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Abstract

A fundamental problem in some applications including group testing and communi-

cations is to acquire the support of a K-sparse signal x, whose nonzero elements are 1,

from an underdetermined noisy linear model. This paper first designs an algorithm called

binary least squares (BLS) to reconstruct x and analyzes its complexity. Then, we estab-

lish two sufficient conditions for the exact reconstruction of x’s support with K iterations

of BLS based on the mutual coherence and restricted isometry property of the measure-

ment matrix, respectively. Finally, extensive numerical tests are performed to compare the

efficiency and effectiveness of BLS with those of batch orthogonal matching pursuit (Batch-

OMP) which to our best knowledge is the fastest implementation of OMP, orthogonal least

squares (OLS), compressive sampling matching pursuit (CoSaMP), hard thresholding pur-

suit (HTP), Newton-step-based iterative hard thresholding (NSIHT), Newton-step-based

hard thresholding pursuit (NSHTP), binary matching pursuit (BMP) and ℓ1-regularized

least squares. Test results show that: (1) BLS can be 10-200 times more efficient than

Batch-OMP, OLS, CoSaMP, HTP, NSIHT and NSHTP with higher probability of sup-

port reconstruction, and the improvement can be 20%-80%; (2) BLS has more than 25%

improvement on the support reconstruction probability than the explicit BMP algorithm

with a little higher computational complexity; (3) BLS is around 100 times faster than

ℓ1-regularized least squares with lower support reconstruction probability for small K and

higher support reconstruction probability for large K. Numerical tests on the generalized

space shift keying (GSSK) detection indicate that although BLS is a little slower than

BMP, it is more efficient than the other seven tested sparse recovery algorithms, and al-

though it is less effective than ℓ1-regularized least squares, it is more effective than the

other seven algorithms.

Mathematics subject classification: 94A12, 65F22, 65J22.
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1. Introduction

The reconstruction of an unknown K-sparse x (i.e. x has no more than K nonzero entries)

from the following underdetermined noisy linear measurements lies at the heart of compressive

sensing [8, 12]:

y = Ax+w, (1.1)

where y ∈ R
m is a given measurement vector, A ∈ R

m×n is a given measurement matrix

satisfying m ≪ n, and w ∈ R
m is a ℓ2-bounded noise vector, i.e., w satisfies ‖w‖2 ≤ ǫ for

certain small constant ǫ. There are other kinds of noises, for further details, see, e.g. [5, 37].
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Although we assume w is a ℓ2-bounded noise, the results in this work cannot be hard to be

extended to other types of noise by following some techniques in e.g. [5, 36].

The problem of stably acquiring the K-sparse x from (1.1) arises in a massive number

of applications, such as magnetic resonance imaging [23] and radar imaging [27]. While in

some other applications, such as group testing [17], generalized space shift keying modulation

detection [19] and active user detection [10], in addition to be K-sparse, x also fulfills

xi = 1 for i ∈ Ω, (1.2)

where Ω = {i|xi 6= 0} is the support of x. Note that K-sparse x satisfying (1.2) is called binary

K-sparse signal.

Although there is a large number of algorithms for reconstructing x from (1.1), such as

greedy algorithms [11, 25, 26, 32], convex optimization algorithms [8, 12] and thresholding al-

gorithms [2, 4, 30], and there are some studies on the reconstruction of binary sparse signals

from (structured) biased measurement matrices [14, 20], there are few algorithms specifically

designed for acquiring binary K-sparse x from (1.1) for any measurement matrix A, and binary

matching pursuit (BMP) [34] is the most recent one.

As explained in [34], designing an efficient and effective algorithm for reconstructing x

satisfying (1.2) is of vital importance. Note that the reconstruction of such kind of sparse

signals is challenging for orthogonal matching pursuit (OMP) [32] and it has special interest

for the comparative study as they represent a particularly challenging case for OMP-type of

reconstruction strategies [11]. Furthermore, it is emphasized in [3] that the recovery of sparse

signals with equal magnitude nonzero entries is most demanding, and it was conjectured in

[38] that the most difficult sparse inverse problem may involve nonzero coefficients with equal

magnitudes. [18, Theorem 1] supports the observation, that reconstructing sparse vectors with

equal magnitude nonzero coefficients correspond to the most difficult case for many recovery

algorithms, by stating that, as long as the satisfaction of mutual coherence conditions for

exact recovery is concerned, “flat” vectors (i.e. vectors whose nonzero entries are a constant)

correspond to the worst possible case for OMP and OLS.

This work focuses on designing an efficient and effective binary sparse signal reconstruction

algorithm and studying its performance. More exactly, we develop an iterative reconstruction

algorithm called binary least squares (BLS). In each iteration, as orthogonal least squares

(OLS) [9], BLS selects an index such that the residual vector is shortest. But different from

OLS which mathematically solves a least squares problem to find the index, it uses (1.2) to

find the index and does not solve any least squares problem, hence it is much more efficient

than OLS. The new algorithm is a variant of OLS, and since it is designed for acquiring binary

sparse signals, we call it BLS.

Although BMP is an iterative algorithm which also uses (1.2) to iteratively find the support

of x in each iteration, its selection criterion is different from that of BLS. More exactly, in

each iteration, BMP selects an index such that the absolute value of the inner product of the

corresponding column ofA and the current residual vector is maximized, which is different from

that of BLS. Since a natural method to recover x is to minimize ‖x‖0 subject to ‖y−Ax‖2 ≤ ǫ,

where ‖x‖0 denotes the number of nonzero entries of x, the selection strategy of BLS is closer

to this method than that of BMP, hence BLS is expected to have better recovery performance

than BMP. In fact, BLS is much more effective than BMP with a little higher complexity.

Further details on this will be presented in Section 4.
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To theoretically characterize the reconstruction performance of BLS, we develop two suf-

ficient conditions for exactly acquiring the support of x with BLS based on A’s mutual co-

herence [13] and restricted isometry property (RIP) [8], respectively. Note that the mutual

coherence µ of A is defined as [13]

µ = max
i6=j

∣

∣A⊤
i Aj

∣

∣

‖Ai‖2‖Aj‖2
, (1.3)

and A satisfies the RIP [8] if for all K-sparse x, it holds that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22. (1.4)

Moreover, the minimal δ is called the restricted isometry constant (RIC) of A and is denoted

as δK [8].

The contributions of this article are summarized as follows:

• We develop BLS to acquire K-sparse x satisfying (1.2) from (1.1) and show that its

computational complexity is

2mn(N + 1) +N(2m+ 1)−mN2

flops (i.e., the total numbers of addition, substraction, multiplication and division), whereN

is the iteration number of BLS, and further prove that the complexity can be reduced to

N

[

2mn+ (m+ 1)−
(

(N − 1)

(

m− 1

2

)

+ n

)]

flops if A has equal column norm.

• We prove that if the mutual coherence µ of A and the noise level ǫ respectively satisfy

µ <
β2

(2K − 1)α2
, ǫ <

β2 − (2K − 1)α2µ

2α
, (1.5)

where α, β are respectively the largest and smallest Euclidean norm of the columns of A,

then with certain stopping condition, BLS can accurately acquire x’s support with at

most K iterations.

• We prove that if A and the noise level ǫ respectively satisfy

δK+1 <
1√

K + 1 + 1
, ǫ <

1− (
√
K + 1 + 1)δK+1

2
, (1.6)

then with certain stopping condition, BLS can accurately acquire x’s support with at

most K iterations. We further show that the two conditions can be respectively relaxed to

δK+1 <
1√

K + 1
, ǫ <

1−
√
K + 1δK+1

2
,

if A has equal column norm.

• We performed extensive numerical tests to compare the efficiency and effectiveness of

BLS with those of batch orthogonal matching pursuit (Batch-OMP) (which to our best
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knowledge is the most efficient implementation of OMP [29]), OLS, compressive sampling

matching pursuit (CoSaMP) [25], hard thresholding pursuit (HTP) [15], Newton-step-

based iterative hard thresholding (NSIHT) [24], Newton-step-based hard thresholding

pursuit (NSHTP) [24], BMP [34] and ℓ1-regularized least squares [21]. The test results

show that:

(1) BLS can be 10-200 times faster than Batch-OMP, OLS, CoSaMP, HTP, NSIHT and

NSHTP with 20%-80% higher probability of support reconstruction.

(2) BLS has more than 25% higher probability of support recovery than the explicit BMP

with a little higher computational complexity.

(3) BLS is around 100 times faster than ℓ1-regularized least squares with lower support

reconstruction probability for small K and higher support reconstruction probability for

large K.

Furthermore, numerical tests on the real application of the generalized space shift keying

(GSSK) detection also indicate that although BLS is a little slower than BMP, it is more

efficient than the other seven tested algorithms, and although it is less effective than

ℓ1-regularized least squares, it is more effective than the other seven tested algorithms.

The remainder of this article is organized as follows. The BLS algorithm and its complexity

analysis are presented in Section 2. Section 3 establishes two sufficient conditions of accurate

reconstruction of x’s support with at most K iterations of BLS. Section 4 conducts extensive

numerical tests to explain BLS’s efficiency and good reconstruction ability. Finally, we conclude

this article and present some future research problems in Section 5.

Notation. Let ∅ denote the empty set, Ω and |Ω| respectively denote the support of x and

its cardinality. For any set Γ ⊆ {1, 2, . . . , n}, Γc represents the complementary set of Γ and Ω\Γ
represents the set that is the combination of Ω and Γc, xΓ ∈ R

|Γ| denotes the subvector of x

with entries indexed by Γ, and AΓ ∈ R
m×|Γ| denotes the submatrix of A with columns indexed

by Γ. Furthermore, denote the transpose of AΓ by A⊤
Γ and P⊥

Γ = I −AΓ(A
⊤
ΓAΓ)

−1A⊤
Γ .

2. Our New Algorithm

In this section, we design BLS to reconstruct K-sparse x satisfying (1.2) from (1.1), study

its complexity and compare it with some related sparse recovery algorithms.

2.1. Binary least squares

BLS is an iterative algorithm. In each iteration, it uses (1.2) to select an index such that

the residual vector is shortest. Specifically, suppose that BLS performs N iterations, let Γk−1

denote the estimated support and rk−1 :=y−AΓk−1 denote the residual vector at the (k− 1)-th

iteration, where 1 ≤ k ≤ N , Γ0 = ∅ and r0 = y, then at the k-th iteration, BLS selects

sk ∈ Γc
k−1 such that

sk = argmin
i∈Γc

k−1

‖rk‖22 = argmin
i∈Γc

k−1

∥

∥y −AΓk−1∪{i}

∥

∥

2

2

= argmin
i∈Γc

k−1

‖y −AΓk−1 −Ai‖22 = argmin
i∈Γc

k−1

∥

∥rk−1 −Ai

∥

∥

2

2

= argmax
i∈Γc

k−1

A⊤
i

(

2rk−1 −Ai

)

. (2.1)
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By some simple calculations, we can see that the cost of finding sk that satisfies (2.1) is

(2m+ 2m− 1)(n− k + 1) = (4m− 1)(n− k + 1)

flops. Suppose that BLS performs N iterations, then the total cost of finding si for 1 ≤ i ≤ N is

N
∑

k=1

(n− k + 1)(4m− 1) = N(4m− 1)

(

n− N − 1

2

)

flops, which is high. To reduce the total cost of selection, we define c ∈ R
n such that

ci =
1

2
‖Ai‖22, 1 ≤ i ≤ n, (2.2)

then

A⊤
i

(

2rk−1 −Ai

)

= 2
(

A⊤
i r

k−1 − ci
)

.

Hence, by (2.1), we find sk ∈ Γc
k−1 which satisfies

sk = argmax
i∈Γc

k−1

(

A⊤
i r

k−1 − ci
)

, (2.3)

and the cost is 2m(n− k + 1) flops.

After finding sk, we let

x̂sk = 1, Γk = Γk−1 ∪ {sk}, rk = rk−1 −Ask ,

where x̂ ∈ R
n is used to estimate the binary K-sparse x. According to the above explanation,

the BLS algorithm is described in Algorithm 2.1.

Algorithm 2.1: Binary Least Squares.

Input : y and A.

Initialize: k = 0, r0 = y, x̂ = 0,Γ0 = ∅ and c ∈ R
n with ci = ‖Ai‖22/2 for 1 ≤ i ≤ n.

1 while stopping condition is not satisfied do

2 k = k + 1.

3 sk = argmaxi∈Γc

k−1

(A⊤
i r

k−1 − ci).

4 x̂sk = 1.

5 Γk = Γk−1 ∪ {sk}.
6 rk = rk−1 −Ask .

7 end

Output: Γk and x̂.

As OMP and BMP, in each iteration, we explicitly form the residual vector rk, which can

be used to set a stopping condition for BLS. Alternatively, we may let the algorithm terminate

after performing certain iterations. Note that if A has equal column norm, then step 3 of

Algorithm 2.1 can be reduced to

sk = argmax
i∈Γc

k−1

A⊤
i r

k−1, (2.4)

which is very similar to the selection strategy of OMP and BMP, that is

sk = argmax
i∈Γc

k−1

∣

∣A⊤
i r

k−1
∣

∣. (2.5)
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2.2. Complexity analysis of BLS

In the following, we analyze the complexity of Algorithm 2.1. By (2.2), the cost for com-

puting c is 2mn flops. Furthermore, if BLS performs N ≤ n iterations, then step 2 and steps

4-6 of Algorithm 2.1 cost (m+ 1)N flops in total, and step 3 costs

2m

N
∑

k=1

(n− k + 1) = mN(2n−N + 1)

flops. Hence, if BLS performs N iterations, then the total complexity of Algorithm 2.1 is

2mn+ (m+ 1)N +mN(2n−N + 1) = 2mn(N + 1) +N(2m+ 1)−mN2

flops.

Furthermore, by the above analysis, if A has equal column norm, then we do not need to

form c and we can use (2.4) to select the index sk. Therefore, if BLS performs N iterations,

then its complexity is

N(m+ 1) +

N
∑

k=1

[(n− k + 1)(2m− 1)]

=2mnN +N(m+ 1)−N

[

(N − 1)

(

m− 1

2

)

+ n

]

(2.6)

flops.

2.3. Comparison with existing sparse recovery algorithms

The most related sparse recovery algorithms to BLS are the explicit BMP algorithm [34,

Algorithm 2] and the OLS algorithm (see, e.g. [35, Table 1]), hence, in this subsection, we

briefly compare BLS with these two algorithms.

From Algorithm 2.1 and [34, Algorithm 2], one can see that the only difference between

BMP and BLS is step 3, i.e. the selection strategy. More exactly, in the k-th iteration, BMP

uses (2.5) to select sk, while BLS uses (2.3) or (2.4) (when A has equal column norm) to

select sk. Since both BMP and BLS use the binary property of x, it is not strange that this is

their only difference. Note that this improved selection strategy leads to an improved recovery

performance, for more details, see the simulation part in Section 4.

To the best of our knowledge, the explicit BMP algorithm, whose complexity is

2mnN +N(m+ 1)−N

[

(N − 1)

(

m− 1

2

)

+ n

]

flops if it runs N iterations [34], is the most efficient binary sparse recovery algorithm. By (2.6),

we can see that the complexity of BLS equals to that of BMP if A has equal column norm, and

otherwise the complexity of BLS is n(2m+N)− (N − 1)N/2 flops higher than that of BMP.

It is worth mentioning that, for Bernoulli measurement matrix A with aij independently

and identically randomly chosen from {−1/
√
m, 1/

√
m} with equal probability, it has equal

column norm. Hence, the theoretical computational complexity of BLS is the same as that of

BMP. But as will be shown in Section 4, BLS has much better recovery performance than BMP.

For other measurement matrices which do not have equal column norm, as will be shown in
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Section 4, although BLS is a little bit more expensive than BMP, it has much better recovery

performance than BMP.

In the following, we compare BLS with OLS. From Algorithm 2.1 and [35, Table 1], one can

see that there are two differences between BLS and OLS: steps 3, and 5-6. Although the main

ideas of their selection strategies are the same, i.e. finding sk such that

sk = argmin
i∈{1,...,n}

∥

∥P⊥
Γk−1∪{i}y

∥

∥

2

2
= argmin

i∈{1,...,n}

‖rk‖22,

they may choose different index for k ≥ 2 because OLS compute

x̂sk−1
=
(

A⊤
Γk−1AΓk−1

)−1
A⊤

Γk−1y,

which is different from BLS that sets x̂sk−1
= 1. This leads to the difference between the

residual vector rk computed by OLS and BLS. Furthermore, step 3 of BLS is much more

efficient than step 3 of OLS. This difference significantly improves not only efficiency but also

recovery performance, for more details, see Section 4.

Since step 4 of BLS uses (1.2), while step 5 of OLS does not use (1.2), this difference also

improves both efficiency and recovery performance. From step 6 of BLS and OLS, one can see

that BLS is much more efficient than OLS.

3. Sufficient Conditions for Accurate Support Reconstruction with

BLS Algorithm

In this section, we respectively use the mutual coherence and RIP of the measurement

matrix A to establish two sufficient conditions for the accurate support reconstruction with

BLS.

3.1. Sufficient condition for BLS based on the mutual coherence of A

Theorem 3.1 below establishes a sufficient condition for the precise recovery of x’s support

with BLS based on the mutual coherence of A.

Theorem 3.1. Suppose that K-sparse x satisfies (1.2) and let

α := max
1≤i≤n

‖Ai‖2, β := min
1≤i≤n

‖Ai‖2. (3.1)

If the mutual coherence µ of A satisfies

µ <
β2

(2K − 1)α2
, (3.2)

and w satisfies ‖w‖2 ≤ ǫ with

ǫ <
β2 − (2K − 1)α2µ

2α
, (3.3)

then with the stopping condition ‖rk‖2 ≤ ǫ, BLS can accurately acquire x’s support with at

most K iterations.
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Proof. As the proof of [37, Theorem 1] and [34, Theorem 1], we prove that BLS selects

an element of the support Ω of x in each iteration and performs exactly |Ω| iterations. We

prove the former by induction. By Algorithm 2.1, Γ0 = ∅. Suppose that Γk−1 ⊆ Ω for certain k

with 1 ≤ k ≤ |Ω|, then by induction and Algorithm 2.1, it is equivalent to prove that sk ∈ Ω.

By step 3 of Algorithm 2.1, to prove sk ∈ Ω, it suffices to prove that

max
i∈Ω\Γk−1

(

A⊤
i r

k−1 − ci
)

> max
j∈Ωc

(

A⊤
j r

k−1 − cj
)

. (3.4)

By (1.1) and line 6 of Algorithm 2.1, we obtain

rk−1 = y −
∑

i∈Γk−1

Ai = AΩxΩ +w −
∑

i∈Γk−1

Ai =
∑

i∈Ω\Γk−1

Ai +w, (3.5)

where the last equality is due to (1.2). Suppose that

i0 = argmax
i∈Ω\Γk−1

(

A⊤
i r

k−1 − ci
)

, j0 = argmax
j∈Ωc

(

A⊤
j r

k−1 − cj
)

. (3.6)

Then by (2.2) and (3.5), we get

A⊤
i0
rk−1 − ci0 = A⊤

i0

∑

i∈Ω\Γk−1

Ai +A⊤
i0
w − ci0

(a)
= A⊤

i0

(

Ai0 +
∑

i∈Ω\(Γk−1∪i0)

Ai

)

+A⊤
i0
w − ‖Ai0‖22

2

≥ ‖Ai0‖22
2

−
∑

i∈Ω\(Γk−1∪i0)

∣

∣A⊤
i0
Ai

∣

∣−
∣

∣A⊤
i0
w
∣

∣

(b)

≥ β2

2
− |Ω\(Γk−1 ∪ i0)|α2µ− α‖w‖2

≥ β2

2
− (K − 1)α2µ− α‖w‖2, (3.7)

where (a) is due to (2.2), and (b) is from (1.3), (3.1) and the Cauchy-Schwarz inequality.

Similarly, by (3.5), we have

A⊤
j0
rk−1 − cj0 = A⊤

j0

∑

i∈Ω\Γk−1

Ai +A⊤
j0
w − cj0

≤
∑

i∈Ω\Γk−1

∣

∣A⊤
j0
Ai

∣

∣+
∣

∣A⊤
j0
w
∣

∣− cj0

≤ |Ω\Γk−1|α2µ+

(

α‖w‖2 −
β2

2

)

≤ Kα2µ− β2

2
+ α‖w‖2, (3.8)

where the second to the last inequality is from (2.2) and (3.1).

Then, by (3.7) and (3.8), to show (3.4), it suffices to show that

β2 − (2K − 1)α2µ ≥ 2α‖w‖2. (3.9)

Since ‖w‖2 ≤ ǫ, by (3.2) and (3.3), (3.9) holds. Therefore, sk ∈ Ω for 1 ≤ k ≤ |Ω|.
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In the following, we show that with the stopping condition ‖rk‖2 ≤ ǫ, BLS runs precisely |Ω|
iterations. Let σmin denote the minimum singular value of A⊤

Ω\Γk−1
AΩ\Γk−1

, then, by the

Gerschgorin theorem, we obtain

σmin ≥ min
i∈Ω\Γk−1

(

‖Ai‖22 −
∑

j∈Ω\(Γk−1∪i)

|A⊤
i Aj |

)

≥ β2 − (K − 1)α2µ, (3.10)

where the second inequality is from (1.3) and (3.1). Hence, we have

‖rk−1‖2
(a)
= ‖AΩ\Γk−1

xΩ\Γk−1
+w‖2

(b)

≥ ‖AΩ\Γk−1
xΩ\Γk−1

‖2 − ǫ
(c)

≥ √
σmin − ǫ

(d)

≥
√

β2 − (K − 1)α2µ− ǫ = α

√

1

α2

(

β2 − (K − 1)α2µ
)

− ǫ

(e)

≥ α
1

α2

(

β2 − (K − 1)α2µ
)

− ǫ > ǫ, (3.11)

where (a) is from (1.2) and (3.5), (b) is because ‖w‖2 ≤ ǫ, (c) follows from (1.2) and the fact

that σmin denotes the minimum singular value of A⊤
Ω\Γk−1

AΩ\Γk−1
, and (d) is due to (3.10),

(e) is since
1

α2

(

β2 − (K − 1)α2µ
)

≤ 1,

(see (3.1)) and the last inequality follows from (3.3).

By (3.11), we can see that under the stopping condition ‖rk‖2 ≤ ǫ, BLS performs at least |Ω|
iterations. Furthermore, by (3.5), we have

‖r|Ω|‖2 =

∥

∥

∥

∥

∑

i∈Ω\Ω

Ai +w

∥

∥

∥

∥

2

= ‖w‖2 ≤ ǫ. (3.12)

Therefore, BLS terminates after performing |Ω| iterations. Hence, BLS performs exactly |Ω|
iterations. The proof is complete. �

From the above proof, we can see that, as the proof of the sufficient conditions of OMP

and OLS, in each iteration, we need to prove (3.4). But different from OMP and BLS which

mathematically solve a least squares problem to update x, BLS just sets the new element of x

as 1 in each iteration. Furthermore, the selection strategy of BLS is different from that of BMP.

Hence, the main techniques of the above proof are different from those of OMP, OLS and BMP.

In many references, like [5, 6, 31, 34, 35], for simplicity, it is assumed that A is column

normalized. Under this condition, α = β = 1 (see (3.1)). Hence, the following corollary can be

obtained from Theorem 3.1.

Corollary 3.1. Suppose that K-sparse x satisfies (1.2) and the mutual coherence of column

normalized A satisfies

µ <
1

2K − 1
. (3.13)

If w satisfies ‖w‖2 ≤ ǫ with

ǫ <
1− (2K − 1)µ

2
,

then BLS can accurately acquire x’s support with at most K iterations under the stopping

condition ‖rk‖2 ≤ ǫ.
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By [6, Theorem 3.1], there is a K-sparse x satisfies (1.2) and a column normalized measure-

ment matrixA whose mutual coherence satisfies µ = 1/(2K − 1) such that there is no algorithm

can exactly recover x. Hence, (3.13) is a necessary condition for any sparse recovery algorithm

to reconstruct all K-sparse signals. In other words, there is no better sufficient condition than

(3.13) for any sparse recovery algorithm that can reconstruct all K-sparse signals. Since (3.2)

reduces to (3.13) when A is column normalized, (3.2) is a tight sufficient condition for column

normalized A. Note that, (3.13) is also a sufficient condition for ℓ1-minimization method [6],

OMP [37] and BMP [34]. Whether sufficient condition (3.2) can be further improved requires

further investigation.

3.2. Sufficient condition for BLS based on the RIP of A

In this subsection, we study the performance of BLS with the RIP of A. We begin with

introducing the following lemma.

Lemma 3.1 ([25, Proposition 3.2]). Suppose that A satisfies the RIP of order k,Γ1 and Γ2

are two disjoint sets with |Γ1 ∪ Γ2| ≤ k. Then,

∥

∥A⊤
Γ1
AΓ2

∥

∥

2
≤ δk.

Theorem 3.2 below establishes a sufficient condition for the precise recovery of x’s support

with BLS based on the RIP of A.

Theorem 3.2. Suppose that K-sparse x satisfies (1.2) and A satisfies

δK+1 <
1√

K + 1 + 1
. (3.14)

If w satisfies ‖w‖2 ≤ ǫ with

ǫ <
1− (

√
K + 1 + 1)δK+1

2
, (3.15)

then BLS can accurately acquire x’s support with at most K iterations under the stopping

condition ‖rk‖2 ≤ ǫ.

Proof. As the proof of Theorem 3.1, to prove Theorem 3.2, we only need to show that

sk ∈ Ω for 1 ≤ k ≤ |Ω| and BLS performs |Ω| iterations. We first prove the former. According

to the proof of Theorem 3.1, it suffices to show (3.4).

Let k0 ∈ Ω\Γk−1 such that

k0 = argmax
i∈Ω\Γk−1

∣

∣A⊤
i AΩ\Γk−1

xΩ\Γk−1

∣

∣. (3.16)

Then

A⊤
k0
AΩ\Γk−1

xΩ\Γk−1
= A⊤

k0

(

Ak0
+AΩ\(Γk−1∪k0)xΩ\(Γk−1∪k0)

)

≥ ‖Ak0
‖22 −

∣

∣A⊤
k0
AΩ\(Γk−1∪k0)xΩ\(Γk−1∪k0)

∣

∣

(a)

≥ ‖Ak0
‖22 −

∥

∥A⊤
k0
AΩ\(Γk−1∪k0)

∥

∥

2

∥

∥xΩ\(Γk−1∪k0)

∥

∥

2

(b)

≥ 1− δK+1 −
√
K − 1δK+1 > 0,



Binary Least Squares: An Algorithm for Binary Sparse Signal Recovery 11

where (a) is due to the Cauchy-Schwarz inequality, (b) is according to (1.2), (1.4) and Lem-

ma 3.1, and the last inequality is from (3.14). Therefore, by (3.16), we have

A⊤
k0
AΩ\Γk−1

xΩ\Γk−1
=
∣

∣A⊤
k0
AΩ\Γk−1

xΩ\Γk−1

∣

∣

=
∥

∥A⊤
Ω\Γk−1

AΩ\Γk−1
xΩ\Γk−1

∥

∥

∞
. (3.17)

Then, we obtain

max
i∈Ω\Γk−1

(

A⊤
i r

k−1 − ci
) (a)
= max

i∈Ω\Γk−1

[

A⊤
i

(

∑

j∈Ω\Γk−1

Aj +w

)

− ci

]

(b)

≥ A⊤
k0
AΩ\Γk−1

xΩ\Γk−1
+A⊤

k0
w − ck0

(c)

≥
∥

∥A⊤
Ω\Γk−1

AΩ\Γk−1
xΩ\Γk−1

∥

∥

∞
−
∣

∣A⊤
k0
w
∣

∣− ‖Ai0‖22
2

≥
∥

∥A⊤
Ω\Γk−1

AΩ\Γk−1
xΩ\Γk−1

∥

∥

∞
− 1 + δK+1

2
−
∣

∣A⊤
k0
w
∣

∣, (3.18)

where (a) follows from (3.5), (b) is due to (1.2) and k0 ∈ Ω\Γk−1 (see (3.16)), (c) is from (2.2)

and (3.17), and the last inequality follows from (1.4). Let j0 be defined as in (3.6), then by

(1.2), (2.2) and (3.5), we have

max
j∈Ωc

(

A⊤
i r

k−1 − cj
)

≤
∣

∣A⊤
j0
AΩ\Γk−1

xΩ\Γk−1

∣

∣+
∣

∣A⊤
j0
w
∣

∣− ‖Aj0‖22
2

≤
∥

∥A⊤
ΩcAΩ\Γk−1

xΩ\Γk−1

∥

∥

∞
− 1− δK+1

2
+
∣

∣A⊤
j0
w
∣

∣, (3.19)

where the second inequality is due to (1.4).

By (3.18) and (3.19), to prove (3.4), we only need to prove that

∥

∥A⊤
Ω\Γk−1

AΩ\Γk−1
xΩ\Γk−1

∥

∥

∞
−
∥

∥A⊤
ΩcAΩ\Γk−1

xΩ\Γk−1

∥

∥

∞
−δK+1 ≥

∣

∣A⊤
i0
w
∣

∣+
∣

∣A⊤
j0
w
∣

∣. (3.20)

By [34, Eq. (D2)], we obtain

∥

∥A⊤
Ω\Γk−1

AΩ\Γk−1
xΩ\Γk−1

∥

∥

∞
−
∥

∥A⊤
ΩcAΩ\Γk−1

xΩ\Γk−1

∥

∥

∞
≥ 1−

√
K + 1 δK+1. (3.21)

Furthermore, by [34, Eq. (B6)], we have

∣

∣A⊤
i0
w
∣

∣+
∣

∣A⊤
j0
w
∣

∣ ≤ 2ǫ. (3.22)

By (3.14), (3.15), (3.21) and (3.22), one can see that (3.20) holds.

By (3.12), ‖r|Ω|‖2 ≤ ǫ, and according to the proof of [34, Theorem 3], ‖rk‖2 ≥ ǫ for

1 ≤ k < |Ω|. Hence, under the stopping condition ‖rk‖2 ≤ ǫ, BLS performs exactly |Ω|
iterations. The proof is complete. �

If A has equal column norm, then by the second last inequalities of (3.18) and (3.19), (3.20)

can be reduced to

∥

∥A⊤
Ω\Γk−1

AΩ\Γk−1
xΩ\Γk−1

∥

∥

∞
−
∥

∥A⊤
ΩcAΩ\Γk−1

xΩ\Γk−1

∥

∥

∞
≥
∣

∣A⊤
i0
w
∣

∣+
∣

∣A⊤
j0
w
∣

∣.

Then, by (3.21) and (3.22), we have the following corollary.



12 J.M. WEN

Corollary 3.2. Suppose that K-sparse x satisfies (1.2), A has equal column norm and satisfies

the RIP with

δK+1 <
1√

K + 1
. (3.23)

If w satisfies ‖w‖2 ≤ ǫ with

ǫ <
1−

√
K + 1δK+1

2
,

then BLS can accurately acquire x’s support with at most K iterations under the stopping

condition ‖rk‖2 ≤ ǫ.

It has been shown in [22] that OLS can accurately recover the support of any K-sparse x

if A is column normalized and satisfies

δK+1 ≤















































1√
K

, if K = 1,

1
√

K + 1/4
, if K = 2,

1
√

K + 1/16
, if K = 3,

1√
K

, if K ≥ 4,

and further show that it is an optimal sufficient condition. The above sufficient condition for

OLS is weaker than the sufficient condition (3.23) for BLS. Hence, we think by following the

techniques in [22], one can improve (3.23) to obtain an optimal sufficient condition, and we

leave it as a future research problem.

3.3. Comparison with existing sufficient conditions

Although for measurement matrix A which is not column normalized, the mutual coherence

based sufficient condition (3.2) of BLS is not as sharp as the sufficient condition (3.13) of OMP

and BMP, and the RIP based sufficient condition (3.14) of BLS is not as sharp as the sufficient

condition (3.23) of OMP and BMP, numerical tests in Section 4 will show that BLS is much

more effective than both OMP and BMP in recovering the support of x. Furthermore, there

exist A and x for which neither OMP nor BMP can acquire x based on y and A, but BLS can

recover it. Example 3.1 below shows this.

Example 3.1. For any integer K ≥ 2 and

1−
√

1− 2K

(K + 1)2
< t <

1

K + 1
, (3.24)

let w = 0, and

x =

[

e

0

]

, B =









(

K

K + 1
− t

)

I
e

K + 1

e⊤

K + 1

K + 2

K + 1
− t









, (3.25)
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where e ∈ R
K is an all 1 column vector and I is a K ×K identity matrix. Then x is K-sparse

which satisfies (1.2), and its support Ω is {1, . . . ,K}. Furthermore, by some elementary calcu-

lations, one can show that the eigenvalues of B are

λ1 = · · · = λK−1 =
K

K + 1
− t, λK = 1− 1√

K + 1
− t, λK+1 = 1 +

1√
K + 1

− t. (3.26)

Hence, B is a symmetric positive definite matrix. Suppose that the Cholesky decomposition

of B is B = A⊤A. By (1.4) and (3.26), the δK+1 of A is

δK+1 =
1√

K + 1
+ t.

Therefore, by (3.24), neither (3.14) nor (3.23) holds. Furthermore, by (1.3), (3.24) and (3.25),

the mutual coherence of A is

µ =
1

K + 1

/

√

(

K

K + 1
− t

)(

K + 2

K + 1
− t

)

≥ 1

K + 1

/

√

K

K + 1

K + 2

K + 1

=
1

√

K(K + 2)
≥ 1

K + 1
≥ 1

2K − 1
.

Hence, A does not satisfy (3.13).

However, we will show that for the above A,x and w, neither BMP nor OLS can utilize y

(i.e. Ax) and A to reconstruct x in K iterations, but BLS can recover x in K iterations. For

more details, see Appendix A.

4. Simulation

This section utilizes MATLAB 2017b to conduct numerical tests on a desktop computer

with Intel(R) Core(TM) i5-7500 CPU @3.40 GHz to show the efficiency and effectiveness of

BLS by comparing them with those of Batch-OMP [29], OLS [9], the explicit BMP (denote

as BMP) algorithm [34], CoSaMP [25], HTP [15], NSIHT and NSHTP [24], and ℓ1-regularized

least squares [21] with λ = 0.1 (denoted as L1). Note that, since numerical tests in [15] indicate

that 0.71 is the optimal step size for HTP, the step size of HTP is set as 0.71 in this section.

4.1. Simulation for Gaussian measurement matrix

This subsection compares the efficiency and recovery performance of BLS with those of

Batch-OMP, OLS, BMP, CoSaMP, HTP, NSIHT and NSHTP, and ℓ1-regularized least squares.

As in [3,7,8,10,30,32,33], we assumeA ∈ R
m×n is a random matrix whose entries independently

and identically follow the Gaussian distribution N (0, 1/m). Note that by using the method

in [24], the two parameters of both NSIHT and NSHTP are respectively set as 5 and 15.

Our numerical results are based on 100 independent runs with m = 128, n = 1024 and

K = 5 : 5 : 50. For each fixed K and for each run, we first randomly generate a measurement

matrix A, a K element set Ω whose elements are chosen uniformly at random from {1, 2, . . . , n}
and then generate an x ∈ R

n which satisfies (1.2). Then, we randomly generate a vector

u ∈ R
m with u ∼ N (0, 0.01I), and then set w = 0.1u/‖u‖2, so that w is a ℓ2-bound noise with

ǫ = 0.1. Then we obtain y by setting y = Ax+w. Finally, based on A and y, we respectively

reconstruct x with the 9 sparse recovery algorithms.



14 J.M. WEN

Figs. 4.1 and 4.2 respectively show the average support recovery probability and CPU time

of the 9 sparse recovery algorithms versus K over 100 independent runs. It is worth mentioning

that the probability of support recovery is the cardinality, of the intersection of the support of

the true x and the support of x returned by the algorithms, divided by K.

From Figs. 4.1-4.2, we can observe that

1. BLS is more than 10 times and 100 times faster than Batch-OMP and OLS, respectively.

Furthermore, BLS has higher probability of support recovery than Batch-OMP and OLS,

whose support recovery probabilities are more or less the same, and the improvement is

more than 80% when K ≥ 30.

Fig. 4.1. Average support recovery probability versus K for Gaussian measurement matrix with m=128

and n = 1024 over 100 independent runs.

Fig. 4.2. Average CPU time versus sparsity K for Gaussian measurement matrix with m = 128 and

n = 1024 over 100 independent runs.
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2. BLS is more than 10 times faster than HTP with higher probability of support recovery,

and the improvement is more than 30% when K ≥ 25.

3. BLS is more than 100 times faster than both NSIHT and NSHTP with higher probability

of support recovery, and the improvement is more than 40% when K ≤ 25.

4. BLS is always and can be 100 times more efficient than CoSaMP with higher probability

of support recovery, and the improvement is more than 35% when K ≥ 30.

5. Although BMP is a little more efficient than BLS, BLS has higher probability of support

recovery than BMP and the improvement is more than 30% when K ≥ 25.

6. Although ℓ1-regularized least squares has higher probability of support recovery than

BLS for K ≤ 35, BLS has higher probability of support recovery than ℓ1-regularized least

squares for K > 35. Furthermore, BLS is around 100 times faster than ℓ1-regularized

least squares.

4.2. Simulation for Bernoulli measurement matrix

This subsection compares the efficiency and recovery performance of BLS with Batch-OMP,

OLS, BMP, CoSaMP, HTP, NSIHT and NSHTP, and ℓ1-regularized least squares for Bernoulli

measurement matrix A ∈ R
m×n, whose entries independently and identically randomly chosen

from {−1/
√
m, 1/

√
m} with equal probability. Note that such class of measurement matrices

have also been used to do simulations in [7, 32], and the two parameters of both NSIHT and

NSHTP are respectively set as 5 and 15. Since A from this class of measurement matrices has

equal column norm, as analyzed in Section 2, the selection strategy (i.e. step 3) of Algorithm 2.1

is replaced by (2.4), and it is not needed to compute c (see (2.2)). Hence, the theoretical

computational cost of BLS is equal to that of BMP. As in Section 4.1, the numerical results in

this subsection are based on 100 independent runs with K = 5 : 5 : 50 and w is a ℓ2-bound

noise with ǫ = 0.1.

Figs. 4.3-4.4 respectively display the average support recovery probability and CPU time of

the 9 sparse recovery algorithms versus K over 100 independent runs.

As Figs. 4.1-4.2, we can observe from Figs. 4.3-4.4 that:

1. BLS is more than 10 times and 100 times faster than Batch-OMP and OLS, respectively.

Furthermore, BLS has higher probability of support recovery than Batch-OMP and OLS,

whose support recovery probabilities are more or less the same, and the improvement is

more than 80% when K ≥ 30.

2. BLS is not only more than 30 times faster than HTP, but also has much better recovery

performance than HTP, and the improvement on the support recovery probability is more

than 25% when K ≥ 25.

3. BLS is not only more than 200 times faster, but also has much higher probability of

support recovery, than both NSIHT and NSHTP, and the improvement on the support

recovery probability is more than 20% when K ≤ 30.

4. BLS is around 100 times faster than CoSaMP with more than 40% improvement on the

probability of support recovery when K ≥ 30.
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Fig. 4.3. Average support recovery probability versus K for Bernoulli measurement matrix with

m = 128 and n = 1024 over 100 independent runs.

Fig. 4.4. Average CPU time versus sparsity K for Bernoulli measurement matrix with m = 128 and

n = 1024 over 100 independent runs.

5. BMP and BLS are more or less the same efficient (actually as analyzed at the beginning of

this subsection, their theoretical computational costs are the same), but BLS has higher

probability of support recovery than BMP, and the improvement is more than 25% when

K ≥ 25.

6. Although ℓ1-regularized least squares has higher probability of support recovery than

BLS for K ≤ 35, BLS has higher probability of support recovery than ℓ1-regularized

least squares for K > 35. Furthermore, BLS is more than 100 times more efficient than

ℓ1-regularized least squares.
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4.3. Simulation on GSSK applications

As mentioned in Section 1, recovering a binary sparse signal arises in many applications

including the generalized space shift keying (GSSK) modulation detection. Hence, in the fol-

lowing, we compare the recovery performance of Batch-OMP, OLS, BLS, BMP, CoSaMP, HTP,

NSIHT, NSHTP, and ℓ1-regularized least squares for this real application.

We first briefly introduce the background of GSSK modulation detection. GSSK is a famous

wireless communication modulation technique [19], and the main challenge of GSSK detection

is to quickly find the active antennas. Note that there are usually 2 or 3 active antennas.

Assume that there are n transmit antennas and m receive antennas, then the signal model of

GSSK detection is formulated as

ȳ = Āx+ w̄, (4.1)

where ȳ ∈ R
m is the received signal, Ā ∈ R

m×n is a channel matrix with āij ∼ CN (0, 1/
√
2),

w̄ ∈ R
m is a noise vector which satisfies w̄ ∼ CN (0, σ2I) for some σ and x ∈ R

n, which satisfies

(1.2), is the transmitted signal [19].

Assume that K antennas are active, then x has K nonzero entries which are 1. Hence, to

detect the active antennas, is equivalent to acquire x’s support. Denote

y =

[ℜ(ȳ)
ℑ(ȳ)

]

, A =

[ℜ(Ā)

ℑ(Ā)

]

, w =

[ℜ(w̄)

ℑ(w̄)

]

,

where ℜ(·) and ℑ(·) represent the real and imaginary part of a given vector or matrix. Then,

(4.1) can be transformed to (1.1), hence, we can use Batch-OMP, OLS, BLS, BMP, HTP,

CoSaMP, NSIHT, NSHTP, and ℓ1-regularized least squares to recover x’s support.

Figs. 4.5-4.6 respectively display the average probability of correct active antennas detection

and CPU time of the nine sparse recovery algorithms versus number of antennas m for K = 2

and n = 64 over 1000 independent runs with σ = 0.1. From Figs. 4.5-4.6, we can observe that

although BLS is a little slower than BMP, it is more efficient than other seven sparse recovery

Fig. 4.5. Average probability of correct active antennas detection versus total number of antennas m

for K = 2 and n = 64 over 1000 independent runs.
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Fig. 4.6. Average CPU time versus total number of antennas m for K = 2 and n = 64 over 1000

independent runs.

algorithms. Furthermore, although ℓ1-regularized least squares is more effective than BLS, BLS

has (much) higher probability of correct detection than other seven sparse recovery algorithms.

5. Conclusion and Future Research Problem

In this paper, we develop BLS to precisely recover a binary K-sparse signal x from an un-

derdetermined noisy linear model. To show the effectiveness of BLS, in Theorems 3.1 and 3.2,

we develop two sufficient conditions for the precise reconstruction of the support of x with at

most K iterations based on the restricted isometry property and mutual coherence, respec-

tively. If the measurement matrix is column normalized, the proposed mutual coherence based

condition becomes µ < 1/(2K − 1), which is the optimal mutual coherence based condition

of recovering any K-sparsity signal. The experimental results show that BLS can be more

than 10-200 times faster than BMP, Batch-OMP, OLS, HTP, CoSaMP, NSIHT, NSHTP and

ℓ1-regularized least squares with 20%-80% improvement on the probability of support recon-

struction. Numerical tests on the real application of GSSK detection also indicate that although

BLS is a little slower than BMP, it is more efficient than the other seven tested sparse recovery

algorithms, and although it is less effective than ℓ1-regularized least squares, it is more effective

than the other seven algorithms.

In the following, we list some future research problems:

• As in [33], BLS can be extended to a new binary sparse signal recovery algorithm which

selects multiple indices per iteration.

• Global optimality conditions for quadratic optimization problems with binary constraints

have been established in [1], whether such techniques can be used to design a fast and

effective binary sparse recovery algorithm will be investigated in the future.

• By invoking the Welch bound µ ≥
√

(n−m)/(m(n− 1)) (see, e.g. [16, Theorem 5.7]),

one can show that, to ensure A to satisfy (1.5), m and n should satisfy m ≥ O(K2 logn).
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Furthermore, according to [8], to ensure random matrix A whose entries independently

and identically follow the normal distribution N (0, 1/m) to satisfy (1.6), m and n should

also satisfy m ≥ O(K2 logn). Hence, how to design a greedy binary recovery algorithm

which works for m ≥ O(K logn) is desired to be investigated in the future.

Appendix A. Proof of Example 3.1

In this appendix, we will show that for A,x and w defined in Example 3.1, neither BMP

nor OLS can utilize y (i.e. Ax) and A to reconstruct x in K iterations, but BLS can recover x.

Since A⊤A = B, one can easily show that

A⊤
i r

0 = A⊤
i y = e⊤i Bx =

K

K + 1
− t, 1 ≤ i ≤ K, (A.1)

A⊤
K+1r

0 = A⊤
K+1y = e⊤K+1Bx =

K

K + 1
. (A.2)

Then, by (3.24), we have

max
1≤i≤K

∣

∣A⊤
i r

0
∣

∣ <
∣

∣A⊤
K+1r

0
∣

∣.

Since the support Ω of x is {1, . . . ,K}, BMP makes a wrong selection in the first iteration.

Therefore, it is unable to reconstruct x in K iterations.

In the sequel, we show that OLS cannot reconstruct x in K iterations, either. Since

B = A⊤A, by (3.25), we have

‖Ai‖2 =

√

K

K + 1
− t, 1 ≤ i ≤ K, ‖AK+1‖2 =

√

K + 2

K + 1
− t. (A.3)

By [28] (see also [35, Eq. (8)]), OLS selects

sk = argmax
i∈{1,...,n}

∣

∣

∣

∣

∣

〈

P⊥
Γk−1Ai

∥

∥P⊥
Γk−1Ai

∥

∥

2

, rk−1

〉∣

∣

∣

∣

∣

.

Hence, in the first iteration, OLS selects s1 such that

s1 = argmax
i∈{1,...,n}

∣

∣

∣

∣

〈

Ai

‖Ai‖2
,y

〉
∣

∣

∣

∣

= argmax
i∈{1,...,n}

∣

∣A⊤
i y
∣

∣

‖Ai‖2
.

By (A.2) and (A.3), we have

max
1≤i≤K

∣

∣A⊤
i y
∣

∣

‖Ai‖2
=

√

K

K + 1
− t,

∣

∣A⊤
K+1y

∣

∣

‖AK+1‖2
=

K

K + 1

/

√

K + 2

K + 1
− t.

Then, by (3.24), it is not hard to show that

max
1≤i≤K

∣

∣A⊤
i y
∣

∣

‖Ai‖2
<

∣

∣A⊤
K+1y

∣

∣

‖AK+1‖2
.

Therefore, OLS will select a wrong index in the first iteration, and hence it is unable to acquire x

in K iterations.

In the following, we prove that BLS can reconstruct x based on y and A. By (2.2) and

(A.3), we have

ci =
1

2

(

K

K + 1
− t

)

, 1 ≤ i ≤ K, cK+1 =
1

2

(

K + 2

K + 1
− t

)

. (A.4)
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Therefore, by (A.1) and (A.2), we obtain

max
1≤i≤K

∣

∣A⊤
i y
∣

∣− ci =
1

2

(

K

K + 1
− t

)

,
∣

∣A⊤
K+1y

∣

∣− cK+1 =
1

2

(

K − 2

K + 1
+ t

)

.

Then, by (3.24), we have

max
1≤i≤K

∣

∣A⊤
i y
∣

∣− ci >
∣

∣A⊤
K+1y

∣

∣− cK+1.

Hence, by line 3 of Algorithm 2.1, BLS will make a correct selection in the first iteration.

Suppose that i0 ∈ Ω is chosen in the first iteration, we then show that BLS will chose an index

in Ω in the second iteration.

By line 6 of Algorithm 2.1,

r1 = r0 −Ai0 = y −Ai0 = Ax−Ai0 .

Hence, by (3.25), (A.1), (A.2), we obtain

A⊤
i r

1 = A⊤
i y −A⊤

i Ai0 =
K

K + 1
− t, 1 ≤ i 6= i0 ≤ K,

A⊤
K+1r

1 = A⊤
K+1y −A⊤

K+1Ai0 =
K − 1

K + 1
.

Then, by (A.4), we have

max
1≤i6=i0≤K

∣

∣A⊤
i r

1
∣

∣− ci =
1

2

(

K

K + 1
− t

)

,
∣

∣A⊤
K+1y

∣

∣− cK+1 =
1

2

(

K − 4

K + 1
+ t

)

.

Then, according to (3.24),

max
1≤i6=i0≤K

∣

∣A⊤
i r

1
∣

∣− ci >
∣

∣A⊤
K+1r

1
∣

∣− cK+1.

Therefore, BLS will choose an index in Ω in the second iteration. By induction, it is not hard

to show that BLS will make correct selections in all of the first K iterations. Therefore, BLS

can successfully reconstruct x in K iterations.
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