−j)
∥

∥

2

L(H)

× E
[

∥

∥Aei(jτ−s)Af(s)
∥

∥

2

L0

2

]

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
(

lm
∑

j=1

∫ jτ

(j−1)τ

(
√

lm − jτ
)2
E
[

∥

∥Aei(jτ−s)Af(s)
∥

∥

2

L0

2

]

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
√
T

(

lm
∑

j=1

∫ jτ

(j−1)τ

E
[

∥

∥Aei(jτ−s)Af(s)
∥

∥

2

L0

2

]

ds

)
1

2√
τ

≤ ‖D‖
p
∑

m=1

|αm|
√
T

(

lm
∑

j=1

τ

)
1

2√
τ ≤ Mτ

1

2 .
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By (4.18) and that lmτ ≤ T ,

‖T6‖L2(Ω,H) ≤ ‖D‖
p
∑

m=1

|αm|
∥

∥

∥

∥

∥

lm
∑

j=1

∫ tj

tj−1

Rlm−j
(

ei(tj−s)Af(s)− eiτAf(tj−1)
)

dW (s)

∥

∥

∥

∥

∥

L2(Ω,H)

≤ ‖D‖
p
∑

m=1

|αm|
(

lm
∑

j=1

∫ tj

tj−1

E
[

∥

∥ei(tj−s)Af(s)− ei(tj−tj−1)Af(tj−1)
∥

∥

2

L0

2

]

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
(

lm
∑

j=1

(tj − tj−1)
2

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
√
T
√
τ ≤ Mτ

1

2 .

By the use of (4.13) with β = 1 and (4.16),

‖T7‖L2(Ω,H) ≤ ‖D‖
p
∑

m=1

|αm|
∥

∥

∥

∥

∥

lm
∑

j=1

Rlm−j(eiτA −R)f(tj−1)∆Wlj

∥

∥

∥

∥

∥

L2(Ω,H)

≤ ‖D‖
p
∑

m=1

|αm|
(

lm
∑

j=1

E
[

∥

∥A−1(eiτA −R)
∥

∥

2

L(H)

∥

∥ARlm−jf(tj−1)
∥

∥

2

L0

2

]

τ

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
(

lm
∑

j=1

(
√
1τ
)2
E
[

∥

∥ARlm−jf(tj−1)
∥

∥

2

L0

2

]

τ

)
1

2

= ‖D‖
p
∑

m=1

|αm|
(

lm
∑

j=1

E
[

∥

∥ARlm−jf(tj−1)
∥

∥

2

L0

2

]

τ

)
1

2

τ ≤ Mτ.

The proof is complete. �

Remark 4.1. (ι) An alternative way to show convergence of T4, here with convergence rate

1/2, is

‖T4‖L2(Ω,H) ≤ ‖D‖
p
∑

m=1

|αm|
m
∑

j=1

∥

∥

∥

∥

∫ ljτ

lj−1τ

[

ei(λm−s)A − ei(lmτ−s)A
]

f(s)dW (s)

∥

∥

∥

∥

L2(Ω,H)

= ‖D‖
p
∑

m=1

|αm|
m
∑

j=1

(
∫ ljτ

lj−1τ

E
(

∥

∥A−1
[

ei(λm−lmτ)A−I
]

Aei(lmτ−s)Af(s)
∥

∥

2

L0

2

)

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
m
∑

j=1

(
∫ ljτ

lj−1τ

(λm − lmτ)2E
(

∥

∥Aei(lmτ−s)Af(s)
∥

∥

2

L0

2

)

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
m
∑

j=1

(

τ2
∫ ljτ

lj−1τ

E
(

∥

∥Aei(lmτ−s)Af(s)
∥

∥

2

L0

2

)

ds

)
1

2

≤ ‖D‖
p
∑

m=1

|αm|
m
∑

j=1

(τ3)
1

2 ≤ Mτ
1

2 .
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(ιι) An alternative way to show convergence of T7, here with convergence rate 1/2, is

‖T7‖L2(Ω,H) ≤ ‖D‖
p
∑

m=1

|αm|
lm
∑

j=1

∥

∥A−1(eiτA −R)
∥

∥

L2(Ω,H)

∥

∥ARlm−jf(tj−1)∆Wlj

∥

∥

L2(Ω,H)

≤ ‖D‖
p
∑

m=1

|αm|
lm
∑

j=1

(

E
∥

∥A−1(eiτA −R)
∥

∥

2

L(H)

)
1

2

(

E‖ARlm−jf(tj−1‖2L0

2

τ
)

1

2

≤ ‖D‖
p
∑

m=1

|αm|
lm
∑

j=1

(

(

(
√
1τ)1

)2
)

1

2

(

E
[

∥

∥ARlm−jf(tj−1)
∥

∥

2

L0

2

]

τ
)

1

2

= ‖D‖
p
∑

m=1

|αm|
lm
∑

j=1

τ
3

2

(

E
[

∥

∥ARlm−jf(tj−1)
∥

∥

2

L0

2

])
1

2 ≤ Mτ
1

2 .

Here we may assume that

max
1≤j≤N

(

E
[

∥

∥ARlm−jf(tj−1)
∥

∥

2

L0

2

])
1

2

< ∞

or assume the weaker condition

max
1≤lm≤N

lm
∑

j=1

τ
(

E
[

∥

∥ARlm−jf(tj−1)
∥

∥

2

L0

2

])
1

2

< ∞. (4.31)

Theorem 4.4. Assume that the assumptions of the previous theorem hold. Then the Rothe-

Maruyama difference scheme (4.2) for time nonlocal problem for the stochastic Schrödinger

equation (2.1) has a mean-square convergence of order 1/2. That is, for 0 ≤ k ≤ N ,

‖u(tk)− uk‖L2(Ω,H) ≤ Mτ
1

2

holds for τ ≤ 1. Here the positive constant M does not depend on τ .

Proof. For k = 0, the result follows from the previous theorem. For 1 ≤ k ≤ N , we can

write

u(tk)− uk = T8k + T9k + T10k + T11k + T12k,

where

T8k = (eikτA −Rk)J

[

−
p
∑

m=1

αm

∫ λm

0

eiA(λm−s)if(s)dW (s) + ϕ
(

W (λ1), · · · ,W (λp)
)

]

,

T9k = Rk
(

u(0)− u0

)

,

T10k = −i

k
∑

j=1

[

ei(k−j)τA −Rk−j
]

∫ tj

tj−1

ei(tj−s)Af(s)dW (s),

T11k = −i

k
∑

j=1

Rk−j

[

∫ tj

tj−1

ei(tj−s)Af(s)dW (s)− eiτAf(tj−1)∆Wj

]

,

T12k = −i
k
∑

j=1

[eiτA −R]Rk−jf(tj−1)∆Wj .
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We will estimate these five terms separately. By (4.15), (4.17), (4.13) with β = 1 and (4.14)

with ν = 1, and kτ ≤ T ,

‖T8k‖L2(Ω,H) ≤ ‖J‖
∥

∥A−1(eikτA −Rk)
∥

∥

L(H)

[

∥

∥Aϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)

+

p
∑

m=1

|αm|
∥

∥

∥

∥

∫ λm

0

eiA(λm−s)iAf(s)dW (s)

∥

∥

∥

∥

L2(Ω,H)

]

≤ ‖J‖
∥

∥A−1(eikτA −Rk)
∥

∥

L(H)

[

∥

∥Aϕ
(

W (λ1), · · · ,W (λp)
)∥

∥

L2(Ω,H)

+

p
∑

m=1

|αm|
∫ λm

0

∥

∥eiA(λm−s)Af(s)L2(Ω,H)

∥

∥

2
ds

]

≤ ‖J‖
√
kτ(M1 +M2λp) ≤ Mτ

1

2 .

Estimate for T9k follows from the previous theorem. Now let us obtain an estimate for T10k.

Using the triangle inequality, inequality (4.13) with β = 1, Itô isometry and estimate (4.17),

we have

E‖T10k‖L2(Ω,H) ≤
(

k
∑

j=1

∫ tj

tj−1

∥

∥A−1
(

ei(k−j)τA −Rk−j
)∥

∥

2

L(H)

∥

∥Aei(tj−s)Af(s)
∥

∥

2

L0

2

ds

)
1

2

≤
(

k
∑

j=1

∫ tj

tj−1

(
√

k − jτ
)2∥
∥Ae−isAf(s)

∥

∥

2

L0

2

ds

)
1

2

≤
(

k
∑

j=1

(
∫ tj

tj−1

(k − j)τ

)

∥

∥Ae−isAf(s)
∥

∥

2

L0

2

ds

)
1

2√
τ

≤
√
T

(

k
∑

j=1

∫ tj

tj−1

∥

∥Ae−isAf(s)
∥

∥

2

L0

2

ds

)
1

2√
τ

≤
√
T

(
∫ T

0

∥

∥Ae−isAf(s)
∥

∥

2

L0

2

ds

)
1

2√
τ ≤ Mτ

1

2 .

By (4.18),

‖T11k‖L2(Ω,H) =

∥

∥

∥

∥

∥

k
∑

j=1

Rk−j

∫ tj

tj−1

[

ei(tj−s)Af(s)dWs − eiτAf(tj−1)∆Wj

]

∥

∥

∥

∥

∥

L2(Ω,H)

≤
(

k
∑

j=1

∫ tj

tj−1

E
(

∥

∥ei(tj−s)Af(s)− ei(tj−tj−1)Af(tj−1)
∥

∥

2

L0

2

)

ds

)
1

2

≤
(

k
∑

j=1

L1(tk − tj−1)
2ds

)
1

2

≤ Mτ
1

2 .

By (4.14) with ν = 1 and (4.16),

‖T12k‖L2(Ω,H) =

∥

∥

∥

∥

∥

k
∑

j=1

[eiτA −R]Rk−jf(tj−1)∆Wj

∥

∥

∥

∥

∥

L2(Ω,H)



Time Multipoint Nonlocal Problem for a Stochastic Schrödinger Equation 19

=

(

k
∑

j=1

∥

∥[eiτA −R]Rk−jf(tj−1)
∥

∥

2

L2(Ω,H)
τ

)
1

2

≤
(

k
∑

j=1

∥

∥A−1[eiτA −R]
∥

∥

2

L(H)
E
[

∥

∥ARk−jf(tk−1)
∥

∥

2

L0

2

]

τ

)
1

2

≤
(

k
∑

j=1

τ2E
[

∥

∥ARk−jf(tk−1)
∥

∥

2

L0

2

]

τ

)
1

2

≤
(

k
∑

j=1

E
[

∥

∥ARk−jf(tk−1)
∥

∥

2

L0

2

]

τ

)
1

2

τ ≤ Mτ.

Or in an alternative way using the assumptions of Remark 4.1(ιι), namely (4.31), we can obtain

‖T12k‖L2(Ω,H) ≤
k
∑

j=1

∥

∥[eiτA −R]Rk−jf(tj−1)∆Wj

∥

∥

L2(Ω,H)

≤
k
∑

j=1

(

∥

∥A−1[eiτA −R]
∥

∥

2

L(H)
E
[

∥

∥ARk−jf(tk−1)
∥

∥

2

L0

2

]

τ
)

1

2

≤
k
∑

j=1

(

τ2E
[

∥

∥ARk−jf(tk−1)
∥

∥

2

L0

2

]

τ
)

1

2 ≤ Mτ
1

2 .

Hence, the result follows from the estimates of T8k, T9k, T10k, T11k, and T12k. �

5. Numerical Verification

In this section, numerical experiment of the time nonlocal problem


























































idu(t, x) +

(

uxx(t, x) +

(

π2 − i

2
+ 1

)

u(t, x)

)

dt

= ieit sin(πx)eW (t)dW (t), 0 < t, x < 1,

u(0, x) =
1

3
u

(

1

3
, x

)

+ ϕ

(

x,W

(

1

3

))

, 0 < x < 1,

u(t, 0) = u(t, 1) = 0, 0 < t < 1,

ϕ

(

x,W

(

1

3

))

= sin(πx)

(

1− 1

3
e

i
3 eW ( 1

3
)

)

(5.1)

for the Schrödinger equation by using first order Rothe-Maruyama difference scheme is in-

vestigated. The Eq. (5.1) can be formulated in the mild form (3.2). Here W = {W (t)}t≥0

is a standard one-dimensional Wiener process with values in U = U0 = R; for fixed t,

f(t) : U ∋ u 7→ f(t, ·)u ∈ H = L2([0, 1]) with

f(t, x) = ieit sin(πx) exp
(

W (t)
)

,

for which

‖f(t)‖2L2

0

= ‖f(t) · 1‖2L2(0,1) =

∫ 1

0

sin2(πx)dxe2W (t) =
1

2
e2W (t),
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hence, by the use of E[eαW (t)] = exp(α2t/2),

∫ t

0

E
[

∥

∥ei(t−s)Af(s)
∥

∥

2

L0

2

]

ds ≤
∫ t

0

E
[

‖f(s)‖2L0

2

]

ds ≤
∫ t

0

E
[

e2W (s)
]

ds =

∫ t

0

e2
2 s

2 ds,

and (3.1) is valid. Furthermore, ϕ : R ∋ u 7→ ϕ(·, u) ∈ H = L2([0, 1]) with

ϕ(x, u) = sin(πx)

(

1− 1

3
e

i
3 exp(u)

)

,

for which

E

∥

∥

∥

∥

ϕ

(

W

(

1

3

))
∥

∥

∥

∥

2

H

= E

∥

∥

∥

∥

ϕ

(

W

(

1

3

))
∥

∥

∥

∥

2

L2([0,1])

=

∫ 1

0

sin2(πx)dxE

[

∣

∣

∣

∣

1− 1

3
e

i
3 exp

(

W

(

1

3

))
∣

∣

∣

∣

2
]

< ∞.

Besides, A is defined by

Aφ(x) =

(

π2 − i

2
+ 1

)

φ(x) + φxx(x), φ ∈ C∞
0

(

(0, 1)
)

,

where C∞
0 ((0, 1)) is the set of infinitely differentiable real-valued functions on (0, 1) with com-

pact support. For φ ∈ C∞
0 ((0, 1)), define

‖φ‖1,2 =

(
∫ 1

0

|φ(y)|p + |φx(y)|2dy
)

1

2

.

The domain D(A) of A is the completion of C∞
0 ((0, 1)) in H = L2((0, 1)) with respect to ‖·‖1,2.

By applying the Itô formula to t 7→ eiteW (t), it is easy to see that

u(t, x) = eit sin(πx)eW (t) (5.2)

is the unique mild solution to (5.1). Concerning the convergence conditions (4.15)-(4.18), we

recall that for (4.16) it is sufficient to show (4.20), for (4.17) it is sufficient to validate (4.21),

and for (4.18) it is sufficient to show (4.22). We have for (4.15),

∥

∥

∥

∥

Aϕ

(

W

(

1

3

))∥

∥

∥

∥

2

L2(Ω,H)

= E

[

∥

∥

∥

∥

Aϕ

(

W

(

1

3

))∥

∥

∥

∥

2

H

]

= E

[

∥

∥

∥

∥

Aϕ

(

W

(

1

3

))∥

∥

∥

∥

2

L2([0,1])

]

= E

[

∫ 1

0

∣

∣

∣

∣

(

π2 − i

2
+ 1 +

∂2

∂x2

)

ϕ

(

x,W

(

1

3

))∣

∣

∣

∣

2

dx

]

= E

[

∫ 1

0

∣

∣

∣

∣

(

π2 − i

2
+ 1 +

∂2

∂x2

)

[sin(πx)]

(

1− 1

3
e

i
3 exp

(

W

(

1

3

)))
∣

∣

∣

∣

2

dx

]

< ∞,

and for (4.21),

‖Af(t)‖2L2(Ω,L0

2
) = E

[

‖Af(t)‖2L2(0,1)

]
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= E

[

∫ 1

0

∣

∣

∣

∣

(

π2 − i

2
+ 1 +

∂2

∂x2

)

f(t, x)

∣

∣

∣

∣

2

dx

]

= E

[

∫ 1

0

∣

∣

∣

∣

(

π2 − i

2
+ 1 +

∂2

∂x2

)

ieit sin(πx) exp
(

W (t)
)

∣

∣

∣

∣

2

dx

]

= E

[

∫ 1

0

∣

∣

∣

∣

(

− i

2
+ 1

)

ieit sin(πx) exp
(

W (t)
)

∣

∣

∣

∣

2

dx

]

=
5

4

∫ 1

0

sin2(πx) exp(2t)dx =
5

8
exp(2t).

For (4.20),

N
∑

j=1

E
[

‖Af(tj−1)‖2L0

2

]

τ =

N
∑

j=1

E

[

∫ 1

0

∣

∣

∣

∣

(

π2 − i

2
+ 1 +

∂2

∂x2

)

f(tj−1, x)

∣

∣

∣

∣

2

dx

]

τ

≤
N
∑

j=1

E

[

∫ 1

0

∣

∣

∣

∣

(

π2− i

2
+1+

∂2

∂x2

)

ieitj−1 sin(πx) exp
(

W (tj−1)
)

∣

∣

∣

∣

2

dx

]

τ

≤
N
∑

j=1

E

[

∫ 1

0

∣

∣

∣

∣

(

− i

2
+ 1

)

ieitj−1 sin(πx) exp
(

W (tj−1)
)

∣

∣

∣

∣

2

dx

]

τ

≤
N
∑

j=1

5

4

∫ 1

0

sin2(πx) exp
(

2(tj−1)
)

dxτ

≤ 5

8

N
∑

j=1

exp
(

2(tj−1)
)

τ ≤ 5

8
T exp(2T ).

Furthermore, where we recall f(t, x) = ieit sin(πx) exp(W (t)), for 0 ≤ s ≤ t ≤ 1,
∥

∥e−iAsf(s)− e−iAtf(t)
∥

∥

2

L2(Ω,L0

2
)

= E
[

∥

∥e−iAsf(s)− e−iAtf(t)
∥

∥

2

L2(0,1)

]

= E
[

∥

∥e−( 1

2
+i)sf(s)− e−( 1

2
+i)tf(t)

∥

∥

2

L2(0,1)

]

= ‖ sin(π·)‖2L2(0,1)E
[

∣

∣e−( 1

2
+i)seis exp

(

W (s)
)

− e−( 1

2
+i)teit exp

(

W (t)
)
∣

∣

2
]

≤ 1

2
E

[

∣

∣

∣
exp

(

−s

2
+W (s)

)

− exp
(

− t

2
+W (t)

)∣

∣

∣

2
]

=
1

2
E

[

∣

∣

∣
exp

(

−s

2
+W (s)

)

(1 − exp
(

− t− s

2
+
(

W (t)−W (s)
)

)
∣

∣

∣

2
]

=
1

2
E

[

∣

∣

∣
exp

(

−s

2
+W (s)

)∣

∣

∣

2
]

E

[

∣

∣

∣

∣

1− exp
(

− t− s

2
+
(

W (t)−W (s)
)

)

∣

∣

∣

∣

2
]

=
1

2
E
[

exp
(

− s+ 2W (s)
)]

E

[

1− 2 exp
(

− t− s

2
+
(

W (t)−W (s)
)

)

+ exp
(

− (t− s) + 2
(

W (t)−W (s)
))

]

=
1

2

(

exp
(

−s+ 22
s

2

))

(

1− 2 exp

(

− t− s

2
+

t− s

2

)

+ exp

(

−(t− s) + 22
t− s

2

))
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=
1

2
es
∫ t−s

0

eθdθ ≤ 1

2
es
∫ t−s

0

et−sdθ ≤ e1(t− s),

hence (4.22). For the approximate solution of problem (5.1), the set [0, 1]τ × [0, 1]h of a family

of grid points depending on the small parameters τ and h,

[0, 1]τ × [0, 1]h = {(tk, xn) : tk = kτ, k = 1, . . . , N − 1, Nτ = 1,

xn = nh, n = 1, . . . ,M − 1, Mh = 1}

is defined. For problem (5.1), the Rothe-Maruyama scheme including a spatial discretization

can be formulated as follows:



























i
(

uk
n − uk−1

n

)

+

(

uk
n+1 − 2uk

n + uk
n−1

h2
+

(

π2 − i

2
+ 1

)

uk
n

)

τ

= f(tk−1, xn)∆Wk−1, k = 1, . . . , N =
1

τ
, n = 1, . . . ,M − 1,

u0
n=

1

3
u
[N
3
]

n +ϕ

(

xn,
1

3
W

)

, n=1, . . . ,M−1, uk
0=0, uk

M =0, k=0, . . . , N,

(5.3)

where ∆Wk−1 = W (tk)−W (tk−1) and [N/3] is the integer part of N/3. With a = τ/h2, b = −i,

c = i− 2τ/h2 + π2τ , d = τ/h2, we have for k = 1, . . . , N ,

auk
n+1 + buk−1

n + cuk
n + duk

n−1 = f(tk−1, xn)∆Wk−1, n = 1, . . . ,M − 1.

By also taking into consideration the non-local initial condition we can write

AUn+1 +BUn + CUn−1 = Dϕn, n = 1, . . . ,M − 1, (5.4)

where

Un =















u0
n

u1
n

· · ·
uN−1
n

uN
n















, n = 1, . . . ,M − 1, U0 = UM =















0

0

· · ·
0

0















(N+1)×1

, (5.5)

and A,B,C and D are (N + 1)× (N + 1) matrices with

A(i, i+ 1) = a, B(i, i) = b, B(i, i+ 1) = c, C(i, i+ 1) = d, D(i, i) = 1

with all other entries zero, and

ϕn =









ϕ1
n

· · ·
ϕN
n

ϕ0
n









=









f(t0, xn)∆W0

· · ·
f(tN−1, xn)∆WN−1

ϕ(xn,W )









, n = 1, . . . ,M − 1.

To solve (5.4) together with (5.5) we apply the modified Gauss elimination method for the

difference equation with respect to n with matrix coefficients as in [8]. It means that we seek

a solution of the matrix in the following form:

Un = αn+1Un+1 + βn+1, n = M − 1, . . . , 2, 1, 0, (5.6)
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where αj (j = 1, . . . ,M) are (N + 1) × (N + 1) square matrices and βj (j = 1, . . . ,M) are

(N + 1)× 1 columns. By plugging (5.6) into (5.4) we get

AUn+1 +B(αn+1Un+1 + βn+1) + C
(

αn(αn+1Un+1) + βn

)

= Dϕn,

i.e.

(A+Bαn+1 + Cαnαn+1)Un+1 +Bβn+1 + Cαnβn+1 + Cβn = Dϕn,

which for each n has a solution iteratively given by

αn+1 = −(B + Cαn)
−1A, βn+1 = (B + Cαn)

−1(Dϕn − Cβn), n = 1, 2, 3, . . . ,M − 1.

Note that for obtaining αn+1, βn+1, n = 1, . . . ,M − 1, first we need to find α1 and β1. Since

U0 = α1U1 + β1, where U0 is a zero vector we let, as in [8], α1 be the zero matrix and β1 also

be the zero column vector. We thus obtain αn and βn forward and Un backward by n.

Numerically verifying Theorem 4.4, supported by Figs. 5.1-5.3, the numerical solution of the

difference equation (5.3) is compared with the analytical solution of the differential equation

Fig. 5.1. Visualization of one simulation of the approximative Rothe-Maruyama solution (5.1) and the

exact solution (5.2). Real and imaginary part of computed values are on the left, and that of exact

values are on the right. Here M = 100 and N = 400. Note the slight deviation of the approximative

solution and the exact solution for the imaginary part of the solution at the initial time point t = 0.



24 R. PETTERSSON, A. SIRMA AND T. AYDIN

(5.1) with the L2 error ‖u(tN )− uN‖L2(Ω,H) at the final time point approximated by

EN
M =

(

1

Nsim

Nsim
∑

j=1

M−1
∑

n=1

[

u(tN , xn)− uN
n

]2
h

)
1

2

, (5.7)

where u(tN , xn) is the exact solution at the final time point tN = 1 given by (5.2) and uN
n is

the numerical solution (5.1) at (tN , xn) = (1, xn).

Fig. 5.2. A simulated time-evolutionary trajectory of the real part of the approximative (5.1) and the

exact solution (5.2) also here with M = 100 and N = 400, N = 100 at x = 0.5. Note the typical Wiener

process type trajectory in time which is not apparent from Fig. 5.1.

Fig. 5.3. Loglog plot of the L2-error estimate (5.7) of the numerical scheme for large M (M = 1000) and

N = 25, 50, 100, 200, 400 based on 1000 number of simulations. The solid line is the fitted regression

line with slope 0.502. The empirical convergence rate as the rate of the regression line slope seems to

be in line with Theorem 4.4 stating the convergence 1/2.
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6. Conclusions

In this paper, existence and uniqueness of a solution to a time multipoint Schrödinger

equation with values in a Hilbert space driven by a cylindrical Wiener process is obtained. Mean

square convergence rate of order 1/2 of an implicit Euler-Maruyama scheme, which should be the

main contribution of the paper due to more intricate calculations, is also achieved. Numerical

experiments for a non-trivial example corroborates the convergence rate. Convergence rate of

temporal-space discretization will be investigated in future studies.
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