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Abstract

In this paper, we establish the oracle inequalities of highly corrupted linear observa-

tions b = Ax0 + f0 + e ∈ R
m. Here the vector x0 ∈ R

n with n ≫ m is a (approx-

imately) sparse signal and f0 ∈ R
m is a sparse error vector with nonzero entries that

can be possible infinitely large, e ∼ N (0, σ2
Im) represents the Gaussian random noise

vector. We extend the oracle inequality ‖x̂ − x0‖
2
2 .

∑
i
min{|x0(i)|

2, σ2} for Dantzig se-

lector and Lasso models in [E.J. Candès and T. Tao, Ann. Statist., 35 (2007), 2313–2351]

and [T.T. Cai, L. Wang, and G. Xu, IEEE Trans. Inf. Theory, 56 (2010), 3516–3522]

to ‖x̂−x0‖
2
2+‖f̂−f0‖

2
2 .

∑
i
min{|x0(i)|

2, σ2} +
∑

j
min{|λf0(j)|

2, σ2} for the extended

Dantzig selector and Lasso models. Here (x̂, f̂) is the solution of the extended model, and

λ > 0 is the balance parameter between ‖x‖1 and ‖f‖1, i.e. ‖x‖1 + λ‖f‖1.

Mathematics subject classification: Primary 94A12, 62G05, Secondary 90C25.

Key words: Corrupted compressed sensing, Oracle inequality, Extended Dantzig selector,

Extended Lasso, Generalized restricted isometry property.

1. Introduction

1.1. Corrupted compressed sensing problem

Over the past twenty years, the idea of compressed sensing has received extensive attention

and has been employed in several potential technologies [8, 10]. It offers an excellent strat-

egy for reconstructing a (approximately) sparse signal from a few observations. In particular,

an s-sparse signal x0 ∈ R
n is evaluated by

b = Ax0 + e, (1.1)

where A ∈ R
m×n with m ≪ n is the sensing matrix, b ∈ R

m denotes the observation vector

and e ∈ R
m is the possible noise vector.

The following optimization problem:

min
x∈Rn

‖x‖0

s.t. Ax− b ∈ C(η)

provides a good estimator for the reconstruction of x0. Here ‖x‖0 = |{i : xi 6= 0}| expresses
the sparsity of x, C(η) is a bounded set with the parameter η > 0 determined by the error
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structure, for example, C(η) = {z : ‖z‖2 ≤ η} or C(η) = {z : ‖A⊤z‖∞ ≤ η} [11]. Here and

following, we use the notation A⊤ ∈ R
n×m denotes the transposition of the matrix A ∈ R

m×n.

There exist some convex methods to solve this optimization problem. The method of basis

pursuit [13, 14] transformed the ℓ0-minimization ‖x‖0 to its relative convex ℓ1-minimization

‖x‖1 (‖x‖1 =
∑

i |xi|), solved the non-deterministic polynomial (NP) hard problem. Candès

and Tao [9] proved that the original signal x0 can be exactly recovered by solving that ℓ1-

minimization problem. Based on this, a number of methods for different noise types have been

proposed, such as Lasso [41], quadratically constrained basis pursuit [18], Dantzig selector [11],

and RLAD [44,47]. Extensive studies appear under different frameworks, such as the null space

property [17, 22, 39], the restricted isometry property (RIP) [5, 15, 16, 49], and the coherence

[4, 19, 28, 29, 42], solving this problem.

When certain unknown items of the observation vector are badly distorted, we can get

a novel method inspired by the above classic compressed sensing issue. In mathematics, we

have

b = Ax0 + f0 + e. (1.2)

Here f0 ∈ R
m is a corrupted error, which is unidentified and cannot be disregarded. Corrupted

compressed sensing is the issue of reconstructing the sparse signal x0 and sparse error f0 from the

observations (1.2). Laska et al. [25] first considered recovering the signal and the corruption from

corrupted measurements and designed an algorithm dubbed Justice Pursuit. They extended

the classical RIP to the generalized restricted isometry property (GRIP) as follows.

Definition 1.1. For any matrix Φ = [A, I] ∈ R
m×(n+m), the (s, t)-GRIP-constant δs,t is de-

fined as the infimum of δ such that

(1− δ)
(
‖x‖22 + ‖f‖22

)
≤
∥∥∥∥Φ
[
x

f

]∥∥∥∥
2

2

≤ (1 + δ)
(
‖x‖22 + ‖f‖22

)

holds for any x ∈ R
n with |supp(x)| ≤ s and f ∈ R

m with |supp(f)| ≤ t.

As a nontrivial extension of compressed sensing, the corrupted compressed sensing problem

has been used in various practical fields, such as super-resolution and inpainting [33], signal

recovery from the impulsive observations [36], signal separation [21].

In recent years, many breakthroughs have been obtained in the research of the corrupted

compressed sensing problem. In the absence of the noise e, Wright and Ma [45] proposed to

recover the signal x0 and the corruption f0 from the observations b in (1.2) by solving the

following problem:

min
x∈Rn,f∈Rm

‖x‖1 + ‖f‖1

s.t. b = Ax+ f .

Considering the general situation with random noise e, being tiny, Lin and Li [31] proposed

to recover the sparse signal from the corrupted observations (1.2) with coherent tight frames

via separation analysis Dantzig selector (SADS)

min
x∈Rn,f∈Rm

‖D⊤x‖1 + ‖Ω⊤f‖1

s.t.
∥∥W⊤[A, I]⊤(Ax+ f − b)

∥∥
∞

≤ η,
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and separation analysis Lasso (SALasso)

min
x∈Rn,f∈Rm

1

2ρ
‖Ax+ f − b‖22 + ‖D⊤x‖1 + ‖Ω⊤f‖1.

Here η ≥ 0 is the noise boundedness parameter, ρ represents a regularized parameter, the

matrices D ∈ R
n×d,Ω ∈ R

m×M and W = [D,0;0,Ω] ∈ R
(n+m)×(M+d) are the tight frames for

R
n,Rm and R

n+m, respectively.

To improve the robustness of the model, some authors proposed to add a balance parameter

between ‖x‖1 and ‖f‖1. For instance, Nguyen and Tran [35] demonstrated that by choosing

an appropriate balance parameter λ > 0, the linear programming

min
x∈Rn,f∈Rm

‖x‖1 + λ‖f‖1

s.t. Ax+ f = b

can accurately recover both signal x0 and error f0, even when the sparsity of x0 grows almost

linearly in the dimension of signal and the errors in f0 are up to a constant fraction of all the

entries. What we should point out is that, when ‖x‖1/‖f‖1 ≪ 1 or ≫ 1, the choice of the value

of λ is vital to recover both signal x0 and error f0.

Soon afterwards, inspired by the traditional Lasso model, Nguyen and Tran [34] established

the extended Lasso model for corrupted compressed sensing on the noisy case as follows:

min
x∈Rn,f∈Rm

1

2ρ
‖b−Ax− f‖22 + ‖x‖1 + λ‖f‖1.

Li [30] developed a sufficient condition for signal’s stable recovery in the framework of GRIP.

He required that the balance parameter λ is in the interval [
√
s/t/c, c

√
s/t] with c ≥ 1, where

s and t are the sparsity of x0 and f0, respectively. Especially, when s ∈ ⌊αm/(1 + log(n/m))⌋
and t ∈ ⌊αm⌋, the author in [30] took the parameter λ = 1/

√
1 + log(n/m).

Later, Li et al. [27] proposed the extended Dantzig selector model as follows:

min
x∈Rn,f∈Rm

‖x‖1 + λ‖f‖1

s.t.
∥∥[A, I]⊤(Ax+ f − b)

∥∥
∞

≤ η.
(1.3)

The balance parameter λ is limited within the range of [
√
s/t/c1, c2

√
s/t] with c1, c2 ≥ 1.

In recent years, Wan et al. [43] introduced a novel Bayesian technique for robust corrupted

compressed sensing. Adcock et al. [1] offered a novel theoretical argument for the extended

ℓ1-minimization method that seeks to recover sparse expansion coefficients in the presence of

corrupted measurements. For more works on corrupted compressed sensing, readers can refer

to [26, 37, 38, 48].

1.2. Oracle inequalities

In the technology of wavelet thresholding for signal de-noising, Donoho and Johnstone [20]

first introduced the oracle inequality conception. By comparing the performance of the real

estimator with that of the hypothetical estimator, it offers an useful tool for determining how

accurately the estimation process performs. Later, it has been used to inverse problems [12],

statistical estimation [6] and so on.
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Candès [6] gave a detailed explanation of the statistical implications of the oracle inequality.

In short, it can be interpreted as a bridge between the performance of the actual estimator

and the ideal estimator, which is achieved with perfect information supplied by the oracle, and

which is not available in reality. There is a simple example offered by Candès [6], which helps

us to comprehend the oracle inequality. Suppose y ∼ N (θ, Im). Now we need to estimate the

parameter θ ∈ R
m through the observations y ∈ R

m. There is a family of estimators θ̂c = c ·y.
And the mean-squared error (MSE) of them are written as MSE(θ̂c, θ) = E‖θ̂c − θ‖22, which is

used to measure the performance of the estimators θ̂c. Calculating the minimum MSE leads

to c∗ = argmincMSE(θ̂c, θ), i.e. c∗ = g1(θ) = ‖θ‖22/(‖θ‖22 + m). This implies that we can

obtain the best estimator with the help of an oracle that tells us the true parameters. Let

θ̂ = g2(y) · y be a practical estimator. It is clear that MSE(θ̂, θ) ≥ infc MSE(θ̂c, θ). Suppose

that the parameter θ̂ obeys MSE(θ̂, θ) ≤ ν + infcMSE(θ̂c, θ), where ν is a constant. It means

that the estimator θ̂ nearly has the performance as good as if we could know the best model

estimator with the help of an oracle. So we call it an oracle inequality.

Candès and Tao [11] applied the oracle inequality approach to study the compressed sensing.

The using of the oracle inequality is extremely significant for compressed sensing. Suppose

that x0 is highly small so that x0 falls considerably below the noise level, i.e. |x0(i)| ≪ σ for

all i. Setting x̂ = 0 in this case would result in a squared error loss of only
∑

i=1 |x0(i)|2,
which might be considerably less than σ2 times the sparsity of x0. And they also considered

the observations b in (1.1) with e ∼ N (0, σ2Im). Under the framework of RIP, they developed

an oracle inequality for the Dantzig selector model

min
x∈Rn

‖x‖1

s.t. ‖A⊤(Ax− b)‖∞ ≤ η∗,

where η∗ = (1 + t−1)
√
2 logm · σ and t is a positive scalar. Suppose that A is a matrix with

ℓ2-unit-norm columns, and x0 is sufficiently sparse. Then Candès and Tao showed that the

estimator error
∥∥x̂DS − x0

∥∥2
2
.

(
σ2 +

m∑

i=1

min
{
|x0(i)|2, σ2

}
)

(1.4)

holds with high probability. Here and follows, we use A . B to denote A ≤ C0B for any

A,B ∈ R, where C0 ∈ R
+ is an absolute constant and the value varies with the constant. The

notation & can be defined similarly. Later, Cai et al. [3] established the oracle inequality for

the Dantzig selector under the condition of the mutual incoherence property. Setting

η∗ = σ

(√
2 logm+

3

2

)
,

they came to the conclusion (1.4) with high probability. Recently, based on the Lasso model,

Li and Chen [29] established the oracle inequalities via Lasso and Dantzig selector for (approx-

imately) sparse signal recovery under the framework of the mutual incoherence property.

Candès and Plan [7] proposed the matrix Lasso and the matrix Dantzig selector models and

established the oracle inequalities for (approximately) low-rank matrix recovery. Consider the

model b = A(X0)+e. Here X0 ∈ R
n1×n2 is the (approximately) low-rank matrix, A is a linear

mapping from R
n1×n2 to R

m with A(X0) =< Bj ,X0 > and Bj ∈ R
n1×n2 , and e ∼ N (0, σ2Im).

They showed that the estimation

‖X̂−X0‖2F .
∑

i

min
{
σ2
i (X0), nσ

2
}
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holds with high probability, where n = max{n1, n2} and σ2
i (X0) is the singular value of X0.

Here X̂ is the solution of the matrix Dantzig selector as follows:

min
X∈Rn1×n2

‖X‖∗
s.t.

∥∥A∗
(
A(X)− b

)∥∥ ≤ η,

where ‖ · ‖ is the spectral norm (‖X‖ = maxj σj(X)) and ‖ · ‖∗ is the nuclear norm (‖X‖∗ =∑
j σj(X)), and A∗ is the adjoint mapping of A with A∗(y) =

∑m
j=1 yjBj .

1.3. Our contributions

In this subsection, we aim to extend the oracle inequalities to the corrupted compressed

sensing. We consider the Gaussian noise model as follows:

b = Ax0 + f0 + e =: Φh0 + e, e ∼ N (0, σ2Im), (1.5)

where

Φ = [A, I] ∈ R
m×(n+m), h0 = [x0; f0] ∈ R

n+m.

Suppose that the standard deviation σ is known, ‖x0‖0 ≤ s and ‖f0‖0 ≤ t. We denote index

sets S ⊂ supp(x0), T ⊂ supp(f0) and I = {S, T } with |I| ≤ s + t < m. For a fixed index set

I∗ ⊂ R
(m+n), we use the least squares (LS) method to estimate the following problem:

ĥLS
I∗ = argmin

h

‖b−ΦI∗h‖22, (1.6)

where ΦI∗ ∈ R
m×(n+m) with a restriction on the columns of it as: (ΦI∗)i = Φi for i ∈ I∗,

(ΦI∗)i = 0 otherwise. We can rewrite the LS estimator as follows:

ĥLS
I∗ =

(
Φ⊤

I∗ΦI∗

)−1
Φ⊤

I∗b.

Once an oracle is aware of the true vector h0, it will choose the optimal index set I and

reduce the MSE, which can be expressed as follows:

Ioracle = argmin
{
E
∥∥ĥLS

I − h0

∥∥2
2
: I ⊂ supp(h0)

}
.

The minimum MSE that may be obtained across all index sets is known as the oracle risk

E‖ĥLS
I − h0‖22. Notice that for each given index set I, the MSE of ĥLS

I can be determined as

follows:

E
∥∥ĥLS

I − h0

∥∥2
2
= E

∥∥ĥLS
I − EĥLS

I

∥∥2
2
+
∥∥EĥLS

I − h0

∥∥2
2
.

It is well known that the LS estimator is an unbiased estimator, namely, EĥLS
I = (h0)I . Thus,

we can get

E
∥∥ĥLS

I − h0

∥∥2
2
= E

∥∥ĥLS
I − (h0)I

∥∥2
2
+ ‖(h0)Ic‖22

=
∥∥(Φ⊤

I ΦI

)−1
Φ⊤

I Φ(h0)Ic

∥∥2
2
+ σ2Tr

((
Φ⊤

I ΦI

)−1
)
+ ‖(h0)Ic‖22

≥ σ2Tr
((

Φ⊤
I ΦI

)−1
)
+ ‖(h0)Ic‖22.
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Notice that all eigenvalues of the linear operator ΦT

IΦI belong to the interval [1− δ|I|, 1 + δ|I|]

and 0 < δ|I| < 1 (see [25, Theorem 1]). Therefore, we can get

E
∥∥ĥLS

I − h0

∥∥2
2
≥ |I|σ2

1 + δ|I|
+ ‖(h0)Ic‖22

≥ 1

2

(
‖(x0)Sc‖22 + σ2|S|+ 1

λ2
‖λ(f0)T c‖22 + σ2|T |

)

≥ 1

2

∑

i

min
{
|x0(i)|2, σ2

}
+

t

2c22s

∑

j

min
{
|λf0(j)|2, σ2

}
,

where the last inequality is established because of λ ∈ [
√
s/t/c1, c2

√
s/t] with c1, c2 ≥ 1

(see [27]). In conclusion, the oracle bound of corrupted compressed sensing obeys

inf
S,T

E

[∥∥x̂LS
S − x0

∥∥2
2
+
∥∥f̂LS

T − f0
∥∥2
2

]

&
∑

i

min
{
|x0(i)|2, σ2

}
+
∑

j

min
{
|λf0(j)|2, σ2

}
. (1.7)

Now a fundamental question: Given the date b and the model (1.5), without knowing the

support sets of x0 and f0, can we design an estimator which achieve (1.7)? In this paper, we try

to solve this problem and give a positive answer. So, we mainly analyze the oracle inequalities

of corrupted compressed sensing for the extended Dantzig selector model

min
x∈Rn,f∈Rm

‖x‖1 + λ‖f‖1

s.t.
∥∥[A, I]⊤(Ax+ f − b)

∥∥
∞

≤ η∗,
(1.8)

and the extended Lasso model

min
x∈Rn,f∈Rm

1

2ρ∗
‖b−Ax− f‖22 + ‖x‖1 + λ‖f‖1. (1.9)

Here we set

η∗ = 2κσ
√
log(n+m), ρ∗ =

2κσ
√
log(n+m)

max{1, λ} ,
√
2 < κ < 2.

Firstly, we discuss the sparse signal recovery with ‖x0‖0 ≤ s and ‖f0‖0 ≤ t. We consider

the Gaussian noise model (1.5), and assume that the measurement matrix A = (aij)
m,n
i,j=1

is sampled from the Gaussian measurement ensemble, and aij ∼ N (0, 1/m). Suppose that

m & (s + t) log((n +m)/(s + t)) and λ ∈ [
√
s/t/c1, c2

√
s/t] with c1, c2 ≥ 1. Let (x̂, f̂ ) be the

optimal solution of the extended Dantzig selector (1.8) or the extended Lasso (1.9). Then we

get the recovery error

‖x̂− x0‖22 + ‖f̂ − f0‖22 .

n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}

with probability at least 1 − 1/
√
π log(n+m) − 1/n− 3e−K2m. Please refer to Theorems 2.1

and 2.2 below.



Oracle Inequalities for Corrupted Compressed Sensing 7

Later, we discuss the approximately sparse signal recovery. Under the same hypothesis, we

get an estimation

‖x̂− x0‖22 + ‖f̂ − f0‖22 .

[
∑

i∈S∗

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

]

+

[
∑

j∈T∗

min
{
|λf0(j)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

]

with probability at least 1 − 1/
√
π log(n+m) − 1/n− 3e−K2m − e−m/100 provided that m &

(s+ t) log((n+m)/(s+ t)). Here supp((x0)max(s∗)) ⊂ S∗ with |S∗| = s∗, supp((f0)max(t∗)) ⊂ T∗

with |T∗| = t∗ and s∗+t∗ = m/ log(e(n+m)/m), and λ ∈ [
√
s∗/t∗/c1, c2

√
s∗/t∗] with c1, c2 ≥ 1.

Please refer to Theorems 3.1 and 3.2 below.

It must be pointed out that our results for corrupted compressed sensing are NOT trivial

extensions of the compressed sensing (non-corrupted) with b = Ax0 + e.

1.4. Organization and notations

The article is organized as follows. In Section 2, we establish the oracle inequalities of

sparse signal recovery based on the extended Dantzig selector and the extended Lasso models.

In Section 3, we discuss the oracle inequalities for approximately sparse signal recovery. In

Section 4, we show numerical experiments to demonstrate the effect of the extended Dantzig

selector and extended Lasso models and explain the significance of the oracle inequalities. In

Section 5, we present the conclusions and comments.

We employ the following critical notation through the article. xS denotes a vector that all

elements equal to x if indices of it in set S, otherwise, equal to zero, and xSc = x − xS . For

x ∈ R
n, we denote xmax(s) as the vector x with all but the largest s entries in absolute value set

to zero. Let I ∈ R
m×m be an m×m dimensional identity matrix. The matrix Φ ∈ R

m×(m+n)

denotes the joint matrix of measurement matrix A and identity matrix I, namely, Φ = [A, I].

To state conveniently, we use A . B to denote A ≤ C0B for any A,B ∈ R, where C0 ∈ R
+ is

an absolute constant. The notion & can be defined similarly. We also use the notation O(n) to

denote the number Cn with the universal constant C.

2. Oracle Inequalities for Sparse Signal

Based on the extended Dantzig selector and extended Lasso models, we establish the oracle

inequalities for the Gaussian noise model (1.5) in this section.

Theorem 2.1. Consider the Gaussian noise model (1.5). Suppose that x0 is s-sparse, f0 is

t-sparse and measurement matrix A ∈ R
m×n is sampled from the Gaussian measurement en-

semble, and aij ∼ N (0, 1/m). Set

η∗ = 2η = 2κσ
√
log(n+m),

√
2 < κ < 2, m ≥ K1(s+ t) log

n+m

s+ t

with constant K1 depending on GRIP constant δ, and λ ∈ [
√
s/t/c1, c2

√
s/t] with the constants

c1, c2 ≥ 1. Then the solution (x̂DS , f̂DS) of the model

min
x∈Rn,f∈Rm

‖x‖1 + λ ‖f‖1
s.t.

∥∥[A, I]⊤(Ax+ f − b)
∥∥
∞

≤ η∗
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with b = Ax0 + f0 + e satisfies

∥∥x̂DS − x0

∥∥2
2
+
∥∥f̂DS − f0

∥∥2
2
≤ C1

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]

with probability at least 1 − 1/
√
π log(n+m) − 1/n − 3e−K2m. Here C1 = O(log(m + n)) is

a constant.

Theorem 2.2. Consider the Gaussian noise model (1.5). Suppose that x0 is s-sparse, f0 is

t-sparse and measurement matrix A ∈ R
m×n is sampled from the Gaussian measurement en-

semble, and aij ∼ N (0, 1/m). Set

ρ∗ = 2κσ

√
log(n+m)

max{1, λ} ,
√
2 < κ < 2, m ≥ K1(s+ t) log

n+m

s+ t

with constant K1 depending on GRIP constant δ, and λ ∈ [
√
s/t/c1, c2

√
s/t] with the constants

c1, c2 ≥ 1. Then the solution (x̂L, f̂L) of the model

min
x∈Rn,f∈Rm

1

2ρ∗
‖b−Ax− f‖22 + ‖x‖1 + λ‖f‖1

with b = Ax0 + f0 + e satisfies

∥∥x̂L − x0

∥∥2
2
+
∥∥f̂L − f0

∥∥2
2
≤ C

′

1

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]

with probability at least 1 − 1/
√
π log(n+m) − 1/n − 3e−K2m. Here C

′

1=O(log(m + n)) is

a constant.

Based on the oracle inequality introduced above, we also can design a solution (x̂GDS , f̂GDS)

based on the bia-removing two-stage procedure in [11], and improve the performance of the

solution (x̂DS , f̂DS) (see Example 4.3). We call it an extended Gaussian Dantzig selector

(GDS). The two-stage procedure is as follows:

(i) Solve the extended DS model (1.8) and obtain a solution (x̂DS , f̂DS). Then we can obtain

the support sets Ŝ = {i ∈ {1, . . . , n} : |x̂i| > α1σ} and T̂ = {j ∈ {1, . . . ,m} : |λf̂j | > α2σ}
for some parameters α1 > 0 and α2 > 0.

(ii) Generate the LS solution (x̂DS , f̂DS) via the estimator (1.6).

In the following part, we explain the significance of λ in our results.

Remark 2.1. In the compressed sensing problem b = Ax0 + e, Candès and Tao [11] argued

that the advantage of the oracle inequality upper bound
∑

i min{|x0(i)|, σ2} mainly reflects

in the part where the signal elements are below the standard deviation of the random error e,

namely, |x0(i)| < σ. Therefore, we will only consider the situation where the standard deviation

σ is larger than all the elements of the signal x0 and the error f0, and ‖f0‖22 = O(10k)‖x0‖22
with some k ≥ 1. If λ = 1, the error bound can be expressed as

‖x̂− x0‖22 + ‖f̂ − f0‖22 .

n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|f0(j)|2, σ2

}

= ‖x0‖22 + ‖f0‖22 = O(10k)‖x0‖22 = O(1)‖f0‖22.
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It is obvious that this upper bound is meaningless, and we can not obtain the stable solutions

of x̂ and f̂ . However, for a small λ = 10−k/2 < 1, we obtain the error bound

‖x̂− x0‖22 + ‖f̂ − f‖22 .
∑

i

|x0(i)|2 +
∑

j

|λf0(j)|2

= ‖x0‖22 + λ2‖f0‖22 = O(10−k)‖f0‖22 = O(1)‖x0‖22,

which gives a stable solution for f0. Although ‖x̂−x0‖22/‖x0‖22 = O(1) does not imply a stable

estimation of x0, it also greatly improves the error bound of ‖x̂− x0‖22 from O(10k) to O(1).

Next we give an interpretation of the parameter ρ∗ = 2κσ
√
2 log(n+m)/max{1, λ} with

constant
√
2 < κ < 2 in Theorem 2.2 above.

Remark 2.2. What we should point out is that the parameters λ and ρ∗ in the extended

Lasso model satisfy ‖A⊤e‖∞ ≤ ρ∗/2 and ‖e‖∞ ≤ (ρ∗λ)/2 (see [27, Theorem 2]). However,

the parameter η∗ = 2η in the extended Dantzig selector model satisfies ‖[A, I]⊤e‖∞ ≤ η with

high probability and η = κσ
√
2 log(n+m) with the constant κ ∈ (

√
2, 2) (see Proposition 2.1

below). Therefore, it follows from ‖[A, I]⊤e‖∞ = max{‖A⊤e‖∞, ‖e‖∞} ≤ ρ∗ max{1, λ}/2 that

ρ∗ = 2η/max{1, λ} = η∗/max{1, λ}.

Remark 2.3. (i) Our results are not trivial extensions of the [3, Theorem 4.1] and [28,

Theorem 3.2]. It is clear to see that if we take ‖z‖1 with z = [x;λf ], we can get b = Cz + e

with C = [A, I/λ]. For sparse signal recovery, if the parameter λ = 1, the matrix C = [A, I/λ]

satisfies the RIP (see Lemma 2.1 below), and meets the condition of [3, Theorem 4.1] and [28,

Theorem 3.2]. And it leads to our conclusions of Theorems 2.1 and 2.2. However, when the

parameter λ 6= 1, it is not sure whether the matrix C = [A, I/λ] satisfies the RIP or not. Thus

our results above can not be reduced by that of [3, Theorem 4.1] and [28, Theorem 3.2].

(ii) If we take the setup s ∈ ⌊αm/(1 + log(n/m))⌋ and t ∈ ⌊αm⌋ as that in [30], then the

parameter λ can be taken as λ = 1/
√
1 + log(n/m), which depends on the length of the signal

and the number of the measurements.

Lastly, we give a remark regarding robust PCA.

Remark 2.4. We notice that Tanner and Vary [40] proposed a low-rank plus sparse model

min
L,S∈Rn1×n2

‖L‖∗ + λ‖S‖1

s.t. ‖A(L+ S)− b‖2 ≤ ǫ

for robust PCA, where b = A(S0 +L0) + e. They developed an novel RIP for low-rank matrix

plus sparse matrix L+ S and showed the recovery error as follows:
∥∥(L̂+ Ŝ)− (L0 + S0)

∥∥
F
≤ Cǫ.

The oracle inequalities for corrupted compressed sensing in this paper maybe can be extended

to this problem. We conjecture that the corresponding results has the form
∥∥L̂− L0

∥∥2
F
+
∥∥Ŝ− S0

∥∥2
F
.
∑

(i,j)

min
{
|S0(i, j)|, σ2

}
+
∑

j

min
{
σ2
j (L0), nσ

2
}

with n = min{n1, n2} for the s-sparse matrix S0 and the r-rank matrix L0, and the Gaussian

noise e ∼ N (0, σ2Im).
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Many scholars, for example the authors in [2,7,29], demonstrated that the Dantzig selector

and the Lasso almost have equivalent features, resulting in similar error bounds for the sparse

regression problem. In light of this, we only provide a thorough justification for the extended

Dantzig selector model.

2.1. Auxiliary results for sparse signal recovery

The proof of Theorem 2.1 requires a few auxiliary results. Firstly, we recall the generalized

restricted isometry property of the matrix Φ = [A, I] ∈ R
m×(n+m).

Lemma 2.1 ([25]). Suppose the matrix A ∈ R
m×n with elements aij drawn according to

N (0, 1/m) and m ≥ K1(s + t) log((n +m)/(s + t)). Then the matrix Φ = [A, I] ∈ R
m×(n+m)

satisfies (s, t)-GRIP and ∣∣∣∣∣

∥∥∥∥Φ
[
x

f

]∥∥∥∥
2

2

−
∥∥∥∥
[
x

f

]∥∥∥∥
2

2

∣∣∣∣∣ > 2τ

∥∥∥∥
[
x

f

]∥∥∥∥
2

2

(2.1)

with probability at least 1 − 3e−K2m, where τ ∈ (0, 1) is given, and K1 and K2 are constants

depending only on the relative GRIP constant δ.

Next, we define an auxiliary notation K and show some properties about it. Define

K
(
(x, f); (x0, f0)

)
= γ(‖x‖0 + ‖f‖0) +

∥∥∥∥Φ
[
x

f

]
−Φ

[
x0

f0

]∥∥∥∥
2

2

, (2.2)

where γ = η2/(1+ δ1,1) with η = κσ
√
log(n+m),

√
2 < κ < 2. Based on this notation, we can

define an intermediate estimator (x̄, f̄) as follows:

{
x̄ = argminxK

(
(x, f); (x0, f0)

)
,

f̄ = argminf K
(
(x, f); (x0, f0)

)
.

(2.3)

Then we have the following two properties.

Lemma 2.2. (i) The intermediate estimator (x̄, f̄) defined in the Eq. (2.3) above satisfies

‖x̄‖0 ≤ s and ‖f̄‖0 ≤ t.

(ii) Suppose the matrix Φ satisfies GRIP. Then the intermediate variable (x̄, f̄) satisfies

∥∥∥∥Φ
⊤Φ

([
x̄

f̄

]
−
[
x0

f0

])∥∥∥∥
∞

≤ η,

where η = κσ
√

log(n+m),
√
2 < κ < 2.

Proof. Firstly, we show the item (i). By the definition of the x̄, we can get

K
(
(x̄, f0); (x0, f0)

)
= γ(‖x̄‖0 + ‖f0‖0) +

∥∥∥∥Φ
[
x̄

f0

]
−Φ

[
x0

f0

]∥∥∥∥
2

2

≤ K
(
(x0, f0); (x0, f0)

)

= γ(‖x0‖0 + ‖f0‖0) +
∥∥∥∥Φ
[
x0

f0

]
−Φ

[
x0

f0

]∥∥∥∥
2

2

,
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i.e.

γ‖x̄‖0 +
∥∥∥∥Φ
[
x̄

f0

]
−Φ

[
x0

f0

]∥∥∥∥
2

2

≤ γ‖x0‖0.

So we can draw a conclusion that ‖x̄‖0 ≤ ‖x0‖0 ≤ s. Similarly, we can show ‖f̄‖0 ≤ ‖f0‖0 ≤ t.

Next, we give the proof of item (ii) by contradiction. Suppose there exists a vector u = ei
or u = −ei (ei is a standard orthogonal basis vector in R

n+m), satisfying
〈
u,Φ⊤Φ

([
x̄

f̄

]
−
[
x0

f0

])〉
> η.

We construct a perturbation [
x̌

f̌

]
=

[
x̄

f̄

]
− αu,

and let

α =
1

‖Φ(u)‖22

〈
u,Φ⊤Φ

([
x̄

f̄

]
−
[
x0

f0

])〉

Then, we have

∥∥∥∥Φ
([

x̌

f̌

]
−
[
x0

f0

])∥∥∥∥
2

2

=

∥∥∥∥Φ
([

x̄

f̄

]
− αu−

[
x0

f0

])∥∥∥∥
2

2

=

∥∥∥∥Φ
([

x̄

f̄

]
−
[
x0

f0

])∥∥∥∥
2

2

− 2α

〈
Φ(u),Φ

([
x̄

f̄

]
−
[
x0

f0

])〉
+ α2‖Φ(u)‖22

=

∥∥∥∥Φ
([

x̄

f̄

]
−
[
x0

f0

])∥∥∥∥
2

2

− α2‖Φ(u)‖22.

Thus, it is evident that

K
(
(x̌, f̌); (x0, f0)

)
= γ

[
‖x̌‖0 + ‖f̌‖0

]
+

∥∥∥∥Φ
([

x̌

f̌

]
−
[
x0

f0

])∥∥∥∥
2

2

≤ γ
[
‖x̄‖0 + ‖f̄‖0

]
+ γ +

∥∥∥∥Φ
([

x̄

f̄

]
−
[
x0

f0

])∥∥∥∥
2

2

− α2‖Φ(u)‖22

= K
(
(x̄, f̄); (x0, f0)

)
+ γ − α2‖Φ(u)‖22. (2.4)

By the GRIP condition, we can conclude that

‖Φ(u)‖22 ≤ (1 + δ1,1)‖u‖22 = 1 + δ1,1.

By the definition of the parameter α, and putting into γ = η2/(1 + δ1,1), one has

α2‖Φ(u)‖22 >
η2

‖Φ(u)‖42
‖Φ(u)‖22 =

η2

‖Φ(u)‖22
≥ η2

(1 + δ1,1)
= γ.

Substituting the estimation above into the inequality (2.4), we get

K
(
(x̌, f̌); (x0, f0)

)
< K

(
(x̄, f̄); (x0, f0)

)
,

which provides the contradiction. �

Next, we recall an error estimation of the extended Dantzig selector model as follows.
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Lemma 2.3 ([27, Corollary 1]). Let λ ∈ [
√
s/t/c1, c2

√
s/t] with c1, c2 ≥ 1. Assume that

the matrix Φ satisfies the GRIP with δ̂ = δ2s,2t + 2c1c2δ2s,2t < 1,x0 is s-sparse, f0 is t-sparse,

and ‖Φ⊤e‖∞ ≤ η. Then the solution (x̂DS , f̂DS) of the model (1.3) with b = Ax0 + f0 + e

satisfies

∥∥x̂DS − x0

∥∥2
2
+
∥∥f̂DS − f0

∥∥2
2
≤
(
2
√
2
√
s+ t(1 +

√
2c1c2)

1− δ̂

)2

η2 = C̃η2(s+ t),

where C̃ > 32.

To end this subsection, we give an upper bound of ‖Φ⊤e‖∞ in probability.

Proposition 2.1. Taking η = κσ
√
log(n+m) with the constant

√
2 < κ < 2, the event

E = {‖[A, I]⊤e‖∞ ≤ η} occurs with probability at least 1− 1/
√
π log(n+m)− 1/n. Especially,

the event F = {‖A⊤e‖∞ ≤ κσ
√
logn} occurs with probability as least 1− 1/

√
π logn− 1/n.

Proof. Our proof follows ideas from that [4, Lemma 5.1]. However, it has vital differences

with that of [4, Lemma 5.1]. We do not assume that the columns of measurement matrix A

are normalized to have unit norm ‖Ai‖22 = 1 for i = 1, . . . , n.

We define (Ai)
n
i=1 as the columns of the matrixA, (Ii)

m
i=1 as the columns of the unit matrix I,

namely, Φ = [A, I] = [A1,A2, · · · ,An, I1, I2, · · · , Im] ∈ R
m×(n+m). Let the variable wi as

follows:

wi = 〈Φi, e〉 =
{
〈Ai, e〉, i = 1, 2, . . . , n,

〈Ii−n, e〉, i = n+ 1, . . . , n+m.

Here, the random noise e follows a Gaussian distribution, denoted as N (0, σ2Im). It is clear

that the variables {〈Ai, e〉}ni=1 are independent Gaussian random variables with mean zero

and variance {‖Ai‖22σ2}ni=1, and the variables {〈Ij , e〉}mj=1 are independent mean zero and

variance σ2 Gaussian random variables. Therefore, the distribution of the variables wi can be

expressed as

wi ∼
{
N
(
0, ‖Ai‖22σ2

)
, i = 1, 2, . . . , n,

N (0, σ2), i = n+ 1, n+ 2, . . . , n+m.

By the definition of the infinity norm, we can get the below probability formula

P
(
‖Φ⊤e‖∞ ≤ η

)
= P

(
∩n+m
i=1 {|wi| ≤ η}

)

= 1− P
(
∪n+m
i=1 {|wi| > η}

)
≥ 1−

n+m∑

i=1

P(|wi| > η). (2.5)

Recall that the elements of the measurement matrix A obey the Gaussian distribution

N (0, 1/m). Then, it is easy to calculate that E‖Ai‖22 = 1 for i = 1, . . . , n. According to the

concentration inequality for norms of Gaussian random vectors [46, Lemma E.3], we can deduce

that

P

(∣∣‖Ai‖22 − E‖Ai‖22
∣∣ > ǫ

)
= P

(∣∣‖Ai‖22 − 1
∣∣ > ǫ

)
≤ 2 exp

(
− mǫ2

8

)
,

where ǫ ∈ (0, 1). Thus one has

P
(
‖Ai‖22 > 1 + ǫ

)
≤ exp

(
− mǫ2

8

)
.

Once the event {‖Ai‖22 ≤ 1 + ǫ} occurs, we can obtain the probability inequality as follows:
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P
(
|wi| > η

∣∣ ‖Ai‖22 ≤ 1 + ǫ
)
≤ 2√

2π
(
η/(σ

√
1 + ǫ)

) exp
(

−
(
η/(σ

√
1 + ǫ)

)2

2

)
, i = 1, . . . , n,

where the inequality comes from the standard tail bound for Gaussian random variables. Ac-

cording to the conditional probability formula P(AB) = P(A|B)P(B), we have

P(|wi| ≤ η) ≥ P
(
{|wi| ≤ η} ∩

{
‖Ai‖22 ≤ 1 + ǫ

})

= P
(
|wi| ≤ η

∣∣ ‖Ai‖22 ≤ 1 + ǫ
)
P
(
‖Ai‖22 ≤ 1 + ǫ

)

≥
(
1− 2√

2π
(
η/(σ

√
1 + ǫ)

) exp
(
−
(
η/(σ

√
1 + ǫ)

)2

2

))(
1− exp

(
−mǫ2

8

))
,

where the first inequality comes from the probability formula P(A) ≥ P(AB) (there A and B

all represent the probability event). Therefore,

P(|wi| > η) ≤ 2√
2π
(
η/(σ

√
1 + ǫ)

) exp
(
−
(
η/(σ

√
1 + ǫ)

)2

2

)

+ exp

(
−mǫ2

8

)
, i = 1, . . . , n. (2.6)

On the other hand, by a standard tail bound for Gaussian random variables, we obtain that

P (|wi| > η) = P

(∣∣∣wi

σ

∣∣∣ > η

σ

)
≤ 2√

2π(η/σ)
exp

(
− (η/σ)2

2

)
, i = n+ 1, . . . , n+m. (2.7)

Thus, by combining the inequalities (2.6) with (2.7), we can derive that

n+m∑

i=1

P(|wi| > η) =
n∑

i=1

P(|wi| > η) +
n+m∑

i=n+1

P(|wi| > η)

≤ 2n√
2π
(
η/(σ

√
1+ǫ)

) exp
(
−
(
η/(σ

√
1 + ǫ)

)2

2

)

+ n exp

(
−mǫ2

8

)
+

2m√
2π(η/σ)

exp

(
− (η/σ)2

2

)
.

Bring into the values η = σ
√
2(1 + ǫ) log(n+m) and ǫ = 4

√
(logn)/m, we can come to the

following estimation:
n+m∑

i=1

P(|wi| > η) ≤ 1√
π log(n+m)

+
1

n
.

Substituting the above estimation into the inequality (2.5), we finish the demonstration. �

2.2. Proof of Theorem 2.1

Proof. Firstly, we divide ‖x̂DS − x0‖22 + ‖f̂DS − f0‖22 into two parts as follows:

∥∥x̂DS − x0

∥∥2
2
+
∥∥f̂DS − f0

∥∥2
2
=

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2
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≤ 2

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x̄

f̄

]∥∥∥∥∥

2

2

+ 2

∥∥∥∥
[
x̄

f̄

]
−
[
x0

f0

]∥∥∥∥
2

2

=: 2F1 + 2F2. (2.8)

Next, we deal with the item F1. The combination of Lemma 2.2 and Proposition 2.1 leads to

∥∥[A, I]⊤(Ax̄+ f̄ − b)
∥∥
∞

=

∥∥∥∥Φ
⊤

(
Φ

[
x̄

f̄

]
− b

)∥∥∥∥
∞

=

∥∥∥∥Φ
⊤

[(
Φ

[
x̄

f̄

]
−Φ

[
x0

f0

])
+

(
Φ

[
x0

f0

]
− b

)]∥∥∥∥
∞

≤
∥∥∥∥Φ

⊤Φ

([
x̄

f̄

]
−
[
x0

f0

])∥∥∥∥
∞

+
∥∥Φ⊤e

∥∥
∞

≤ η + η = η∗.

Therefore, if the matrix Φ satisfies the GRIP, then (x̄, f̄) is a feasible solution of the extended

Dantzig selector (1.8) with the probability at least 1− 1/
√
π log(n+m)− 1/n. Combining this

with Lemma 2.3, one has

F1 =

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x̄

f̄

]∥∥∥∥∥

2

2

=
∥∥x̂DS − x̄

∥∥2
2
+
∥∥f̂DS − f̄

∥∥2
2
≤ C̃η2∗

(
‖x̄‖0 + ‖f̄‖0

)
, (2.9)

which gives an estimation of the item F1. To estimate the item F2, we need to get the distance

between [x0; f0] and [x̄; f̄ ] as follows:

F2 =

∥∥∥∥
[
x0

f0

]
−
[
x̄

f̄

]∥∥∥∥
2

2

≤ 1

1− δ2s,2t

∥∥∥∥Φ
[
x0

f0

]
−Φ

[
x̄

f̄

]∥∥∥∥
2

2

. (2.10)

Here we use

‖x0 − x̄‖0 ≤ ‖x0‖0 + ‖x̄‖0 ≤ 2s, ‖f0 − f̄‖0 ≤ ‖f0‖0 + ‖f̄‖0 ≤ 2t,

which come from Lemma 2.2.

Plugging the estimations (2.9) and (2.10) into the inequality (2.8) gives

∥∥x̂DS − x0

∥∥2
2
+
∥∥f̂DS − f0

∥∥2
2
≤ 2C̃η2∗

(
‖x̄‖0 + ‖f̄‖0

)
+

2

1− δ2s,2t

∥∥∥∥Φ
[
x̄

f̄

]
−Φ

[
x0

f0

]∥∥∥∥
2

2

≤ C2K
(
(x̄, f̄); (x0, f0)

)
, (2.11)

where C2 = max{8C̃(1 + δ1,1), 2/(1− δ2s,2t)}.
Next, we estimate K((x̄, f̄); (x0, f0)). By the definition of (x̄, f̄), we know

K
(
(x̄, f̄ ); (x0, f0)

)
≤ K

((
(x0)S1 , (f0)S2

)
; (x0, f0)

)
.

Therefore, to give an upper bound of ‖x̂DS − x0‖22 + ‖f̂DS − f0‖22, we only need to estimate

an upper bound of K(((x0)S1 , (f0)S2); (x0, f0)). Define two index subsets as follows:

S1 =
{
i ∈ {1, 2, . . . , n} : |x0(i)| > σ

}
,

S2 =
{
j ∈ {1, 2, . . . ,m} : |λf0(j)| > σ

}
.
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By a simple calculation, one has

K
((
(x0)s1 , (f0)s2

)
; (x0, f0)

)

= γ
[
‖(x0)s1‖0 + ‖(f0)s2‖0

]
+

∥∥∥∥Φ
[
(x0)s1
(f0)s2

]
−Φ

[
x0

f0

]∥∥∥∥
2

2

≤ η2

(1 + δ1,1)

[
‖(x0)s1‖0 + ‖(f0)s2‖0

]
+ (1 + δs,t)

∥∥∥∥
[
(x0)s1
(f0)s2

]
−
[
x0

f0

]∥∥∥∥
2

2

≤ 4 log(n+m)

(1 + δ1,1)

[
σ2(‖(x0)s1‖0 + ‖(f0)s2‖0)

]
+ (1 + δs,t)

∥∥∥∥
[
(x0)s1
(f0)s2

]
−
[
x0

f0

]∥∥∥∥
2

2

≤ max

{
4 log(n+m)

(1 + δ1,1)
, (1 + δs,t)

}[ n∑

i=1

σ2 · 1{|x0(i)|>σ} +

n∑

i=1

|x0(i)|2 · 1{|x0(i)|≤σ}

]

+max

{
4 log(n+m)

(1 + δ1,1)
,
(1 + δs,t)

λ2

}[ m∑

j=1

σ2 · 1{|λf0(j)|>σ} +

m∑

j=1

|λf0(j)|2 · 1{|λf0(j)|≤σ}

]

≤ 4 log(n+m)

(1 + δ1,1)

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]
.

Combining the above estimation with the estimation (2.11), we come to the conclusion that

∥∥x̂DS − x0

∥∥2
2
+
∥∥f̂DS − f0

∥∥2
2

≤ C2K
(
(x̄, f̄); (x, f0)

)
≤ C2K

((
(x0)s1 , (f0)s2

)
; (x0, f0)

)

≤ C2
4 log(n+m)

(1+δ1,1)

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]

= C1

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]
,

where the constant C1 = O(log(n+m)). The second inequality is drawn from the definition of

middle vectors x̄ and f̄ .

From Lemma 2.1 and Proposition 2.1, we can get that the matrix Φ satisfies the GRIP and

the event E occur at the same time with probability at least

1− 1√
π log(n+m)

− 1

n
− 3e−K2m =: 1− ε.

Therefore, we can get our conclusion with probability at least 1− ε. �

3. Oracle Inequalities for Approximately Sparse Signal Recovery

In this section, we discuss the approximately sparse signal recovery and establish the corre-

sponding oracle inequalities for Gaussian noise model (1.5).

Theorem 3.1. Consider the Gaussian noise model (1.5). Suppose that A is sampled from the

Gaussian measurement ensemble, and aij ∼ N (0, 1/m). Assume that supp((x0)max(s∗)) ⊂ S∗

with |S∗| = s∗, supp((f0)max(t∗)) ⊂ T∗ with |T∗| = t∗, and s∗ + t∗ = m/ log(e(n + m)/m).
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Set η∗ = 2η = 2κσ
√
log(n+m),

√
2 < κ < 2, λ ∈ [

√
s∗/t∗/c1, c2

√
s∗/t∗] with the constants

c1, c2 ≥ 1. Let (x̂DS , f̂DS) be the optimal solution of the model as follows:

min
x∈Rn,f∈Rm

‖x‖1 + λ‖f‖1

s.t.
∥∥[A, I]⊤(Ax+ f − b)

∥∥
∞

≤ η∗

with b = Ax0+f0+e. Then with the probability at least 1−1/
√
π log(n+m)−1/n−3e−K2m−

e−m/100, the solution (x̂DS , f̂DS) satisfies

∥∥x̂DS − x0

∥∥2
2
+
∥∥f̂DS − f0

∥∥2
2

≤ L1

[
∑

i∈S∗

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

]

+ L2

[
∑

j∈T∗

min
{
|λf0(j)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

]
,

where the constants L1 = O(log(n+m)) and L2 = O(log(n+m)).

Theorem 3.2. Consider the Gaussian noise model (1.5). Suppose that A is sampled from the

Gaussian measurement ensemble, and aij ∼ N (0, 1/m). Assume that supp((x0)max(s∗)) ⊂ S∗

with |S∗| = s∗, supp((f0)max(t∗)) ⊂ T∗ with |T∗| = t∗, and s∗ + t∗ = m/ log(e(n +m)/m). Set

ρ∗ = 2κσ
√
log(n+m)/max{1, λ},

√
2 < κ < 2, λ ∈ [

√
s∗/t∗/c1, c2

√
s∗/t∗] with the constants

c1, c2 ≥ 1. Let (x̂L, f̂L) be the optimal solution of the model as follows:

min
x∈Rn,f∈Rm

1

2ρ∗
‖b−Ax− f‖22 + ‖x‖1 + λ‖f‖1

with b = Ax0+f0+e. Then with the probability at least 1−1/
√
π log(n+m)−1/n−3e−K2m−

e−m/100, the solution (x̂L, f̂L) satisfies

∥∥x̂L − x0

∥∥2
2
+
∥∥f̂L − f0

∥∥2
2

≤ L
′

1

[
∑

i∈S∗

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

]

+ L
′

2

[
∑

j∈T∗

min
{
|λf0(j)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

]
,

where the constants L
′

1 = O(log(n+m)) and L
′

2 = O(log(n+m)).

Remark 3.1. It must be mentioned that our results above are non-trivial extensions of the

oracle inequality

‖x̂− x0‖22 .
∑

i∈S∗

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

in [28, Theorem 3.4]. Note that [(x0)max(s∗); (f0)max(t∗)] 6= [x0; f0]max(s∗+t∗). Therefore, we

can’t directly obtain the support sets S∗ = supp((x0)max(s∗)) and T∗ = supp((f0)max(t∗)) via

I∗ = supp((z0)max(s∗+t∗)) with z0 = [x0; f0]. Moreover, our conclusions of Theorems 3.1 and

3.2 can not be reduced by that of compressed sensing (non-corrupted) with b = Cz0 + e.
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3.1. Auxiliary results for approximately sparse signal recovery

In this subsection, we provide several auxiliary results for approximately sparse signal re-

covery. Firstly, we define two index subsets as follows:

S1 =
{
i ∈ {1, 2, . . . , n} : |x0(i)| > σ

}
,

S2 =
{
j ∈ {1, 2, . . . ,m} : |λf0(j)| > σ

}
.

(3.1)

If the values of x0 and f0 are much larger than σ and σ/λ, respectively, then the restricted

vectors (x0)S1 and (f0)S2 are sparse. Otherwise, the sparsity of (x0)S1 (or (f0)S2) approximates

the dimension of x0 (or f0). We discuss the two cases in following two subsections.

3.1.1. Sparse restricted vectors (x0)S1 and (f0)S2

Firstly, we establish a proposition that provides an error bound for this special case.

Proposition 3.1. Suppose the matrix Φ satisfies GRIP. Let the intermediate estimator (x̄, f̄)

be as defined in (2.3), the sets S1, S2 be as defined in (3.1) with

s̄ = max
{
‖x̄‖0, |S1|

}
< n, t̄ = max

{
‖f̄‖0, |S2|

}
< m.

Then the solution (x̂DS , f̂DS) of the extended Dantzig selector (1.8) with b = Ax0 + f0 + e and

‖Φ⊤e‖∞ ≤ η satisfies

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ M1

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]

+M2

∥∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥∥

2

2

,

where M1 = O(log(n+m)) and M2 is a universal constant depending on δ2s̄,2t̄.

Proof. The proof is similar to that of Theorem 2.1, therefore we briefly review the primary

stages. Firstly, we divide ‖x̂DS − x0‖22 + ‖f̂DS − f0‖22 into two parts as follows:

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ 2

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x̄

f̄

]∥∥∥∥∥

2

2

+ 2

∥∥∥∥
[
x̄

f̄

]
−
[
x0

f0

]∥∥∥∥
2

2

=: 2G1 + 2G2.

For the part G2, we have the following estimation:

G2 ≤ 2

∥∥∥∥
[
x̄

f̄

]
−
[
(x0)S1

(f0)S2

]∥∥∥∥
2

2

+ 2

∥∥∥∥
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

≤ 2

1− δ2s̄,2t̄

∥∥∥∥Φ
([

x̄

f̄

]
−
[
(x0)S1

(f0)S2

])∥∥∥∥
2

2

+ 2

∥∥∥∥
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

≤ 4

1− δ2s̄,2t̄

∥∥∥∥Φ
([

x̄

f̄

]
−
[
x0

f0

])∥∥∥∥
2

2

+
4

1− δ2s̄,2t̄

∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

+ 2

∥∥∥∥
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

, (3.2)

where the second inequality comes from the fact

‖x̄− (x0)S1‖0 ≤ ‖x̄‖0 + ‖(x0)S1‖0 ≤ 2s̄,

‖f̄ − (f0)S2‖0 ≤ ‖f̄‖0 + ‖(f0)S2‖0 ≤ 2t̄
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and the GRIP condition. We also can gain the bound of G1 as follows:

G1 =

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x̄

f̄

]∥∥∥∥∥

2

2

≤ C̃η2∗
(
‖x̄‖0 + ‖f̄‖0

)
, (3.3)

where the inequality comes from Lemma 2.3. Hence, the combination of inequalities (3.2) and

(3.3) gives

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ 2C̃η2∗
(
‖x̄‖0 + ‖f̄‖0

)
+

8

1− δ2s̄,2t̄

∥∥∥∥Φ
([

x̄

f̄

]
−
[
x0

f0

])∥∥∥∥
2

2

+
8

1− δ2s̄,2t̄

∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

+ 4

∥∥∥∥
[
(x0t)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

.

By the definitions of K((x, f); (x0, f0)) in (2.2) and the intermediate estimator (x̄, f̄) in (2.3),

we get

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ M̃K
(
(x̄, f̄); (x0, f0)

)
+ 4

∥∥∥∥
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

+
8

1− δ2s̄,2t̄

∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

≤ M̃K
((
(x0)S1 , (f0)S2

)
; (x0, f0)

)
+4

∥∥∥∥
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

+
8

1− δ2s̄,2t̄

∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

≤ M1

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]
+M2

∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

,

where the last inequality holds because of η = κσ
√

log(n+m), κ ∈ (
√
2, 2). These constants

are defined as

M̃ = max

{
8

1− δ2s̄,2t̄
, 8C̃(1 + δ1,1)

}
, M1 = 4M̃

log(n+m)

1 + δ1,1
, M2 =

8

1− δ2s̄,2t̄
+ M̃.

Thus finishes the proof. �

3.1.2. General restricted vectors (x0)S1 and (f0)S2

The above result is established under the assumption that (x0)S1 and (f0)S2 are sparse. To

obtain ideal error boundness when the sparsity of (x0)S1 (or (f0)S2) approaches the dimension

of x0 (or f0), we recall the ℓ1-quotient (LQ) property, and display some results about it.

Definition 3.1 ([22, Definition 11.11]). We say that the measurement matrix A ∈ R
m×n

is satisfied to own the LQ(β), also known as ℓ1-quotient property with constant β > 0, if there

exists a vector x̃ ∈ R
n satisfying

Ax = Ax̃, ‖x̃‖1 ≤ 1

β
‖Ax‖2 .

The following lemma shows that the matrix Φ = [A, I] ∈ R
m×(n+m) satisfies the LQ(β)

with high probability.
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Lemma 3.1. If the matrix A ∈ R
m×n is drawn from Gaussian measurement ensemble with

n≥2m, and aij ∼ N (0, 1/m), then the matrix Φ = [A, I] ∈ R
m×(n+m) satisfies the LQ(β) with

probability at least 1− e−m/100, where β = 1/(38
√
s∗ + t∗) and s∗ + t∗ = m/ log(e(n+m)/m).

Proof. According to [22, Lemma 11.17, Remark 11.18], we need to prove

P
(
‖v‖2 ≤ 38

√
s∗ + t∗ ‖Φ⊤v‖∞

)
≥ 1− exp

(
−100

m

)
, ∀v ∈ R

m,

where

‖Φ⊤v‖∞ = max
{
‖A⊤v‖∞, ‖v‖∞

}
.

(1) If ‖v‖2 ≤ 38
√
s∗ + t∗ ‖v‖∞, we have

P
(
‖v‖2 ≤ 38

√
s∗ + t∗ ‖Φ⊤v‖∞

)
= 1.

(2) Else ‖v‖2 > 38
√
s∗ + t∗ ‖v‖∞, one has

P
(
‖v‖2 ≤ 38

√
s∗ + t∗ ‖Φ⊤v‖∞

)
= P

(
‖v‖2 ≤ 38

√
s∗ + t∗ ‖A⊤v‖∞

)
.

Set s̃∗ := m/ log(en/m). We claim that

38
√
s∗ + t∗ = 38

√
m

log
(
e(n+m)/m

) ≥ 34

√
m

log(en/m)
= 34

√
s̃∗. (3.4)

Therefore, one get

P
(
‖v‖2 ≤ 38

√
s∗ + t∗‖A⊤v‖∞

)
≥ P

(
‖v‖2 ≤ 34

√
s̃∗‖A⊤v‖∞

)

≥ 1− exp

(
−100

m

)
,

where the last inequality comes from [22, Theorem 11.19].

Next, we show the inequality (3.4). In fact, we take a constant d such that

d

√
m

log(e(n+m)/m)
= 34

√
m

log(en/m)
,

i.e.

d = 34

√
1 + log(1 + n/m)

1 + log(n/m)
, n ≥ 2m.

It is evident that the function

g(x) =
1 + log(1 + x)

1 + log(x)

is monotonically decreasing for all x > 0. Then

d = 34

√
g
( n

m

)
≤ 34

√
g(2) = 34

√
1 + log 3

1 + log 2
≤ 38,

which proves the inequality (3.4).
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Combining the two cases above, one has

P
(
‖v‖2 ≤ 38

√
s∗ + t∗‖Φ⊤v‖∞

)
≥ 1− exp

(
−100

m

)
.

Thus we finish the proof of Lemma 3.1. �

Before giving the proof of Theorem 3.1, we also recall an error estimation of the extended

Dantzig selector as follows.

Lemma 3.2 ([27, Theorem 1]). Suppose that the matrix Φ = [A, I] satisfies (2s, 2t)-GRIP

with δ̂ = δ2s,2t+2c1c2δ2s,2t < 1, λ ∈ [
√
s/t/c1, c2

√
s/t] with c1, c2 ≥ 1 and ‖Φ⊤e‖∞ ≤ η. Let

(x̂DS , f̂DS) be the optimal solution of (1.3). Then

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥
2

≤ 2
√
2
√
s+ t(1 +

√
2c1c2)

1− δ̂
η +

(
2
√
2c1c2(1 +

√
2c1c2)δ2s,2t

1− δ̂
+ 2c1c2

)

×
(‖(x0)−max(s)‖1√

s
+

‖(f0)−max(t)‖1√
t

)

=: Q
′

1

√
s+ tη +Q

′

2

(‖(x0)−max(s)‖1√
s

+
‖(f0)−max(t)‖1√

t

)

≤ Q
′

1

√
s+ tη +

Q
′

3√
s+ t

∥∥∥∥
[
(x0)−max(s)

(f0)−max(t)

]∥∥∥∥
1

,

where Q
′

3 = Q
′

2 max{
√
1 + s/t,

√
1 + t/s}.

With those in hand, we can estimate the recovery error, which corresponds to that of

Proposition 3.1.

Proposition 3.2. Suppose that the matrix Φ satisfies LQ(β) with β = 1/(38
√
s∗ + t∗), and

‖Φ⊤e‖∞ ≤ η. Let (x̂DS , f̂DS) be the solution of the model (1.8). Then one has

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥
2

≤ Q

(
η
√
s∗ + t∗ +

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

)
+

∥∥∥∥
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

,

where the constant Q depends on δs∗,t∗ .

Proof. By the triangle inequality, one has

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥
2

≤
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
([

(x0)max(s∗)

(f0)max(t∗)

]
+

[
x̃

f̃

])∥∥∥∥∥
2

+

∥∥∥∥∥

[
x̃

f̃

]∥∥∥∥∥
2

+

∥∥∥∥
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

. (3.5)

Firstly, we give the bound of

∥∥∥∥∥

[
x̂
DS

f̂
DS

]
−

([
(x0)max(s∗)

(f0)max(t∗)

]
+

[
x̃

f̃

])∥∥∥∥∥
2

. Setting β=1/(38
√
s∗+t∗),

then the LQ(β) property results in

Φ

[
(x0)−max(s∗)

(f0)−max(t∗)

]
= Φ

[
x̃

f̃

]
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with some [x̃; f̃ ] satisfying

∥∥∥∥∥

[
x̃

f̃

]∥∥∥∥∥
1

≤ 1

β

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

. (3.6)

Additionally, we recall the identity

Φ

([
(x0)max(s∗)

(f0)max(t∗)

]
+

[
x̃

f̃

])
= Φ

[
x0

f0

]
,

which implies that

∥∥∥∥∥Φ
⊤

[
Φ

([
(x0)max(s∗)

(f0)max(t∗)

]
+

[
x̃

f̃

])
− b

]∥∥∥∥∥
∞

= ‖Φ⊤e‖∞ ≤ η.

It follows from Lemma 3.2 that
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
([

(x0)max(s∗)

(f0)max(t∗)

]
+

[
x̃

f̃

])∥∥∥∥∥
2

≤ Q1

√
s∗ + t∗η +

Q3√
s∗ + t∗

∥∥∥∥∥

[
x̃

f̃

]∥∥∥∥∥
1

.

Plugging in the inequality (3.6), we obtain

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
([

(x0)max(s∗)

(f0)max(t∗)

]
+

[
x̃

f̃

])∥∥∥∥∥
2

≤ Q1

√
s∗ + t∗η +

Q3

β
√
s∗ + t∗

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

. (3.7)

Next, we give the bound of ‖[x̃; f̃ ]‖22. Assume supp(x̃) ⊆ V and supp(f̃) ⊆ U . We divide

index sets V and U as V =
∑l1

j=1 Vj and U =
∑l2

j=1 Uj . Here V1 is the index set of the s∗
largest entries in absolute value of x̃, V2 is the index set of the next s∗ largest entries in absolute

value of x̃, and so on, where the cardinality of the last set Vl1 maybe smaller than s∗. Similarly,

U1 is the index set of the s∗ largest entries in absolute value of f̃ , U2 is the index set of the

next t∗ largest entries in absolute value of f̃ , and so on. We set l = max{l1, l2}, then

x̃ =

{
x̃Vj

, if j = 1, 2, . . . , l1,

0, if j = l1 + 1, . . . , l,

f̃ =

{
f̃Uj

, if j = 1, 2, . . . , l2,

0, if j = l2 + 1, . . . , l.

Let h̃ := [x̃; f̃ ] and h̃j = [x̃Vj
; f̃Uj

]. Then h̃ =
∑l

j=1 h̃j . For any j ≥ 2, we have

∥∥h̃j

∥∥
2
≤ 1√

s∗ + t∗

∥∥h̃j−1

∥∥
1
,

and thus ∥∥h̃
∥∥
2
≤
∥∥h̃1

∥∥
2
+
∑

j≥2

∥∥h̃j

∥∥
2
≤
∥∥h̃1

∥∥
2
+

1√
s∗ + t∗

∥∥h̃
∥∥
1
. (3.8)
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By the GRIP, we can give the bound of ‖h̃1‖2 as follows:

∥∥h̃1

∥∥
2
≤ 1√

1− δs∗,t∗

∥∥Φ(h̃1)
∥∥
2
≤ 1√

1− δs∗,t∗

(
∥∥Φ(h̃)

∥∥
2
+
∑

i≥2

∥∥Φ(h̃i)
∥∥
2

)
.

It follows from ‖Φ(h̃i)‖2 ≤
√
1 + δs∗,t∗‖h̃i‖2 that

∑

i≥2

∥∥Φ(h̃i)
∥∥
2
≤
√
1 + δs∗,t∗

∑

i≥2

∥∥h̃i

∥∥
2
≤
√
1 + δs∗,t∗√
s∗ + t∗

∥∥h̃
∥∥
1
.

Combining this with

Φ
(
h̃
)
= Φ

[
(x0)−max(s∗)

f0)−max(t∗)

]

gives
∥∥h̃1

∥∥
2
≤ 1√

1− δs∗,t∗

(∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

+

√
1 + δs∗,t∗√
s∗ + t∗

∥∥h̃
∥∥
1

)
. (3.9)

Substituting the estimations (3.9) and (3.6) into the inequality (3.8), we have
∥∥∥∥∥

[
x̃

f̃

]∥∥∥∥∥
2

≤ 1√
1− δs∗,t∗

(∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

+

√
1 + δs∗,t∗√
s∗ + t∗

‖h̃‖1
)

+
‖h̃‖1√
s∗ + t∗

≤ 1√
1− δs∗,t∗

(∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

+

√
1 + δs∗,t∗

β
√
s∗ + t∗

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

)

+
1

β
√
s∗ + t∗

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

=: Q4

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

. (3.10)

Lastly, substituting the inequalities (3.7) and (3.10) into the division (3.5), we get
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥
2

≤ Q

(
√
s∗ + t∗η +

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

)
+

∥∥∥∥
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

,

where the universal constant Q depends only on δs∗,t∗ . �

3.2. The proof of Theorem 3.1

Proof. Our proof follows the outline of the proof in [7, Theorem 2.8]. However, there are

vital differences. According to the sparsity of x0 and f0, we discuss the nine cases (see Fig. 3.1

below). Next, we give the proof in details.

By Lemma 2.1, the event E = {‖Φ⊤e‖∞ ≤ η} occurs with probability at least 1 − 1/n −
1/
√
π log(n+m). By Lemmas 2.1 and 3.1, the matrix Φ = [A, I] satisfies the (s,t)-GRIP with

probability exceeding 1−3e−K2m and the LQ(α) property with probability at least 1−e−m/100

with α = 1/(38
√
s∗ + t∗). We shall assume that the event E occurs, the matrix Φ satisfies the

GRIP and LQ(α) properties.

1. Case (a1,b1). Suppose

{
K
((
(x0)S1 ,0

)
; (x0,0)

)
≤ γs∗,

K
((
0, (f0

)
S2

)
; (0, f0)

)
≤ γt∗.
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Fig. 3.1. The architecture diagram of nine case.

Then ‖(x0)S1‖0 ≤ s∗, ‖x̄‖0 ≤ s∗, ‖(f0)S2‖0 ≤ t∗, ‖f̄‖0 ≤ t∗. Therefore, by Proposition 3.1,

we get

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ M
′

1

[
n∑

i=1

min
{
|x0 (i)|2 , σ2

}
+

m∑

j=1

min
{
|λf0 (j)|2 , σ2

}]

+M
′

2

∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

. (3.11)

Notice that

∥∥∥∥Φ
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

≤ (1 + 2τ)

∥∥∥∥
[
(x0)Sc

1

(f0)Sc
2

]∥∥∥∥
2

2

≤ (1 + 2τ)
∑

i

min
{
|x0(i)|2, σ2

}
+

1 + 2τ

λ2

∑

j

min
{
|λf0(j)|2, σ2

}

≤ (1 + 2τ)
∑

i

min
{
|x0(i)|2, σ2

}
+

c21t(1 + 2τ)

s

∑

j

min
{
|λf0(j)|2, σ2

}
,

where the constant c1 ≥ 1 and the first inequality comes from Lemma 2.1. Substituting the

inequality above into the estimation (3.11), we can get

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ M
′′

1

n∑

i=1

min
{
|x0(i)|2, σ2

}
+M

′′

2

m∑

i=1

min
{
|λf0(i)|2, σ2

}
, (3.12)

where

M
′′

1 = O
(
log(n+m)

)
, M

′′

2 = O
(
log(n+m)

)
.

In this situation, we need that the event E occurs and the matrix Φ satisfies the GRIP. So the

estimation (3.12) is established with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m.

2. Case (a2,b2). Suppose

{
K
((
(x0)S1 ,0

)
; (x0,0)

)
> γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
> γt∗,
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and ‖(x0)S1‖0 > s∗, ‖(f0)S2‖0 > t∗, namely, S1 ⊇ S∗ and S2 ⊇ T∗. By combining Proposi-

tion 3.2 and Lemma 2.1, we can get
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥
2

≤ Q

(
η
√
s∗ + t∗ +

∥∥∥∥Φ
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

)
+

∥∥∥∥
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

≤ Q
′

1

(
η
√
s∗ + t∗ +

∥∥∥∥
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

)
. (3.13)

The estimation leads to
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ 2Q
′

2

(
η2(s∗ + t∗) +

∥∥∥∥
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

2

)

≤ 8Q
′

2 log(n+m)

[
∑

i∈S∗

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

+
∑

i∈T∗

min
{
|λf0(i)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

]
, (3.14)

where the last inequality comes from the η = κσ
√
log(n+m),

√
2 < κ < 2, andQ

′

2 is a universal

constant depending on δs∗,t∗ . In this situation, we need the assumptions that the event E occurs

and the matrixΦ satisfies the GRIP and LQ(β) property. So the estimation (3.14) is established

with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m − e−m/100.

3. Case (a3,b3). Suppose

{
K
((
(x0)S1 ,0

)
; (x0,0)

)
> γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
> γt∗,

and ‖(x0)S1‖0 ≤ s∗, ‖(f0)S2‖0 ≤ t∗, namely, Sc
1 ⊇ Sc

∗ and Sc
2 ⊇ T c

∗ . By the inequalities above,

we can get

(1 + δ1,1)K
((
(x0)S1 ,0

)
; (x0,0)

)
> η2s∗,

(1 + δ1,1)K
((
0, (f0)S2

)
; (0, f0)

)
> η2t∗.

Combining this with the estimation (3.13) above, we have

∥∥∥∥∥

[
cx̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ 2Q
′

2

(
η2(s∗ + t∗) +

∥∥∥∥
[
(x0)−max(s∗)

(f0)−max(t∗)

]∥∥∥∥
2

2

)

≤ 2Q
′

2

[
(1 + δ1,1)K

((
(x0)S1 ,0

)
; (x0,0)

)
+ ‖(x0)−max(s∗)‖22

+ (1 + δ1,1)K
((
0, (f0)S2

)
; (0, f0)

)
+ ‖(f0)−max(t∗)‖22

]

= 2Q
′

2

{
η2‖(x0)S1‖0 + (1 + δ1,1)

∥∥∥∥Φ
([

(x0)S1

0

]
−
[
x0

0

])∥∥∥∥
2

2

+ ‖(x0)−max(s∗)‖22 + η2‖(f0)S2‖0

+ (1 + δ1,1)

∥∥∥∥Φ
([

0

(f0)S2

]
−
[
0

f0

])∥∥∥∥
2

2

+ ‖(f0)−max(t∗)‖22

}
.
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Applying Lemma 2.1 to the estimation above, we get

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

≤ 2Q
′

2

{
η2‖(x0)S1‖0 + (1 + δ1,1)(1 + 2τ)‖(x0)Sc

1
‖22 + ‖(x0)Sc

1
‖22

+ η2‖(f0)S2‖0 + (1 + δ1,1)‖(f0)Sc
2
‖22 + ‖(f0)Sc

2
‖22
}

≤ 2Q
′

2 max
{(

(1 + δ1,1)(1 + 2τ) + 1
)
, 4 log(n+m)

} n∑

i=1

min
{
|x0(i)|2, σ2

}

+ 2Q
′

2 max

{
c21t
(
(1 + δ1,1) + 1

)

s
, 4 log(n+m)

}
m∑

j=1

min
{
|λf0(j)|2, σ2

}

= 8Q
′

2 log(n+m)

[
n∑

i=1

min
{
|x0(i)|2, σ2

}
+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]
, (3.15)

where the second inequality comes from the η = κσ
√

log(n+m),
√
2 < κ < 2, and the universal

constant Q
′

2 depends on δs∗,t∗ . In this situation, we need that the event E occurs, the matrix Φ

satisfies the GRIP and LQ(β) property. So the above conclusion is established with probability

at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m − e−m/100.

4. Case (a2,b3). Suppose
{
K
((
(x0)S1 ,0

)
; (x0,0)

)
> γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
> γt∗,

and ‖(x0)S1‖0 > s∗, ‖(f0)S2‖0 ≤ t∗, namely, S1 ⊇ S∗ and Sc
2 ⊇ T c

∗ . By the inequalities above,

we can get

(1 + δ1,1)K
((
0, (f0)S2

)
; (0, f0)

)
> η2t∗.

Note that x0 is similar to Case (a2,b2) and f0 is similar to Case (a3,b3). It follows from the

estimation (3.14) and (3.15) that

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

=

∥∥∥∥
[
x̂DS

0

]
−
[
x0

0

]∥∥∥∥
2

2

+

∥∥∥∥∥

[
0

f̂DS

]
−
[
0

f0

]∥∥∥∥∥

2

2

= 8Q
′

2 log(n+m)

[
∑

i∈S∗

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

+

m∑

j=1

min
{
|λf0(j)|2, σ2

}
]

with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m − e−m/100.

5. Case (a3,b2). Suppose
{
K
((
(x0)S1 ,0

)
; (x0,0)

)
> γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
> γt∗,

and ‖(x0)S1‖0 ≤ s∗, ‖(f0)S2‖0 > t∗, namely, Sc
1 ⊇ Sc

∗ and S2 ⊇ T∗. By the assumption above,

we can get

(1 + δ1,1)K
((
(x0)S1 ,0

)
; (x0,0)

)
> η2s∗.
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By dealing with x0 and f0 in a similar way as in Case (a3,b3) and Case (a2,b2), respectively,

we have
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

=

∥∥∥∥
[
x̂DS

0

]
−
[
x0

0

]∥∥∥∥
2

2

+

∥∥∥∥∥

[
0

f̂DS

]
−
[
0

f0

]∥∥∥∥∥

2

2

= 8Q
′

2 log(n+m)

[
n∑

i=1

min
{
|x0(i)|2, σ2

}

+
∑

j∈T∗

min
{
|λf0(j)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

]

with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m − e−m/100.

6. Case (a1,b2). Suppose
{
K
((
(x0)S1 ,0

)
; (x0,0)

)
≤ γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
> γt∗,

and ‖(f0)S2‖0 > t∗, namely, S2 ⊇ T∗. By the assumption above, we get ‖(x0)S1‖0 ≤ s∗ and

‖x̄‖0 ≤ s∗. Here x0 is similar to Case (a1,b1), and f0 is similar to Case (a2,b2). Therefore we

get the estimation as follows:
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

=

∥∥∥∥
[
x̂DS

0

]
−
[
x0

0

]∥∥∥∥
2

2

+

∥∥∥∥∥

[
0

f̂DS

]
−
[
0

f0

]∥∥∥∥∥

2

2

≤ M
′′

1

n∑

i=1

min
{
|x0(i)|2, σ2

}

+ 8Q
′

2 log(n+m)

[
∑

i∈T∗

min
{
|λf0(i)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

]

with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m − e−m/100.

7. Case (a1,b3). We discuss the case
{
K
((
(x0)S1 ,0

)
; (x0,0)

)
≤ γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
> γt∗,

and ‖(f0)S2‖0 ≤ t∗, namely, Sc
2 ⊇ T c

∗ . According to the inequalities above, we get

(1 + δ1,1)K
((
0, (f0)S2

)
; (0, f0)

)
> η2t∗,

and ‖(x0)S1‖0≤s∗, ‖x̄‖0≤s∗. By combining the discussion of Case (a1,b1) and Case (a3,b3),

we obtain
∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

=

∥∥∥∥
[
x̂DS

0

]
−
[
x0

0

]∥∥∥∥
2

2

+

∥∥∥∥∥

[
0

f̂DS

]
−
[
0

f0

]∥∥∥∥∥

2

2

≤ M
′′

1

n∑

i=1

min
{
|x0(i)|2, σ2

}
+ 8Q

′

2 log(n+m)

m∑

j=1

min
{
|λf0(j)|2, σ2

}

with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m − e−m/100.
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8. Case (a2,b1). Suppose

{
K
((
(x0)S1 ,0

)
; (x0,0)

)
> γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
≤ γt∗,

and ‖(x0)S1‖0 > s∗, namely, S1 ⊇ S∗. It follows from the inequalities (3.12) and (3.14) above

that

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

=

∥∥∥∥
[
x̂DS

0

]
−
[
x0

0

]∥∥∥∥
2

2

+

∥∥∥∥∥

[
0

f̂DS

]
−
[
0

f0

]∥∥∥∥∥

2

2

≤ 8Q
′

2 log(n+m)

[
∑

i∈S∗

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

]

+M
′′

2

m∑

j=1

min
{
|λf0(j)|2, σ2

}

with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m− e−m/100. Here the estimations

‖x̂DS − x0‖22 and ‖f̂DS − f0‖22 come from the Case (a2,b2) and Case (a1,b1), respectively.

9. Case (a3,b3). Lastly, we discuss the case

{
K
((
(x0)S1 ,0

)
; (x0,0)

)
> γs∗,

K
((
0, (f0)S2

)
; (0, f0)

)
≤ γt∗,

and ‖(x0)S1‖0 ≤ s∗, namely, Sc
1 ⊇ Sc

∗ and Sc
2 ⊇ T c

∗ . Then, by the inequalities above, we get

(1 + δ1,1)K
((
(x0)S1 ,0

)
; (x0,0)

)
> η2s∗,

‖(f0)S2‖0 ≤ t∗ and ‖f̄‖0 ≤ t∗. Note that x0 is similar to Case (a3,b3), and f0 is similar to

Case (a1,b1). Therefore, one has

∥∥∥∥∥

[
x̂DS

f̂DS

]
−
[
x0

f0

]∥∥∥∥∥

2

2

=

∥∥∥∥
[
x̂DS

0

]
−
[
x0

0

]∥∥∥∥
2

2

+

∥∥∥∥∥

[
0

f̂DS

]
−
[
0

f0

]∥∥∥∥∥

2

2

≤ 8Q
′

2 log(n+m)

n∑

i=1

min
{
|x0(i)|2, σ2

}
+M

′′

2

m∑

j=1

min
{
|λf0(j)|2, σ2

}

with probability at least 1− 1/
√
π log(n+m)− 1/n− 3e−K2m − e−m/100.

Finally, by the discussions above, we can obtain the estimation

‖x̂DS − x0‖22 + ‖f̂DS − f0‖22 .
∑

i∈supp((x0)max(s∗))

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

+
∑

j∈supp((f0)max(t∗))

min
{
|λf0(j)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

with high probability. This completes the proof. �
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4. Numerical Experiments

In this section, we present several relative numerical experiments on corrupted compressed

sensing. They are focused on three areas: (i) the effects of the balance parameter λ for the

extended Dantzig selector (1.8) and the extended Lasso (1.9), (ii) the performance of the two

models with b = Ax0 + f0 + e for approximately sparse signal recovery, (iii) the significance of

the oracle inequality on sparse signal recovery. We solve these models via CVX [24]. We do 500

independent repeated tests and record those results. Here we take the approximately sparse

(or compressive) signal x0∈Rn with x0(ik)=2−k for k = 1, . . . , n and n = 120, which meets

the definition for approximately sparse signal in [22]. The measurement matrix A ∈ R
m×n

is a Gaussian matrix with aij ∼ N (0, 1/m), and the noise e ∼ N (0, σ2Im) has the standard

deviation σ = 10−3. The relative error (RE) of the reconstructed signal x̂ and the original

signal x0 is defined by RE(x̂,x0) = ‖x̂− x0‖2/‖x0‖2. The signal to noise ratio (SNR) is defined

by SNR(x̂,x0) = −20 log10 RE(x̂,x0). Take the outliers f0 ∈ R
m with supp(f0) = T and

|T | = ⌈0.05m⌉ (refer to [43]). If i ∈ T , f0(i) ∼ U(−ι, ι) with the uniform distribution parameter

ι = 100 and f0(i) = 0, otherwise. Therefore, the observations b can be written as follows:

b(j) =

{
〈Ai,x0〉+ f0(j) + ej , j ∈ T,

〈Ai,x0〉+ ej , j ∈ T c.

Note that we give those examples in details.

Example 4.1. We show the performances of the different values of the balance parameter λ

for the extended Dantzig selector and extended Lasso models. Take the balance parameter λ

with λ < 1, λ = 1 and λ > 1, respectively. Let the measurement m ∈ {46, 48, . . . , 58}. These

results in Fig. 4.1 show that the balance parameter has a large significance for the extended

Fig. 4.1. The SNR versus the numberm of measurements for different values of the balance parameter λ.
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Dantzig selector model or the extended Lasso model. We find that the smaller parameter λ

with λ < 1 has a better numerical performance. What should be pointed out is that numerical

performances all are very poor for different values of the parameters λ ≥ 1. Therefore, we only

display the performance for λ = 1, and λ = 10.

Example 4.2. We display the numerical performance of the extended Dantzig selector and

extended Lasso models. We vary the measurement m ∈ {46, 48, . . . , 58}. The results in Fig. 4.2

show that both the extended Dantzig selector and the extended Lasso can stably recover the

sparse signal x0 and the outlier f0.

Fig. 4.2. The SNR versus the number of measurements m for the extended Dantzig selector and the

extended Lasso models.

Finally, we design an experiment and discuss the significance of oracle inequalities for cor-

rupted compressed sensing.

Example 4.3. We take the setup similar to that of [11, 23]. We randomly choose a subset

S ⊂ R
n with |S| = s, and a subset T ⊂ R

m with |T | = t. Then, we generate the original signal

x0 and f0 as follows:

x0(i) =

{
ξi(1 + |di|), i ∈ S,

0, otherwise,

f0(j) =

{
ζj(1 + |dj |), j ∈ T,

0, otherwise,

where ξi and ζj all obey the uniform distribution, ξi ∼ U(−1, 1) and ζj ∼ U(−ι, ι) with ι = 100,

and di ∼ N (0, 1). And we obtain the observations b = Ax0 + f0 + e ∈ R
m with noise

e ∼ N (0, σ2Im).

In this numerical experiment, we discuss two noise levels with σ ∈ {0.01, 0.05}, and various

dimensions with (m,n, s, t) = (72i, 256i, 8i, 2i) with i = 1, 2, 3. Here (x̂, f̂) is the solution

of the extended Dantzig selector (1.8). We use the bias-removing two-stage procedure after

Theorem 2.2 to obtain a refined solution (x̃, f̃). The quality of (x̂, f̂) and (x̃, f̃) are measured by





ρ2orign =

∑
i |x̂j − x0(i)|2 +

∑
j |f̂j − f0(j)|2∑

imin
{
|x0(i)|2, σ2

}
+
∑

j min
{
|λf0(j)|2, σ2

} ,

ρ2 =

∑
i |x̃j − x0(i)|2 +

∑
j |f̃j − f0(j)|2∑

imin
{
|x0(i)|2, σ2

}
+
∑

j min
{
|λf0(j)|2, σ2

} .
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Note that ρ2orign and ρ2 are two indices on the performance of the extended Dantzig selector,

which are called the preprocessing errors and the postprocessing errors in [32]. Of course, we

are aiming for better selectors with smaller valves. These results in Table 4.1 show that the

refined extended Dantzig selector performs better than the extended Dantzig selector.

Table 4.1: The performances of the extended Dantzig selector and the refined extended Dantzig selector.

i
σ = 0.01 σ = 0.05

ρ2orign ρ2 ρ2orign ρ2

i = 1 91.7136 18.1995 38.0129 10.4935

i = 2 18.9427 1.6273 16.8622 2.4910

i = 3 17.0844 1.9455 15.6463 2.3939

5. Conclusions and Comments

In this paper, we extended oracle inequalities of compressed sensing to corrupted compressed

sensing for the Gaussian noises model b = Ax0 + f0 + e with e ∼ N (0, σ2Im). Here f ∈ R
m is

a sparse vector with possible infinity large nonzero entries. And we got the oracle inequalities for

the extended Dantzig selector and the extended Lasso for both sparse signal and approximately

sparse signal x0 ∈ R
n recovery from the highly corrupted measurements. Suppose that the

sensing matrix is sampled from the Gaussian measurement ensemble without the normalized

columns. We discussed the probability of oracle inequalities

‖x̂− x0‖22 + ‖f̂ − f0‖22 .
∑

i

min
{
|x0(i)|2, σ2

}
+
∑

j

min
{
|λf0(j)|2, σ2

}

for sparse signal recovery (see Theorems 2.1 and 2.2), and

‖x̂− x0‖22 + ‖f̂ − f0‖22 .
∑

i∈supp((x0)max(s∗))

min
{
|x0(i)|2, σ2

}
+ ‖(x0)−max(s∗)‖22

+
∑

j∈supp((f0)max(t∗ )

min
{
|λf0(j)|2, σ2

}
+ ‖(f0)−max(t∗)‖22

for approximately sparse signal recovery (see Theorems 3.1 and 3.2), respectively. Here λ > 0

is the balance parameter between ‖x‖1 and ‖f‖1, i.e. ‖x‖1 + λ‖f‖1. What should be pointed

out is that our results are not trivial extensions of the compressed sensing (non-corrupted) case

b = Ax0 + e.
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[23] H. Ge and P. Li, The Dantzig selector: Recovery of signal via ℓ1-αℓ2 minimization, Inverse Probl.,

38:1 (2021), 015006.

[24] M. Grant, S. Boyd, and Y. Ye, CVX: Matlab Software for Disciplined Convex Programming, 2011,

http://cvxr.com/cvx.

[25] J.N. Laska, M.A. Davenport, and R.G. Baraniuk, Exact signal recovery from sparsely corrupted

measurements through the pursuit of justice, in: 2009 Conference Record of the Forty-Third

Asilomar Conference on Signals, Systems and Computers, (2009), 1556–1560.

[26] N. Li, Signal Recovery and Separation Based on Corrupted Observations, PhD Thesis, China

Academy of Engineering Physics, 2022.

[27] N. Li, W. Chen, and P. Li, Stable recovery of signals from highly corrupted measurements, IEEE

Access, 6 (2018), 62865–62873.

[28] P. Li and W. Chen, Signal recovery under mutual incoherence property and oracle inequalities,



32 L.P. YIN AND P. LI

Front. Math. China, 13 (2018), 1369–1396.

[29] P. Li and W. Chen, Signal recovery under cumulative coherence, J. Comput. Appl. Math.,346

(2019), 399–417.

[30] X. Li, Compressed sensing and matrix completion with constant proportion of corruptions, Constr.

Approx., 37 (2013), 73–99.

[31] J. Lin and S. Li, Sparse recovery with coherent tight frames via analysis Dantzig selector and

analysis LASSO, Appl. Comput. Harmon. Anal., 37:1 (2014), 126–139.

[32] Z. Lu, T.K. Pong, and Y. Zhang, An alternating direction method for finding Dantzig selectors,

Comput. Statist. Data Anal., 56:12 (2012), 4037–4046.

[33] S.G. Mallat and G. Yu, Super-resolution with sparse mixing estimators, IEEE Trans. Image

Process., 19 (2010), 2889–2900.

[34] N.H. Nguyen and T.D. Tran, Robust Lasso with missing and grossly corrupted observations, IEEE

Trans. Inform. Theory, 59 (2012), 2036–2058.

[35] N.H. Nguyen and T.D. Tran, Exact recoverability from dense corrupted observations via ℓ1-mini-

mization, IEEE Trans. Inform. Theory, 59:4 (2013), 2017–2035.

[36] C. Novak, C. Studer, A. Burg, and G. Matz, The effect of unreliable LLR storage on the perfor-

mance of MIMO-BICM, in: 2010 Conference Record of the Forty Fourth Asilomar Conference on

Signals, Systems and Computers, (2010), 736–740.

[37] C. Studer and R.G. Baraniuk, Stable restoration and separation of approximately sparse signals,

Appl. Comput. Harmon. Anal., 37 (2014), 12–35.

[38] C. Studer, P. Kuppinger, G. Pope, and H. Bolcskei, Recovery of sparsely corrupted signals, IEEE

Trans. Inform. Theory, 58 (2011), 3115–3130.

[39] Q. Sun, Sparse approximation property and stable recovery of sparse signals from noisy measure-

ments, IEEE Trans. Signal Proces., 59 (2011), 5086–5090.

[40] J. Tanner and S. Vary, Compressed sensing of low-rank plus sparse matrices, Appl. Comput.

Harmon. Anal., 64 (2023), 254–293.

[41] R. Tibshirani, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc., Ser. B., Metho-

dol., 58 (1996), 267–288.

[42] J.A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform.

Theory, 50:10 (2004), 2231–2242.

[43] Q. Wan, H. Duan, J. Fang, H. Li, and Z. Xing, Robust Bayesian compressed sensing with outliers,

Signal Process., 140 (2017), 104–109.

[44] L. Wang, The L1 penalized LAD estimator for high dimensional linear regression, J. Multivariate

Anal., 120 (2013), 135–151.

[45] J. Wright and Y. Ma, Dense error correction via ℓ1-minimization, IEEE Trans. Inform. Theory,

56:7 (2010), 3540–3560.

[46] J. Wright and Y. Ma, High-dimensional Data Analysis with Low-Dimensional Models: Principles,

Computation, and Applications, Cambridge University Press, 2022.

[47] J. Yang and Y. Zhang, Alternating direction algorithms for ℓ1-problems in compressive sensing,

SIAM J. Sci. Comput., 33:1 (2011), 250–278.

[48] P. Zhang, L. Gan, C. Ling, and S. Sun, Uniform recovery bounds for structured random matrices

in corrupted compressed sensing, IEEE Trans. Signal Proces., 66 (2018), 2086–2097.

[49] R. Zhang and S. Li, A proof of conjecture on restricted isometry property constants δtk (0<t<4/3),

IEEE Trans. Inform. Theory, 64:3 (2017), 1699–1705.


