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Abstract

This work focuses on the temporal average of the backward Euler-Maruyama (BEM)

method, which is used to approximate the ergodic limit of stochastic ordinary differential

equations (SODEs). We give the central limit theorem (CLT) of the temporal average

of the BEM method, which characterizes its asymptotics in distribution. When the de-

viation order is smaller than the optimal strong order, we directly derive the CLT of the

temporal average through that of original equations and the uniform strong order of the

BEM method. For the case that the deviation order equals to the optimal strong order,

the CLT is established via the Poisson equation associated with the generator of original

equations. Numerical experiments are performed to illustrate the theoretical results. The

main contribution of this work is to generalize the existing CLT of the temporal average

of numerical methods to that for SODEs with super-linearly growing drift coefficients.
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1. Introduction

Ergodic theory is a powerful tool to investigate the long-time dynamics and statistical prop-

erties of stochastic systems, which is widely applied in physics, biology and chemistry (see

e.g. [8, 13, 30, 33]). A crucial problem in ergodic theory is to determine the ergodic measure

and ergodic limit. Since explicit expressions of them are generally unavailable, one usually

resorts to numerical methods to obtain their approximations. There have been lots of numer-

ical methods which inherit the ergodicity or approximate the ergodic limit of original systems

(see [1, 12, 14, 24, 27, 31] and references therein). In the aforementioned work, main efforts are

made to analyze the error between the numerical invariant measure and the original one, and

that between numerical temporal average and the ergodic limit.

Besides the convergence of the numerical temporal average in the moment sense, the asymp-

totics of its distribution is also an essential property. In recent several work, the central limit

theorem (CLT) of the temporal average of some numerical methods is given, which character-

izes the fluctuation of the numerical temporal average around ergodic limits of original systems

in the sense of distribution. In [26], the CLT of the temporal average of the Euler-Maruyama

(EM) method with decreasing step-size for ergodic stochastic ordinary differential equations

(SODEs) is given. In addition, [23] proves the CLT and moderate deviation of the EM method
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with a fixed step-size for SODEs. For a class of ergodic stochastic partial differential equations

(SPDEs), [6] shows that the temporal average of a full discretization with fixed temporal and

spatial step-sizes satisfies the CLT.

In the existing work, the CLT of numerical temporal average is established provided that

coefficients of original equations are Lipschitz continuous. Compared with the Lipschitz case,

stochastic systems with non-Lipschitz coefficients have more extensive applications in reality

(see e.g. [3, 7, 9, 11] and references therein). For example, consider the overdamped Langevin

equation

dq(t) = −∇V
(

q(t)
)

dt+
√

2β−1 dW (t), (1.1)

where {W (t), t ≥ 0} is a D-dimensional standard Brownian motion defined on a complete

filtered probability space (Ω,F , {Ft}t≥0,P), and β−1 is the Boltzmann constant times the

absolute temperature. The potential V is smooth and satisfies lim|q|→+∞ V (q) = +∞ (for

example, one can take D = 1 and V (q) = q4/4+q2/2, q ∈ R). The Langevin equation describes

the noise-induced transport in stochastic ratchets and dissipative particle dynamics. When the

inertia of the particle is negligible compared with the damping force due to the friction, the

trajectory of the Langevin equation is approximately described by (1.1) (see e.g. [17,28,29]). It

is known that (1.1) admits a unique invariant measure (thus is ergodic) π(dq) = Z−1e−βV (q)dq

with Z =
∫

R
e−βV (q)dq. Since the drift coefficient of (1.1) is non-Lipschitz, the existing results

on the CLT of the numerical temporal average are not applicable to (1.1). In view of the above

consideration, we are devoted to investigating the CLT of the numerical temporal average for

general SODEs with non-Lipschitz coefficients.

In this work, we consider the following SODE:

dX(t) = b
(

X(t)
)

dt+ σ
(

X(t)
)

dW (t), t > 0, (1.2)

where W is the same one defined in (1.1). Here, b : Rd → R
d satisfies the strong dissipation

condition and is allowed to grow super-linearly, and σ : Rd → R
d×D is bounded and Lipschitz

continuous (see Section 2 for the detailed assumptions on b and σ). Then, (1.2) admits a unique

strong solution on [0,+∞) for any given deterministic initial value X(0) ∈ R
d. It is shown

in [20, Theorem 3.1] that (1.2) admits a unique invariant measure π and is thus ergodic, due to

the strong dissipation condition on b. Our main purpose is to study the CLT of the temporal

average of the backward Euler-Maruyama (BEM) method applied to (1.2). The reasons for the

choice of the BEM method are as follows:

(1) The CLT of the numerical temporal average characterizes the long-time behavior of

numerical solutions. Thus, one preference in the choice of the numerical method is that it

should possess the long-time stability. The Euler–Maruyama (EM) method and the BEM

method are used most frequently when simulating SODEs (see e.g. [10, p. 453]). Similar to the

deterministic case, the BEM method shows a more excellent long-time stability than the EM

method.

(2) When applied to SODEs with super-linearly growing coefficients, the EM method is

known to diverge [15]. Other explicit numerical methods based on the Itô-Taylor expansion

could suffer from the same fate, for SODEs with super-linearly growing coefficients [10]. Thus,

as is pointed out by [21], for SODEs with super-linearly growing coefficients, one usually adopts

implicit numerical methods or modified explicit numerical methods such as the adaptive time

step size method, tamed method and the truncated method.
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(3) In our arguments for the CLT, we need to ensure the p-th (p > 2) moment boundedness

in the infinite time horizon and exponential ergodicity. We will show that the BEM method

fulfills the above requirements.

The authors in [20] discretize (1.2) by the BEM method (see (3.1)), and give the error

between the numerical invariant measure πτ and π with τ being the step-size. The above result

together with the strong convergence of the BEM method in the infinite time horizon implies

that the temporal average
∑N−1

k=0 h(X̄x
k )/N converges to the ergodic limit

π(h) :=

∫

Rd

h(x)π(dx), h ∈ C1
b(R

d)

in the sense of

lim
τ→0

lim
N→+∞

∣

∣

∣

∣

∣

1

N

N−1
∑

k=0

Eh
(

X̄x
k

)

− π(h)

∣

∣

∣

∣

∣

= 0, (1.3)

where {X̄x
n}n≥0 is the numerical solution generated by the BEM method with initial value

x ∈ R
d. The main result of this paper is the CLT for the following temporal average:

Πτ,α(h) =
1

τ−α

τ−α−1
∑

k=0

h
(

X̄x
k

)

, α ∈ (1, 2], h ∈ C4
b(R

d),

where for convenience we always assume that τ−α is an integer in place of the step number N

in (1.3). More precisely, we prove in Theorems 3.1 and 3.2 that the normalized temporal

average (Πτ,α(h) − π(h))/τ (α−1)/2 converges to the normal distribution N (0, π(|σ⊤∇ϕ|2)) in

distribution as τ → 0 for α ∈ (1, 2) and α = 2. In fact, Theorem 3.1 indicates that the CLT

holds for the temporal average of a class of numerical methods with global strong order 1/2,

for α ∈ (1, 2). Here, ϕ is defined by (3.2) and solves the Poisson equation Lϕ = h − π(h) (see

Lemma 4.2), with L being the generator of (1.2). We call the parameter τ (α−1)/2 the deviation

scale and (α− 1)/2 the deviation order (see Remark 3.1 for the reason of requiring α > 1).

The proof ideas of the CLT for Πτ,α(h) are different for α ∈ (1, 2) and α = 2. In the case

α ∈ (1, 2), we directly derive the CLT for Πτ,α(h) in Theorem 3.1 by means of the CLT for (1.2)

and the optimal strong order in the infinite time horizon of the BEM method, considering that

the CLT for (1.2) is a classical result (see [2, Theorem 2.1]). The key of this proof lies in that

the deviation order (α− 1)/2 is smaller than the optimal strong order 1/2 for α ∈ (1, 2), which

does not apply to the case α = 2. In order to tackle the more subtle case α = 2, we follow

the arguments in [23] and [6] to obtain the CLT for Πτ,2(h). The main idea is to reformulate

the normalized temporal average (Πτ,α(h)− π(h))/τ (α−1)/2 by means of the Poisson equation.

This allows us to decompose (Πτ,α(h)−π(h))/τ (α−1)/(2) into a martingale difference series sum

converging to N (0, π(|σ⊤∇ϕ|2)) in distribution, and a negligible remainder converging to 0

in probability. In this proof, the p-th (p > 2) moment boundedness of the BEM method in

the infinite time horizon and the regularity of the solution to the Poisson equation are main

difficulties and play important roles. On one hand, the p-th (p > 2) moment boundedness of the

BEM method in the infinite time horizon is required due to the super-linear growth of b, which

is proved by the fine control for the iteration coefficient. On the other hand, the regularity of

the solution to the Poisson equation is given by estimating the mean-square derivatives of the

solution to (1.2) with respect to (w.r.t.) initial values. This argument is different from the case

of additive noise in [6], where the exact solution is differentiable w.r.t. initial values almost

surely.
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To sum up, the contributions of this work are twofold. Firstly, we give the CLT for the

temporal average of the BEM method, which generalizes the existing results to SODEs with

super-linearly growing drift coefficients. Secondly, we prove the p-th (p > 2) moment bounded-

ness of the BEM method in the infinite time horizon for the original equation. The rest of this

paper is organized as follows. In Section 2, we give our assumptions and recall some basic prop-

erties of the exact solution. Section 3 presents our main results and proves the CLT for Πτ,α(h)

with α ∈ (1, 2), and Section 4 gives the proof of the CLT for Πτ,2(h). Some numerical tests are

displayed to illustrate the theoretical results in Section 5. Finally, we give the conclusions and

refer to future aspects in Section 6.

2. Preliminaries

In this section, we give our main assumptions on the coefficients of (1.2) and present some

basic properties for (1.2). We begin with some notations. Denote by | · | the 2-norm of a vector

or matrix, and by 〈· , ·〉 the scalar product of two vectors. Let d,m, k ∈ N
+ with N

+ denoting

the set of positive integers. For matrices A,B ∈ R
d×m, denote

〈A,B〉HS :=

d
∑

i=1

m
∑

j=1

AijBij , ‖A‖HS :=
√

〈A,A〉HS .

Let B(Rd) stand for the set of all Borel sets of Rd. Denote by P(Rd) the space of all probability

measures on R
d. Denote

µ(f) =

∫

Rd

f(x)µ(dx)

for µ ∈ P(Rd) and µ-measurable function f . For convenience, we set Ft = σ(W (s), 0 ≤ s ≤ t)

for t ≥ 0. Moreover,
d−→ denotes the convergence in distribution of random variables and

w−→
denotes the weak convergence of probability measures in P(Rd).

Denote by C(Rd;Rm) (respectively Ck(Rd;Rm)) the space consisting of continuous (respec-

tively k-th continuously differentiable) functions from R
d to R

m. Let Ck
b (R

d;Rm) stand for

the set of bounded and k-th continuously differentiable functions from R
d to R

m with bounded

derivatives up to order k. Denote by Cb(R
d;Rm) the set of bounded and continuous func-

tions from R
d to R

m. When no confusion occurs, C(Rd;Rm) is simply written as C(Rd),

and Cb(R
d;Rm),Ck(Rd;Rm) and Ck

b (R
d;Rm) are treated similarly. For l ∈ N

+, denote by

Poly(l,Rd) the set of functions growing polynomially with order l, i.e.

Poly(l,Rd) :=
{

g ∈ C(Rd;R) : |g(x)− g(y)| ≤ K(g)(1 + |x|l−1 + |y|l−1)|x − y|
for any x, y ∈ R

d and some K(g) > 0
}

.

For f ∈ Ck(Rd;R), denote by ∇kf(x)(ξ1, · · · , ξk) the k-th order Gǎteaux derivative along the

directions ξ1, · · · , ξk ∈ R
d, i.e.

∇kf(x)(ξ1, · · · , ξk) =
d
∑

i1,··· ,ik=1

∂kf(x)

∂xi1 · · · ∂xik
ξi11 · · · ξikk .

For f = (f1, · · · , fm)⊤ ∈ Ck(Rd;Rm), denote

∇kf(x)(ξ1, · · · , ξk) =
(

∇kf1(x)(ξ1, · · · , ξk), · · · ,∇kfm(x)(ξ1, · · · , ξk)
)⊤

.
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The Gǎteaux derivative for a matrix-valued function is defined as previously. For f ∈ Ck(Rd;R),

the notation ∇kf(x) is viewed as a tensor, i.e. a multilinear form defined on (Rd)⊗k. Denote by

‖ · ‖⊗ the norm of a tensor. Throughout this paper, let K(a1, a2, · · · , am) denote some generic

constant dependent on the parameters a1, a2, · · · , am but independent of the step-size τ , which

may vary for each appearance.

Let us first give the assumptions on b and σ.

Assumption 2.1. There exist constants L1, L2 ∈ (0,+∞) such that

‖σ(u1)− σ(u2)‖HS ≤ L1|u1 − u2|, ∀u1, u2 ∈ R
d,

‖σ(u)‖HS ≤ L2, ∀u ∈ R
d.

Assumption 2.2. There exist c1 > (15/2)L2
1, L3 > 0 and q ≥ 1 such that

〈u1 − u2, b(u1)− b(u2)〉 ≤ −c1|u1 − u2|2, ∀u1, u2 ∈ R
d,

|b(u1)− b(u2)| ≤ L3

(

1 + |u1|q−1 + |u2|q−1
)

|u1 − u2|, ∀u1, u2 ∈ R
d. (2.1)

The above two assumptions ensure the well-posedness of (1.2) (see e.g. [20]). The generator of

(1.2) is given by

Lf(x) = 〈∇f(x), b(x)〉 + 1

2

〈

∇2f(x), σ(x)σ(x)⊤
〉

HS
, f ∈ C2(Rd;R). (2.2)

Notice that

trace
(

∇2f(x)σ(x)σ(x)⊤
)

=
〈

∇2f(x), σ(x)σ(x)⊤
〉

HS
.

As an immediate result of (2.1),

|b(u)| ≤ L4(1 + |u|q), ∀u ∈ R
d (2.3)

for some L4 > 0. In addition, it is straightforward to conclude from Assumptions 2.1-2.2 that

for any l2 > 0,

2〈u1−u2, b(u1)−b(u2)〉+15‖σ(u1)−σ(u2)‖2HS ≤ −L5|u1 − u2|2, ∀u1, u2 ∈ R
d, (2.4)

2〈u, b(u)〉+ l2‖σ(u)‖2HS ≤ −c1|u|2 +
1

c1
|b(0)|2 + l2L

2
2, ∀u ∈ R

d, (2.5)

where L5 := 2c1 − 15L2
1. Note that Assumptions 2.1-2.2 in this paper imply Assumptions 2.1-

2.4 in [20], by taking A = εId, f(x) = b(x) + εx and g(x) = σ(x) in [20, Eq. (2)] with ε small

enough. Thus, all conclusions in [20] apply to our case provided that Assumptions 2.1-2.2 hold.

In order to give the regularity of the solution to the Poisson equation, we need the following

assumption.

Assumption 2.3. Let σ ∈ C4
b(R

d) and b ∈ C4(Rd). In addition, there exist q′ ≥ 1 and L6 > 0

such that for i = 1, 2, 3, 4,

‖∇ib(u)‖⊗ ≤ L6

(

1 + |u|q′
)

, ∀u ∈ R
d.

Remark 2.1. Under Assumptions 2.1-2.3, it holds that

2〈v,∇b(u)v〉+ 15‖∇σ(u)v‖2HS ≤ −L5|v|2, ∀u, v ∈ R
d. (2.6)
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Let us give a short proof of (2.6). Under Assumptions 2.1-2.2, we can use (2.4) to get that for

any u, v ∈ R
d and t ∈ R,

2t〈v, b(u+ tv)− b(u)〉+ 15‖σ(u+ tv)− σ(u)‖2HS ≤ −L5t
2|v|2.

Then the differentiability of b and σ in Assumption 2.3 allows us to apply the Taylor expansion

to obtaining

b(u+ tv) = b(u) + t∇b(u)v +O(t2), σ(u + tv) = σ(u) + t∇σ(u)v +O(t2) as t → 0.

In this way, it follows that

2t2〈v,∇b(u)v〉 + 15t2‖∇σ(u)v‖2HS +O(t3) ≤ −L5t
2|v|2,

which yields (2.6).

Next, we recall basic facts about the invariant measure and ergodicity. Denote by Xs,x(t)

the solution to (1.2) at time t, starting from X(s) = x. Especially, denote Xx(t) := X0,x(t).

Let πt(x, ·) denote the transition probability of {X(t)}t≥0, i.e. πt(x,A)=P(Xx(t)∈A) for any

A∈B(Rd). For any φ∈Bb(R
d) and t ≥ 0, define the operator Pt : Bb(R

d) → Bb(R
d) by

(Ptφ)(x) := Eφ
(

Xx(t)
)

=

∫

R

φ(y)πt(x, dy).

Then, {Pt}t≥0 is a Markov semigroup on Bb(R
d). Here, Bb(R

d) is the space of all bounded and

measurable functions on R
d. A probability measure µ ∈ P(Rd) is called an invariant measure

of {X(t)}t≥0 or {Pt}t≥0, if

∫

Rd

Ptφ(x)µ(dx) =

∫

Rd

φ(x)µ(dx), ∀φ ∈ Bb(R
d), t ≥ 0. (2.7)

Further, an invariant measure µ is called an ergodic measure of {X(t)}t≥0 or {Pt}t≥0, if for

any φ ∈ L2(Rd, µ),

lim
T→+∞

1

T

∫ T

0

Ptφ(x)dt =

∫

Rd

φ(x)µ(dx) in L2(Rd, µ),

where L2(Rd, µ) is the space of all square integrable functions w.r.t. µ (see e.g. [13, Defini-

tion 1.6]). Especially, if µ is the unique invariant measure of {X(t)}t≥0, then µ is also the

ergodic measure. We refer readers to [13] for more details.

Proposition 2.1. Let Assumptions 2.1-2.2 hold. Then the following hold:

(1) For any p ≥ 1, supt≥0 E|Xx(t)|p ≤ K(p)(1 + |x|p).

(2) For any t, s ≥ 0, (E|Xx(t)−Xx(s)|2)1/2 ≤ K(1 + |x|q)|t− s|1/2.

(3) For any t ≥ 0, (E|Xx(t)−Xy(t)|2)1/2 ≤ |x− y|e−L5t/2.

The first and second conclusions come from [20, Propositions 3.1–3.2]. The third conclusion

can be obtained by applying the Itô formula. In addition, [20, Theorem 3.1] gives the ergodicity

for {X(t)}t≥0.
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Proposition 2.2. Let Assumptions 2.1-2.2 hold. Then we have the following:

(1) {X(t)}t≥0 admits a unique invariant measure π ∈ P(Rd).

(2) For any p ≥ 1, π(| · |p) < +∞.

(3) There is λ1 > 0 such that for any f ∈ Poly(l,Rd), l ≥ 1 and t ≥ 0,

∣

∣Ef
(

Xx(t)
)

− π(f)
∣

∣ ≤ K(f)(1 + |x|l)e−λ1t. (2.8)

Proof. It follows from [20, Theorem 3.1] that {X(t)}t≥0 admits a unique invariant measure

π ∈ P(Rd), and πt(x, ·) w−→ π, as t → +∞ for any x ∈ R
d. Especially, πt(0, ·) w−→ π, which

implies that for any M > 0,

∫

Rd

(|x|p ∧M)π(dx) = lim
t→+∞

∫

Rd

(|x|p ∧M)πt(0, dx)

≤ M ∧ lim sup
t→+∞

E|X0(t)|p ≤ K,

where we used | · |p ∧M ∈ Cb(R
d) and Proposition 2.1(1). Then the Fatou lemma gives

π(| · |p) =
∫

Rd

|x|p π(dx) ≤ lim inf
M→+∞

∫

Rd

(|x|p ∧M)π(dx) ≤ K.

For any M > 0 and f ∈ Poly(l,Rd), it holds that f ∧M ∈ Cb(R
d). Accordingly, it follows

from the definition of the invariant measure (see (2.7)) that

π(f ∧M) =

∫

Rd

Pt(f ∧M)(y)π(dy).

Thus, using Proposition 2.1(3), the Hölder inequality, the fact |a ∧ b − a ∧ c| ≤ |b− c| and the

second conclusion, we conclude that for any M > 0,

∣

∣E
(

f
(

Xx(t)
)

∧M
)

− π(f ∧M)
∣

∣

=

∣

∣

∣

∣

Pt(f ∧M)(x) −
∫

Rd

Pt(f ∧M)(y)π(dy)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Rd

[

Pt(f ∧M)(x)− Pt(f ∧M)(y)
]

π(dy)

∣

∣

∣

∣

≤
∫

Rd

∣

∣E
(

f
(

Xx(t)
)

∧M
)

−E
(

f
(

Xy(t)
)

∧M
)∣

∣π(dy)

≤
∫

Rd

E
∣

∣f
(

Xx(t)
)

− f
(

Xx(y)
)∣

∣π(dy)

≤ K(f)

∫

Rd

(

1 +
(

E|Xx(t)|2l−2
)

1
2 +

(

E|Xy(t)|2l−2
)

1
2

)

(

E|Xx(t)−Xy(t)|2
)

1
2π(dy)

≤ K(f)e−
L5
2 t

∫

Rd

(1 + |x|l−1 + |y|l−1)|x− y|π(dy)

≤ K(f)e−
L5
2 t(1 + |x|l).

The above formula and the monotone convergence theorem lead to (2.8), which completes the

proof. �
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3. Main Result

In this section, we give our main result, i.e. the CLT for the temporal average Πτ,α(h) of the

BEM method used to approximate the ergodic limit π(h). The BEM method has been widely

applied to approximating SODEs or SPDEs with non-Lipschitz coefficients (see e.g. [4, 11, 22]

and references therein). Let τ > 0 be the temporal step-size. The BEM method for (1.2) reads

X̄n+1 = X̄n + b(X̄n+1)τ + σ(X̄n)∆Wn, n = 0, 1, 2, . . . , (3.1)

where ∆Wn := W (tn+1) − W (tn) with tn = nτ . We refer to [20, Lemma 2.1] for the unique

solvability of the BEM method (3.1). In practice, we can use the fixed point algorithm to yield

the numerical solution of (3.1), as is done in Section 5. More precisely, with X̄n in hand, we

calculate X̄n+1 by

X̄
(i)
n+1 = X̄n + b

(

X̄
(i−1)
n+1

)

τ + σ(X̄n)∆Wn, i = 1, 2, . . .

with X̄
(0)
n+1 = X̄n. The above iteration is terminated when |X̄(i)

n+1−X̄
(i−1)
n+1 | < ε0 for some preset

tolerance error ε0, and X̄n+1 is endowed with the final iterative solution. We denote by X̄k,x
n

the solution to (3.1) at the n-th step provided X̄k = x. Especially, denote X̄x
n := X̄0,x

n , i.e. the

solution to (3.1) with the initial value x ∈ R
d.

The following results can be found in [20, Lemmas 4.1, 4.2, Theorem 4.2].

Proposition 3.1. Let Assumptions 2.1-2.2 hold and τ sufficiently small. Then the following

properties hold:

(1) supn≥0 E|X̄x
n |2 ≤ K(1 + |x|2).

(2) There is ξ1 > 0 such that for any n ≥ 0, (E|X̄x
n − X̄y

n|2)1/2 ≤ K|x− y|e−ξ1nτ .

(3) supn≥0 E|Xx(tn)− X̄x
n |2 ≤ K(x)τ .

Recall that the temporal average of the BEM method is

Πτ,α(h) =
1

τ−α

τ−α−1
∑

k=0

h
(

X̄x
k

)

, α ∈ (1, 2], h ∈ C4
b(R

d).

Define the function ϕ : Rd → R by

ϕ(x) = −
∫ ∞

0

E
(

h
(

Xx(t)
)

− π(h)
)

dt, x ∈ R
d, (3.2)

which is indeed a solution to the Poisson equation Lϕ = h− π(h) due to Lemma 4.2. Then we

have the following CLT for Πτ,α(h), α ∈ (1, 2).

Theorem 3.1. Let Assumptions 2.1-2.3 hold and h ∈ C4
b(R

d).

(1) Let {Yn}n≥0 be a numerical solution for (1.2) with global strong order 1/2 in the infinite

time horizon, i.e. there is K > 0 independent of τ such that

sup
n≥0

E|X(tn)− Yn|2 ≤ Kτ. (3.3)

Then for any α ∈ (1, 2),

1

τ
α−1
2

(

1

τ−α

τ−α−1
∑

k=0

h(Yk)− π(h)

)

d−→ N
(

0, π
(

|σ⊤∇ϕ|2
))

as τ → 0. (3.4)



Central Limit Theorem for Temporal Average of Backward Euler-Maruyama Method 9

(2) For any α ∈ (1, 2) and x ∈ R
d,

1

τ
α−1

2

(

Πτ,α(h)− π(h)
) d−→ N

(

0, π
(

|σ⊤∇ϕ|2
))

as τ → 0. (3.5)

Proof. Let ϕ be that in (3.2). By Lemma 4.2, it holds that ϕ ∈ C3(Rd) and

Lϕ = h− π(h).

It follows from [2, Theorem 2.1] that the CLT holds for (1.2), i.e.

1√
T

∫ T

0

(

h
(

X(t)
)

− π(h)
)

dt
d−→ N

(

0,−2π(ϕLϕ)
)

as T → ∞.

By (2.2) and a direct computation,

ϕLϕ =
1

2
Lϕ2 − 1

2
|σ⊤∇ϕ|2.

Since ϕ2 belongs to the domain of L, π(Lϕ2) = 0 due to [2, Eq. (2.6)]. Combining the above

relations, we have

1√
T

∫ T

0

(

h
(

X(t)
)

− π(h)
)

dt
d−→ N

(

0, π
(

|σ⊤∇ϕ|2
))

as T → ∞. (3.6)

Notice that

1

τ
α−1
2

(

1

τ−α

τ−α−1
∑

k=0

h(Yk)− π(h)

)

=
1

τ
α−1

2

(

1

τ−α

τ−α−1
∑

k=0

h(Yk)− τα−1

∫ τ1−α

0

h
(

X(t)
)

dt

)

+ τ
α−1

2

∫ τ1−α

0

(

h
(

X(t)
)

− π(h)
)

dt

=: J1(τ) + J2(τ).

By (3.6) and α > 1, J2(τ)
d−→ N (0, π(|σ⊤∇ϕ|2)) as τ → 0. Denoting N = τ−α, we use

Proposition 2.1(2), (3.3) and h ∈ C1
b(R

d) to get

E|J1(τ)| =
1

τ
α−1

2

E

∣

∣

∣

∣

∣

1

N

N−1
∑

k=0

h(Yk)−
1

Nτ

N−1
∑

k=0

∫ (k+1)τ

kτ

h
(

X(t)
)

dt

∣

∣

∣

∣

∣

≤ 1

τ
α−1

2

1

N

N−1
∑

k=0

E
∣

∣h(Yk)− h
(

X(tk)
)∣

∣

+
1

τ
α−1
2

1

Nτ

N−1
∑

k=0

∫ (k+1)τ

kτ

E
∣

∣h
(

X(t)
)

− h
(

X(tk)
)
∣

∣dt

≤ K(h)
1

τ
α−1

2

sup
k≥0

(

E|Yk −X(tk)|2
)

1
2

+K(h)
1

τ
α−1
2

1

Nτ

N−1
∑

k=0

∫ (k+1)τ

kτ

(

E|X(t)−X(tk)|2
)

1
2 dt
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≤ K(h)
1

τ
α−1

2

τ
1
2 = K(h)τ

2−α
2 .

Thus, limτ→0E|J1(τ)| = 0 due to α < 2, which implies that J1(τ) converges to 0 in probability.

Thus, (3.4) follows by applying the Slutsky theorem (see e.g. [16, Theorem 18.8]).

Finally, (3.5) holds as a special case of (3.4) due to Proposition 3.1(3). Thus, the proof is

complete. �

Remark 3.1. (1) It is observed that

1

τ
α−1
2

(

Πτ,α(h)− π(h)
)

=
1

τ
1−α

2

τ−α−1
∑

k=0

(

h
(

X̄x
k

)

− π(h)
)

τ,

which can be viewed as a numerical approximation of

1√
T

∫ T

0

(

h
(

Xx(t)
)

− π(h)
)

dt

with T (τ) = Nτ and N = τ−α. Thus, α > 1 is required such that limτ→0 T (τ) = +∞, which

coincides with the CLT for {X(t)}t≥0.

(2) In fact, we give the CLT of the temporal average for a class of numerical methods satisfying

(3.3) for α ∈ (1, 2). For example, it follows from Theorem 3.1 and [18, Theorem 4.8] that the

CLT holds for the truncated EM method, i.e. (3.4) holds with {Yk} being the numerical solution

of the truncated EMmethod proposed in [18]. We also guess that there may be some non-ergodic

numerical method whose temporal average satisfies the CLT in view of Theorem 3.1(1).

We close the section by presenting the CLT for Πτ,2(h).

Theorem 3.2. Let Assumptions 2.1-2.3 hold and h ∈ C4
b(R

d). Then for any x ∈ R
d,

1√
τ

(

Πτ,2(h)− π(h)
) d−→ N

(

0, π
(

|σ⊤∇ϕ|2
))

as τ → 0.

As is pointed out in the introduction, the proof idea of Theorem 3.1 does not apply to the case

α = 2. Instead, we will use the Poisson equation Lϕ = h− π(h) to give a good decomposition

of Πτ,2(h), on basis of which the CLT of Πτ,2(h) can be established. We postpone the proof of

Theorem 3.2 to the next section.

4. Proof of Theorem 3.2

In this section, we will prove Theorem 3.2. The main strategy follows from [23] (see also [6]),

whose main idea is to use the Poisson equation (4.25) to split (Πτ,2(h)−π(h))/
√
τ into a martin-

gale difference series sum and a negligible remainder. Then, we will prove that the martingale

difference series sum converges to a normal distribution in Lemma 4.3, and that the remainder

converges to zero in probability in Lemma 4.4.

It should be mentioned that although the main idea is similar to that of [6] and [23], we still

need to overcome the difficulties brought by the super-linearly growing drift coefficient and the

multiplicative noise. The first difficulty is to give the p-th (p > 2) moment boundedness of the

BEM method, which is overcome by a careful control of the iteration coefficient (see also the
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detailed statement below the proof of Theorem 4.1). The second difficulty lies in the regularity

estimate of the Poisson equation. Note that [23, Lemma 3.1] is not applicable to our case due

to the super-linearly growing coefficients. In addition, the argument of [6, Lemma 4.1] relies on

the a.s. differentiability of the exact solution w.r.t. initial values, which applies to the case of

additive noises. To give the regularity of the Poisson equation in the presence of multiplicative

noises, we estimate the high-order moments of the mean-square derivatives of the exact solution

w.r.t. initial values (see Lemma 4.1).

4.1. Auxiliary results

In this subsection, we give some auxiliary results for proving Theorem 3.2. We begin with

the p-th (p > 2) moment boundedness of (3.1).

Theorem 4.1. Suppose that Assumptions 2.1-2.2 hold. Then for any r ≥ 1 and τ ≤ 1,

sup
n≥0

E
∣

∣X̄x
n

∣

∣

r ≤ K(r)(1 + |x|r). (4.1)

Proof. It is sufficient to show that for any positive integer p,

sup
n≥0

E
∣

∣X̄x
n

∣

∣

2p ≤ K(p)(1 + |x|2p), (4.2)

in view of the Hölder inequality, which will be derived via mathematical induction.

By (3.1) and (2.5),

∣

∣X̄x
n+1

∣

∣

2 −
∣

∣X̄x
n

∣

∣

2
+
∣

∣X̄x
n+1 − X̄x

n

∣

∣

2

= 2
〈

X̄x
n+1, X̄

x
n+1 − X̄x

n

〉

= 2
〈

X̄x
n+1, b

(

X̄x
n+1

)〉

τ + 2
〈

X̄x
n+1 − X̄x

n , σ
(

X̄x
n

)

∆Wn

〉

+ 2
〈

X̄x
n , σ

(

X̄x
n

)

∆Wn

〉

≤ −c1τ
∣

∣X̄x
n+1

∣

∣

2
+Kτ +

∣

∣X̄x
n+1 − X̄x

n

∣

∣

2

+
∥

∥σ
(

X̄x
n

)
∥

∥

2

HS
|∆Wn|2 + 2

〈

X̄x
n , σ

(

X̄x
n

)

∆Wn

〉

, (4.3)

which together with the boundedness of σ yields

(1 + c1τ)
∣

∣X̄x
n+1

∣

∣

2 ≤
∣

∣X̄x
n

∣

∣

2
+Kτ + L2

2|∆Wn|2 + 2
〈

X̄x
n , σ

(

X̄x
n

)

∆Wn

〉

. (4.4)

Noting that E〈X̄x
n , σ(X̄

x
n)∆Wn〉 = 0, we have

E
∣

∣X̄x
n+1

∣

∣

2 ≤ 1

1 + c1τ
E
∣

∣X̄x
n

∣

∣

2
+

Kτ

1 + c1τ
. (4.5)

By iteration, we arrive at

E
∣

∣X̄x
n

∣

∣

2 ≤ 1

(1 + c1τ)n
|x|2 +Kτ

∞
∑

i=1

1

(1 + c1τ)i
≤ |x|2 +K.

Thus, (4.2) holds for p = 1. Now, we assume that

sup
n≥0

E
∣

∣X̄x
n

∣

∣

2(p−1) ≤ K(p)(1 + |x|2(p−1)), p ≥ 2. (4.6)
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It remains to prove

sup
n≥0

E
∣

∣X̄x
n

∣

∣

2p ≤ K(p)(1 + |x|2p).

In fact, using (4.4) and the inequality (1 + x)α ≥ 1 + αx, α ≥ 1, x > −1 leads to

(1 + pc1τ)
∣

∣X̄x
n+1

∣

∣

2p ≤
(

∣

∣X̄x
n

∣

∣

2
+ 2
〈

X̄x
n , σ

(

X̄x
n

)

∆Wn

〉

+K
(

τ + |∆Wn|2
)

)p

. (4.7)

Notice that
(

∣

∣X̄x
n

∣

∣

2
+ 2
〈

X̄x
n , σ

(

X̄x
n

)

∆Wn

〉

+K
(

τ + |∆Wn|2
)

)p

=

p
∑

i1=0

p−i1
∑

i2=0

Ci1
p Ci2

p−i1
2i2Kp−(i1+i2)

∣

∣X̄x
n

∣

∣

2i1〈
X̄x

n , σ
(

X̄x
n

)

∆Wn

〉i2(
τ + |∆Wn|2

)p−(i1+i2)

=
∣

∣X̄x
n

∣

∣

2p
+

p−1
∑

i1=0

p−i1−1
∑

i2=0

Ci1
p Ci2

p−i1
2i2Kp−(i1+i2)Sn,i1,i2 +

p−1
∑

i=0

Ci
p2

p−iTn,i,

where

Sn,i1,i2 :=
∣

∣X̄x
n

∣

∣

2i1〈
X̄x

n , σ
(

X̄x
n

)

∆Wn

〉i2(
τ+|∆Wn|2

)p−(i1+i2)
, i1 ∈ [0, p−1], i2∈[0, p−i1−1],

Tn,i :=
∣

∣X̄x
n

∣

∣

2i〈
X̄x

n , σ
(

X̄x
n

)

∆Wn

〉p−i
, i ∈ [0, p−1].

For any i1 ∈ [0, p− 1], i2 ∈ [0, p− i1− 1], it follows from the independence of ∆Wn and X̄x
n , the

boundedness of σ, the Hölder inequality and (4.6) that for τ ≤ 1,

|ESn,i1,i2 | ≤ K(p)E
∣

∣X̄x
n

∣

∣

2i1+i2
E
[

|∆Wn|i2
(

τ + |∆Wn|2
)p−(i1+i2)

]

≤ K(p)
(

E
∣

∣X̄x
n

∣

∣

2p−2
)

2i1+i2
2p−2

τ ≤ K(p)(1 + |x|2p−2)τ.

Next we estimate |ETn,i| for i = 0, . . . , p− 1. Notice that the property of conditional expecta-

tions (see e.g. [19, Lemma 2.6]) leads to

ETn,p−1 = E
[

E
(

∣

∣X̄x
n

∣

∣

2p−2〈
X̄x

n , σ
(

X̄x
n

)

∆Wn

〉
∣

∣Ftn

)]

= E
[

(

E
(

|y|2p−2〈y, σ(y)∆Wn〉
)) ∣

∣

y=X̄x
n

]

= 0.

For i = 0, . . . , p− 2, applying (4.6), the boundedness of σ and the Hölder inequality, we get

|ETn,i| ≤ K(p)E
∣

∣X̄x
n

∣

∣

p+i
E|∆Wn|p−i

≤ K(p)
(

E
∣

∣X̄x
n

∣

∣

2p−2
)

p+i

2p−2

τ
p−i

2 ≤ K(p)(1 + |x|2p−2)τ.

Combining the above formulas gives

E
(

∣

∣X̄x
n

∣

∣

2
+ 2
〈

X̄x
n , σ

(

X̄x
n

)

∆Wn

〉

+K
(

τ + |∆Wn|2
)

)p

≤ E
∣

∣X̄x
n

∣

∣

2p
+K(p)(1 + |x|2p−2)τ,

which along with (4.7) yields

E
∣

∣X̄x
n+1

∣

∣

2p ≤ 1

1 + pc1τ
E
∣

∣X̄x
n

∣

∣

2p
+K(p)

(1 + |x|2p−2)τ

1 + pc1τ
. (4.8)
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Then by iteration, we deduce

E
∣

∣X̄x
n

∣

∣

2p ≤ 1

(1 + pc1τ)n
|x|2p +K(p)(1 + |x|2p−2)τ

∞
∑

i=1

1

(1 + pc1τ)i
≤ K(p)(1 + |x|2p).

Thus, (4.2) holds by mathematical induction and the proof is complete. �

Notice that [21, Proposition 3.1] gives the p-th (p > 2) moment boundedness of the BEM

method in the finite time interval, where the conclusion relies on the application of the Gronwall

inequality. The argument is not applicable to our case, because the Gronwall inequality fails

to derive the moment boundedness in the infinite time horizon. Instead, we use the iteration

argument and ensure the iteration coefficient strictly less than 1 in the proof of Theorem 4.1.

In addition, we also note that [20] gives the second moment boundedness of the BEM method

in the infinite time interval, i.e. Proposition 3.1(1). As is shown in (4.5), for the case p = 2,

when estimating E|X̄x
n+1|2, the effect of the Brownian increment ∆Wn is removed, while for

the case p > 2, we need to tackle the interaction between the Brownian increment and other

terms. Thus, we must carefully tackle the right-hand side of (4.7).

Proposition 4.1. Let Assumptions 2.1-2.2 hold and τ be sufficiently small. Then the BEM

method (3.1) admits a unique invariant measure πτ ∈ P(Rd). Moreover, for any l ≥ 1, f ∈
Poly(l,Rd) and n ≥ 0,

∣

∣Ef
(

X̄x
n

)

− πτ (f)
∣

∣ ≤ K(f)(1 + |x|l)e−ξ1nτ , x ∈ R
d, n ≥ 0, (4.9)

|πτ (f)− π(f)| ≤ K(f)τ
1
2 . (4.10)

By means of Theorem 4.1, one can prove (4.9) similar to (2.8). Then (4.10) immediately

follows as a result of (2.8), (4.9) and Proposition 3.1(3).

In order to prove the CLT for Πτ,2(h), we need to give the regularity of ϕ. This can be done

through a probabilistic approach by means of mean-square derivatives of {Xx(t)}t≥0 w.r.t. the

initial value x. For any x, yi ∈ R
d, i = 1, 2, 3, 4, denote by ηxy1

(t) the mean-square derivative of

Xx(t) along with the direction y1, i.e.

ηxy1
(t) = lim

ε→0

1

ε

(

Xx+εy1(t)−Xx(t)
)

in L2(Ω;Rd). Further, denote

ηxy1,y2
(t) := lim

ε→0

1

ε

(

ηx+εy2
y1

(t)− ηxy1
(t)
)

in L2(Ω;Rd), i.e. ηxy1,y2
(t) is the second mean-square derivative of Xx(t) along with the direc-

tions y1 and y2. ηxy1,y2,y3
(t) and ηxy1,y2,y3,y4

(t) are defined similarly. We refer readers to [5, 32]

for more details about the mean-square differentiability of SODEs w.r.t. initial values.

Lemma 4.1. Suppose that Assumptions 2.1-2.3 hold. Then there exist C1, C2 > 0 and κi > 0,

i = 1, 2, 3 such that for any x, yi ∈ R
d, i = 1, 2, 3, 4 and t ≥ 0,

(

E
∣

∣ηxy1
(t)
∣

∣

16+κ1
)

1
16+κ1 ≤ C1|y1|e−C2t, (4.11)

(

E
∣

∣ηxy1,y2
(t)
∣

∣

8+κ2
)

1
8+κ2 ≤ C1

(

1 + |x|q′
)

|y1||y2|e−C2t, (4.12)

(

E
∣

∣ηxy1,y2,y3
(t)
∣

∣

4+κ3
)

1
4+κ3 ≤ C1

(

1 + |x|2q′
)

|y1||y2||y3|e−C2t, (4.13)

(

E
∣

∣ηxy1,y2,y3,y4
(t)
∣

∣

2
)

1
2 ≤ C1

(

1 + |x|3q′
)

|y1||y2||y3||y4|e−C2t. (4.14)
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Proof. Similarly to [5, Section 1.3.3], ηxy1
solves the following variational equation:

{

dηxy1
(t) = ∇b

(

Xx(t)
)

ηxy1
(t)dt+∇σ

(

Xx(t)
)

ηxy1
(t)dW (t),

ηxy1
(0) = y1.

Notice that for any p ≥ 2 and matrix A, it holds that ∇(|x|p) = p|x|p−2x and

1

2
trace

(

∇2(|x|p)AA⊤
)

≤ 1

2
p(p− 1)|x|p−2‖A‖2HS . (4.15)

For any κ ∈ (0, 1) and λ > 0, by the Itô formula, (4.15), σ ∈ C4
b(R

d) and (2.6),

E
(

eλt
∣

∣ηxy1
(t)
∣

∣

16+κ)

≤ |y1|16+κ + λE

∫ t

0

eλs
∣

∣ηxy1
(s)
∣

∣

16+κ
ds

+
1

2
(16+κ)E

∫ t

0

eλs
∣

∣ηxy1
(s)
∣

∣

14+κ

×
[

2
〈

ηxy1
(s),∇b

(

Xx(s)
)

ηxy1
(s)
〉

+(15+κ)
∥

∥∇σ
(

Xx(s)
)

ηxy1
(s)
∥

∥

2

HS

]

ds

≤ |y1|16+κ +
[

λ+
(

8 +
κ

2

)

(

− L5 + κL2
σ

)

]

E

∫ t

0

eλs
∣

∣ηxy1
(s)
∣

∣

16+κ
ds,

where Lσ := supx∈Rd ‖∇σ(x)‖⊗. Letting κ1 < L5/L
2
σ, λ1 small enough, we obtain

E
∣

∣ηxy1
(t)
∣

∣

16+κ1 ≤ |y1|16+κ1e−λ1t, ∀ t ∈ [0, T ],

which yields (4.11).

Secondly, similar to the argument for ηxy1
, we have















dηxy1,y2
(t) = ∇b

(

Xx(t)
)

ηxy1,y2
(t)dt+∇2b

(

Xx(t)
)(

ηxy1
(t), ηxy2

(t)
)

dt

+∇σ
(

Xx(t)
)

ηxy1,y2
(t)dW (t) +∇2σ

(

Xx(t)
)(

ηxy1
(t), ηxy2

(t)
)

dW (t),

ηxy1,y2
(0) = 0.

For any κ, λ, ε0 ∈ (0, 1), again by the Itô formula, (4.15), σ ∈ C4
b(R

d) and the elementary

inequality (a+ b)2 ≤ (1 + ε0)a
2 + (1 + 1/ε0)b

2 with a, b ≥ 0, it holds that

E
(

eλt
∣

∣ηxy1,y2
(t)
∣

∣

8+κ)

≤ λE

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

8+κ
ds+ (8+κ)E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

6+κ〈
ηxy1,y2

(s),∇b
(

Xx(s)
)

ηxy1,y2
(s)
〉

ds

+ (8 + κ)E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

6+κ〈
ηxy1,y2

(s),∇2b
(

Xx(s)
)(

ηxy1
(s), ηxy2

(s)
)〉

ds

+
1

2
(8+κ)(7 + κ)E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

6+κ

×
∥

∥∇σ
(

Xx(s)
)

ηxy1,y2
(s) +∇2σ

(

Xx(s)
)(

ηxy1
(s), ηxy2

(s)
)∥

∥

2

HS
ds

≤ λE

∫ t

0

eλs|ηxy1,y2
(s)|8+κds

+
1

2
(8 + κ)E

∫ t

0

eλs|ηxy1,y2
(s)|6+κ

[

2
〈

ηxy1,y2
(s),∇b

(

Xx(s)
)

ηxy1,y2
(s)
〉
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+ (7 + κ)(1 + ε0)
∥

∥∇σ
(

Xx(s)
)

ηxy1,y2
(s)
∥

∥

2

HS

]

ds

+K(κ)E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

7+κ∥
∥∇2b

(

Xx(s)
)∥

∥

⊗

∣

∣ηxy1
(s)
∣

∣

∣

∣ηxy2
(s)
∣

∣ds

+K(κ, ε0)E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

6+κ∣
∣ηxy1

(s)
∣

∣

2∣
∣ηxy2

(s)
∣

∣

2
ds.

Further, taking ε0 ≪ 1 and using (2.6), we get

E
(

eλt
∣

∣ηxy1,y2
(t)
∣

∣

8+κ)

≤
(

λ−
(

4 +
κ

2

)

L5

)

E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

8+κ
ds

+K(κ)E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

7+κ∥
∥∇2b

(

Xx(s)
)∥

∥

⊗

∣

∣ηxy1
(s)
∣

∣

∣

∣ηxy2
(s)
∣

∣ds

+K(κ)E

∫ t

0

eλs
∣

∣ηxy1,y2
(s)
∣

∣

6+κ∣
∣ηxy1

(s)
∣

∣

2∣
∣ηxy2

(s)
∣

∣

2
ds. (4.16)

It follows from the Young inequality ab ≤ εap +K(ε)bq with a, b ≥ 0, 1/p+ 1/q = 1, p, q > 1

and the Hölder inequality that for any ε, ε′ > 0,

E
(

∣

∣ηxy1,y2
(s)
∣

∣

7+κ∥
∥∇2b

(

Xx(s)
)
∥

∥

⊗

∣

∣ηxy1
(s)
∣

∣

∣

∣ηxy2
(s)
∣

∣

)

≤ εE
∣

∣ηxy1,y2
(s)
∣

∣

8+κ
+K(ε)E

[

(

∥

∥∇2b
(

Xx(s)
)∥

∥

⊗

∣

∣ηxy1
(s)
∣

∣

∣

∣ηxy2
(s)
∣

∣

)8+κ
]

≤ εE
∣

∣ηxy1,y2
(s)
∣

∣

8+κ
+K(ε)

(

E
∣

∣ηxy1
(s)
∣

∣

(8+κ)(2+ε′)
)

1
2+ε′

(

E
∣

∣ηxy2
(s)
∣

∣

(8+κ)(2+ε′)
)

1
2+ε′

×
(

E
∥

∥∇2b
(

Xx(s)
)∥

∥

(8+κ)(1+2/ε′)

⊗

)
ε′

2+ε′

.

Taking sufficiently small κ and ε′, from Assumption 2.3, Proposition 2.1(1) and (4.11) it follows

that for any ε > 0,

E
(

|ηxy1,y2
(s)|7+κ

∥

∥∇2b(Xx(s))
∥

∥

⊗

∣

∣ηxy1
(s)
∣

∣

∣

∣ηxy2
(s)
∣

∣

)

≤ εE
∣

∣ηxy1,y2
(s)
∣

∣

8+κ
+K(ε)

(

1 + |x|(8+κ)q′
)

|y1|8+κ|y2|8+κe−Ks. (4.17)

Similarity, for any ε > 0,

E
(

∣

∣ηxy1,y2
(s)
∣

∣

6+κ∣
∣ηxy1

(s)
∣

∣

2∣
∣ηxy2

(s)
∣

∣

2
)

≤ εE
∣

∣ηxy1,y2
(s)
∣

∣

8+κ
+K(ε)

(

E
∣

∣ηxy1
(s)
∣

∣

2(8+κ)
)

1
2
(

E
∣

∣ηxy2
(s)
∣

∣

2(8+κ)
)

1
2

≤ εE
∣

∣ηxy1,y2
(s)
∣

∣

8+κ
+K(ε)|y1|8+κ|y2|8+κe−Ks. (4.18)

Plugging (4.17)–(4.18) into (4.16), and taking sufficiently small κ2, λ2 and ε, one has

E
(

eλ2t
∣

∣ηxy1,y2
(t)
∣

∣

8+κ2
)

≤ −KE

∫ t

0

eλ2s
∣

∣ηxy1,y2
(s)
∣

∣

8+κ2
ds+K

(

1 + |x|(8+κ2)q
′)|y1|8+κ|y2|8+κ,

which produces (4.12).
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Further, ηxy1,y2,y3
solves the following SODE:



































































dηxy1,y2,y3
(t) = ∇b

(

Xx(t)
)

ηxy1,y2,y3
(t)dt+∇2b

(

Xx(t)
)(

ηxy1
(t), ηxy2,y3

(t)
)

dt

+∇2b
(

Xx(t)
)(

ηxy2
(t), ηxy1,y3

(t)
)

dt+∇2b
(

Xx(t)
)(

ηxy3
(t), ηxy1,y2

(t)
)

dt

+∇3b
(

Xx(t)
)(

ηxy1
(t), ηxy2

(t), ηxy3
(t)
)

dt+∇σ
(

Xx(t)
)

ηxy1,y2,y3
(t)dW (t)

+∇2σ
(

Xx(t)
)(

ηxy1
(t), ηxy2,y3

(t)
)

dW (t)+∇2σ
(

Xx(t)
)(

ηxy2
(t), ηxy1,y3

(t)
)

dW (t)

+∇2σ
(

Xx(t)
)(

ηxy3
(t), ηxy1,y2

(t)
)

dW (t)

+∇3σ
(

Xx(t)
)(

ηxy1
(t), ηxy2

(t), ηxy3
(t)
)

dW (t),

ηxy1,y2,y3
(0) = 0.

By the same argument for deriving (4.16), using Itô formula, (2.6) and σ ∈ C4
b(R

d), we have

that for any κ, λ ∈ (0, 1),

E
(

eλt
∣

∣ηxy1,y2,y3
(t)
∣

∣

4+κ
)

≤
(

λ−
(

2 +
κ

2

)

L5

)

E

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

4+κ
ds

+K(κ)E

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

3+κ∥
∥∇2b(Xx(s))

∥

∥

⊗

×
(

∣

∣ηxy1
(s)
∣

∣

∣

∣ηxy2,y3
(s)
∣

∣ +
∣

∣ηxy2
(s)
∣

∣

∣

∣ηxy1,y3
(s)
∣

∣+
∣

∣ηxy3
(s)
∣

∣

∣

∣ηxy1,y2
(s)
∣

∣

)

ds

+K(κ)E

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

3+κ∥
∥∇3b(Xx(s))

∥

∥

⊗

∣

∣ηxy1
(s)
∣

∣

∣

∣ηxy2
(s)
∣

∣

∣

∣ηxy3
(s)
∣

∣ds

+K(κ)E

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

2+κ
(

∣

∣ηxy1
(s)
∣

∣

2∣
∣ηxy2,y3

(s)
∣

∣

2
+
∣

∣ηxy2
(s)
∣

∣

2∣
∣ηxy1,y3

(s)
∣

∣

2

+
∣

∣ηxy3
(s)
∣

∣

2∣
∣ηxy1,y3

(s)
∣

∣

2
+
∣

∣ηxy1
(s)
∣

∣

2∣
∣ηxy2

(s)
∣

∣

2∣
∣ηxy3

(s)
∣

∣

2
)

ds

=:
(

λ−
(

2 +
κ

2

)

L5

)

E

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

4+κ
ds+ I1(t) + I2(t) + I3(t). (4.19)

It follows from the Young inequality, Hölder inequality, (4.11)-(4.12), Assumption 2.3 and

Proposition 2.1(1) that for sufficiently small κ, ε, ε′,

E
(

∣

∣ηxy1,y2,y3
(s)
∣

∣

3+κ∥
∥∇2b

(

Xx(s)
)
∥

∥

⊗

∣

∣ηxyχ(1)
(s)
∣

∣

∣

∣ηxyχ(2),yχ(3)
(s)
∣

∣

)

≤ εE
∣

∣ηxy1,y2,y3
(s)
∣

∣

4+κ
+K(ε)

(

E
∣

∣ηxyχ(1)
(s)
∣

∣

(4+κ)(2+ε′)
)

1
2+ε′

(

E
∣

∣ηxyχ(2),χ(3)
(s)
∣

∣

(4+κ)(2+ε′)
)

1
2+ε′

×
(

E
∥

∥∇2b
(

Xx(s)
)∥

∥

(4+κ)(1+ 2
ε′

)

⊗

)
ε′

2+ε′

≤ εE
∣

∣ηxy1,y2,y3
(s)
∣

∣

4+κ
+K(ε)

(

1 + |x|2q′(4+κ)
)

(|y1||y2||y3|)4+κe−Ks,

where (χ(1), χ(2), χ(3)) is any permutation of (1, 2, 3). Thus, for κ, λ, ε ≪ 1,

I1(t) ≤ K(κ)εE

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

4+κ
ds+K(κ, ε)

(

1 + |x|2q′(4+κ)
)

(|y1||y2||y3|)4+κ. (4.20)

Similarly, it can be verified that for κ, λ, ε ≪ 1,

I2(t) ≤ KεE

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

4+κ
ds+K(ε)

(

1 + |x|q′(4+κ)
)

(|y1||y2||y3|)4+κ, (4.21)
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I3(t) ≤ KεE

∫ t

0

eλs
∣

∣ηxy1,y2,y3
(s)
∣

∣

4+κ
ds+K(ε)

(

1 + |x|q′(4+κ)
)

(|y1||y2||y3|)4+κ. (4.22)

Plugging (4.20)-(4.22) into (4.19) yields (4.13). Finally, by means of an analogous proof for

(4.13), we obtain (4.14). Thus, the proof is finished. �

Lemma 4.2. Let Assumptions 2.1-2.3 hold and h ∈ C4
b(R

d). Let ϕ be the function defined by

(3.2). Then, for any x ∈ R
d,

|ϕ(x)| ≤ K(1 + |x|), (4.23)

‖∇iϕ(x)‖⊗ ≤ K
(

1 + |x|(i−1)q′
)

, i = 1, 2, 3, 4. (4.24)

Moreover, ϕ is a solution to the Poisson equation

Lϕ = h− π(h). (4.25)

One can prove (4.23) by means of (2.8), and prove (4.24) based on Lemma 4.1. In addition,

(4.25) follows by the Kolmogorov equation Lu(t, x) = (∂/∂t)u(t, x) with u(t, x) := Eh(Xx(t)),

t ≥ 0. We refer to [6, Lemma 2.8] for a similar proof.

4.2. Detailed proof

In this part, we give the proof of Theorem 3.2. As is mentioned previously, we will split

(1/
√
τ )(Πτ,2(h)−π(h)) into a martingale difference series sum and a negligible remainder, based

on the Poisson equation (4.25).

Proof of Theorem 3.2. For the convenience of notations, we denote m = τ−2 with suffi-

ciently small τ . By (4.25), we have

1√
τ

(

Πτ,2(h)− π(h)
)

= τ−
1
2
1

m

m−1
∑

k=0

(

h
(

X̄x
k

)

− π(h)
)

= τ
3
2

m−1
∑

k=0

Lϕ
(

X̄x
k

)

= τ
1
2

m−1
∑

k=0

(

Lϕ
(

X̄x
k

)

τ −
(

ϕ
(

X̄x
k+1

)

− ϕ
(

X̄x
k

))

)

+ τ
1
2

(

ϕ
(

X̄x
m

)

− ϕ(x)
)

.

Lemma 4.2 enables us to apply the Taylor expansion for ϕ:

ϕ
(

X̄x
k+1

)

− ϕ
(

X̄x
k

)

=
〈

∇ϕ
(

X̄x
k

)

,∆X̄x
k

〉

+
1

2

〈

∇2ϕ
(

X̄x
k

)

,∆X̄x
k

(

∆X̄x
k

)⊤
〉

HS

+
1

2

∫ 1

0

(1− θ)2∇3ϕ
(

X̄x
k + θ∆X̄x

k

)(

∆X̄x
k ,∆X̄x

k ,∆X̄x
k

)

dθ,

where

∆X̄x
k := b

(

X̄x
k+1

)

τ + σ
(

X̄x
k

)

∆Wk, k = 0, 1, . . . ,m.

It follows from (2.2) and the above formulas that

1√
τ

(

Πτ,2(h)− π(h)
)

= Hτ +Rτ ,

where Hτ and Rτ are given by

Hτ := −τ
1
2

m−1
∑

k=0

〈

∇ϕ
(

X̄x
k

)

, σ
(

X̄x
k

)

∆Wk

〉

, Rτ =
6
∑

i=1

Rτ,i (4.26)
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with

Rτ,1 := τ
1
2

(

ϕ
(

X̄x
m

)

− ϕ(x)
)

, (4.27)

Rτ,2 := −τ
3
2

m−1
∑

k=0

〈

∇ϕ
(

X̄x
k

)

, b
(

X̄x
k+1

)

− b
(

X̄x
k

)〉

, (4.28)

Rτ,3 :=
1

2
τ

1
2

m−1
∑

k=0

〈

∇2ϕ
(

X̄x
k

)

, σ
(

X̄x
k

)(

τID −∆Wk∆W⊤
k

)

σ
(

X̄x
k

)⊤
〉

HS
, (4.29)

Rτ,4 := −1

2
τ

5
2

m−1
∑

k=0

〈

∇2ϕ
(

X̄x
k

)

, b
(

X̄x
k+1

)

b
(

X̄x
k+1

)⊤
〉

HS
, (4.30)

Rτ,5 := −τ
3
2

m−1
∑

k=0

〈

∇2ϕ
(

X̄x
k

)

, b
(

X̄x
k+1

)(

σ
(

X̄x
k

)

∆Wk

)⊤
〉

HS
, (4.31)

Rτ,6 := −1

2
τ

1
2

m−1
∑

k=0

∫ 1

0

(1− θ)2∇3ϕ
(

X̄x
k + θ∆X̄x

k

)(

∆X̄x
k ,∆X̄x

k ,∆X̄x
k

)

dθ. (4.32)

By Lemmas 4.3-4.4 below and the Slutsky theorem,

1√
τ

(

Πτ,2(h)− π(h)
) d−→ N

(

0, π(|σ⊤∇ϕ|2)
)

as τ → 0,

and the proof is complete. �

Lemma 4.3. Suppose that Assumptions 2.1-2.3 hold. Then for any x ∈ R
d,

Hτ
d−→ N

(

0, π
(
∣

∣σ⊤∇ϕ
∣

∣

2)
)

as τ → 0.

The proof of Lemma 4.3 can be derived based on the exponential ergodicity of the BEM

method, i.e. (4.9), and [25, Theorem 2.3], which is similar to that of [23, Lemma 4.2] and thus

is omitted.

Lemma 4.4. Suppose that Assumptions 2.1-2.3 hold. Then for any x ∈ R
d, Rτ

P−→ 0 as τ → 0.

Proof. We will prove lim
τ→0

E|Rτ | = 0 to obtain the conclusion. Hereafter, we denote by Ei(·)
the conditional expectation E( · | Fti), i = 0, 1, 2, . . . .

Estimate of Rτ,1. By Theorem 4.1, (4.23) and (4.27),

E|Rτ,1| ≤ Kτ
1
2

(

1 + sup
n≥0

E
∣

∣X̄x
n

∣

∣

)

≤ K(x)τ
1
2 .

Estimate of Rτ,2. By means of (2.3), Assumption 2.3, Theorem 4.1, (4.24) and the Hölder

inequality, we have that for any p ≥ 1, i = 2, 3, 4 and j = 1, 2,

sup
k≥0

E
∣

∣b
(

X̄x
k

)
∣

∣

p ≤ K
(

1 + sup
k≥0

E
∣

∣X̄x
k

∣

∣

pq
)

≤ K(1 + |x|pq), (4.33)

sup
k≥0

E
∥

∥∇jb
(

X̄x
k

)
∥

∥

p

⊗
≤ K

(

1 + sup
k≥0

E
∣

∣X̄x
k

∣

∣

pq′
)

≤ K(1 + |x|pq′ ), (4.34)

sup
k≥0

E
∥

∥∇iϕ
(

X̄x
k

)∥

∥

p

⊗
≤ K

(

1 + sup
k≥0

E
∣

∣X̄x
k

∣

∣

(i−1)pq′
)

≤ K(1 + |x|(i−1)pq′ ). (4.35)
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Noting that

b
(

X̄x
k+1

)

− b
(

X̄x
k

)

= ∇b
(

X̄x
k

)

∆X̄x
k +

∫ 1

0

(1− θ)∇2b
(

X̄x
k + θ∆X̄x

k

)(

∆X̄x
k ,∆X̄x

k

)

dθ,

one obtains from (4.28) that

Rτ,2 = −τ
3
2

m−1
∑

k=0

〈

∇ϕ
(

X̄x
k

)

,∇b
(

X̄k

)

σ
(

X̄x
k

)

∆Wk

〉

− τ
5
2

m−1
∑

k=0

〈

∇ϕ
(

X̄x
k

)

,∇b
(

X̄x
k

)

b
(

X̄x
k+1

)〉

− τ
3
2

m−1
∑

k=0

∫ 1

0

(1− θ)
〈

∇ϕ(X̄x
k ),∇2b

(

X̄x
k + θ∆X̄x

k

)(

∆X̄x
k ,∆X̄x

k

)〉

dθ

=: R1
τ,2 +R2

τ,2 +R3
τ,2.

By the property of conditional expectations, for i < j,

E
[

〈

∇ϕ
(

X̄x
i

)

,∇b
(

X̄x
i

)

σ
(

X̄x
i

)

∆Wi

〉 〈

∇ϕ
(

X̄x
j

)

,∇b
(

X̄x
j

)

σ
(

X̄x
j

)

∆Wj

〉

]

= E
[

〈

∇ϕ
(

X̄x
i

)

,∇b
(

X̄x
i

)

σ
(

X̄x
i

)

∆Wi

〉 〈

∇ϕ
(

X̄x
j

)

,∇b
(

X̄x
j

)

σ
(

X̄x
j

)

Ej

(

∆Wj

)〉

]

= 0.

The above relation, combined with the boundedness of σ, (4.24) and (4.34), gives

E
∣

∣R1
τ,2

∣

∣

2
= τ3

m−1
∑

k=0

E
〈

∇ϕ
(

X̄x
k

)

,∇b
(

X̄x
k

)

σ
(

X̄x
k

)

∆Wk

〉2

≤ Kτ4
m−1
∑

k=0

E
∣

∣∇b
(

X̄x
k

)∣

∣

2 ≤ K(x)τ2.

Applying the Hölder inequality, (4.24) and (4.33)-(4.34), we have

E
∣

∣R2
τ,2

∣

∣ ≤ Kτ
5
2

m−1
∑

k=0

(

E
∣

∣∇b
(

X̄x
k

)∣

∣

2
)

1
2
(

E
∣

∣b
(

X̄x
k+1

)∣

∣

2
)

1
2 ≤ K(x)τ

1
2 .

Further, for any p ≥ 1 and k ≥ 0, it follows from the Minkowski inequality, (4.33) and the

boundedness of σ that

(

E
∣

∣∆X̄x
k

∣

∣

p) 1
p ≤ τ

(

E
∣

∣b
(

X̄x
k+1

)∣

∣

p) 1
p +K

(

E|∆Wk|p
)

1
p ≤ K(1 + |x|q)τ 1

2 . (4.36)

This together with the Hölder inequality, Assumption 2.3 and Theorem 4.1 yields

E
∣

∣R3
τ,2

∣

∣ ≤ Kτ
3
2

m−1
∑

k=0

(

E
∣

∣∆X̄x
k

∣

∣

4
)

1
2
(

1 +
(

E
∣

∣∆X̄x
k

∣

∣

2q′
)

1
2

+
(

E
∣

∣X̄x
k

∣

∣

2q′
)

1
2
)

≤ K(x)τ
1
2 .

In this way, we get

E|Rτ,2| ≤
(

E
∣

∣R1
τ,2

∣

∣

2) 1
2 +E

∣

∣R2
τ,2

∣

∣+E
∣

∣R3
τ,2

∣

∣ ≤ K(x)τ
1
2 .
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Estimate of Rτ,3. Notice that for i < j,

E
[〈

∇2ϕ
(

X̄x
i

)

, σ
(

X̄x
i

)(

τID −∆Wi∆W⊤
i

)

σ
(

X̄x
i

)⊤
〉

HS

×
〈

∇2ϕ
(

X̄x
j

)

, σ
(

X̄x
j

)(

τID −∆Wj∆W⊤
j

)

σ
(

X̄x
j

)⊤
〉

HS

]

= E
[〈

∇2ϕ
(

X̄x
i

)

, σ
(

X̄x
i

)(

τID −∆Wi∆W⊤
i

)

σ
(

X̄x
i

)⊤
〉

HS

×
〈

∇2ϕ
(

X̄x
j

)

, σ
(

X̄x
j

)

Ej

(

τID −∆Wj∆W⊤
j

)

σ
(

X̄x
j

)⊤
〉

HS

]

= 0. (4.37)

Combining (4.29), (4.37), the boundedness of σ and (4.35), we arrive at

E|Rτ,3|2 =
τ

4

m−1
∑

k=0

E
〈

∇2ϕ
(

X̄x
k

)

, σ
(

X̄x
k

) (

τID −∆Wk∆W⊤
k

)

σ
(

X̄x
k

)⊤
〉2

HS

≤ Kτ

m−1
∑

k=0

E
(

‖∇2ϕ
(

X̄x
k

)

‖2HS

(

τ2 + |∆Wk|4
))

≤ Kτ

m−1
∑

k=0

(

E
∥

∥∇2ϕ
(

X̄x
k

)
∥

∥

4

HS

)
1
2
(

τ2 +
(

E|∆Wk|8
)

1
2

)

≤ K(x)τ.

Estimate of Rτ,4. By (4.30), (4.33), (4.35) and the Hölder inequality,

E|Rτ,4| ≤ Kτ
5
2

m−1
∑

k=0

(

E
∣

∣∇2ϕ
(

X̄x
k

)
∣

∣

2
)

1
2
(

E
∣

∣b
(

X̄x
k+1

)
∣

∣

4
)

1
2 ≤ K(x)τ

5
2m ≤ K(x)τ.

Estimate of Rτ,5. We decompose Rτ,5 (see (4.31)) into Rτ,5 = R1
τ,5 +R2

τ,5 with

R1
τ,5 := −τ

3
2

m−1
∑

k=0

〈

∇2ϕ
(

X̄x
k

)

,
(

b
(

X̄x
k+1

)

− b
(

X̄x
k

)) (

σ(X̄x
k )∆Wk

)⊤
〉

HS
,

R2
τ,5 := −τ

3
2

m−1
∑

k=0

〈

∇2ϕ
(

X̄x
k

)

, b
(

X̄x
k

)(

σ
(

X̄x
k

)

∆Wk

)⊤
〉

HS
.

By the Hölder inequality, (4.35), (2.1), Theorem 4.1 and (4.36),

E
∣

∣R1
τ,5

∣

∣ ≤ Kτ
3
2m sup

k≥0

(

E
∣

∣∇2ϕ
(

X̄x
k

)
∣

∣

3
)

1
3 (

E|∆Wk|3
)

1
3

(

E
∣

∣b
(

X̄x
k+1

)

− b
(

X̄x
k

)
∣

∣

3
)

1
3 ≤ K(x)τ

1
2 .

Similar to (4.37), one has that for i < j,

E
[〈

∇2ϕ
(

X̄x
i

)

, b
(

X̄x
i

)(

σ
(

X̄x
i

)

∆Wi

)⊤
〉

HS
·
〈

∇2ϕ(X̄x
j ), b

(

X̄x
j

)(

σ
(

X̄x
j

)

∆Wj

)⊤
〉

HS

]

= 0.

The above formula, combined with (4.33), (4.35) and the Hölder inequality, yields

E
∣

∣R2
τ,5

∣

∣

2
= τ3

m−1
∑

k=0

E
〈

∇2ϕ
(

X̄x
k

)

, b
(

X̄x
k

)(

σ
(

X̄x
k

)

∆Wk

)⊤
〉2

HS
≤ K(x)τ2.

Thus,

E|Rτ,5| ≤ E
∣

∣R1
τ,5

∣

∣+
(

E
∣

∣R2
τ,5

∣

∣

2) 1
2 ≤ K(x)τ

1
2 .
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Estimate of Rτ,6. Plugging

∆X̄x
k = b

(

X̄x
k+1

)

τ + σ
(

X̄x
k

)

∆Wk

into (4.32) gives

Rτ,6 =

4
∑

i=1

Ri
τ,6

with

R1
τ,6 := −τ

7
2

2

m−1
∑
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∫ 1

0

(1− θ)2∇3ϕ
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X̄x
k + θ∆X̄x

k

)

(

b
(

X̄x
k+1

)

, b
(

X̄x
k+1

)

, b
(

X̄x
k+1

)

)

dθ,

R2
τ,6 := −3τ

5
2

2

m−1
∑

k=0

∫ 1

0

(1− θ)2∇3ϕ
(

X̄x
k + θ∆X̄x

k

)

(

b
(

X̄x
k+1

)

, b
(

X̄x
k+1

)

, σ
(

X̄x
k

)

∆Wk

)

dθ,

R3
τ,6 := −3τ

3
2

2

m−1
∑

k=0

∫ 1

0

(1− θ)2∇3ϕ
(

X̄x
k + θ∆X̄x

k

)

(

b
(

X̄x
k+1

)

, σ
(

X̄x
k

)

∆Wk, σ
(

X̄x
k

)

∆Wk

)

dθ,

R4
τ,6 := −τ

1
2

2

m−1
∑

k=0

∫ 1

0

(1− θ)2∇3ϕ
(

X̄x
k + θ∆X̄x

k

)

(

σ
(

X̄x
k

)

∆Wk, σ
(

X̄x
k

)

∆Wk, σ
(

X̄x
k

)

∆Wk

)

dθ.

Similar to the derivation of (4.35), one can use (4.24), (4.36) and Theorem 4.1 to get that for

any p ≥ 1 and τ < 1,

E
∥

∥∇3ϕ
(

X̄x
k + θ∆X̄x

k

)∥

∥

p

⊗
≤ K

(

1 + |x|2pq′q
)

, θ ∈ [0, 1]. (4.38)

By (4.33), (4.38) and the Hölder inequality, one has

E
∣

∣R1
τ,6

∣

∣ ≤ K(x)τ
3
2 , E

∣

∣R2
τ,6

∣

∣ ≤ K(x)τ, E
∣

∣R3
τ,6

∣

∣ ≤ K(x)τ
1
2 . (4.39)

Further, applying the Taylor expansion for ∇3ϕ, we write

R4
τ,6 = R4,1

τ,6 +R4,2
τ,6,

where

R4,1
τ,6 := −τ

1
2

6

m−1
∑

k=0

∇3ϕ
(

X̄x
k

)

(

σ
(

X̄x
k

)

∆Wk, σ
(

X̄x
k

)

∆Wk, σ
(

X̄x
k

)

∆Wk
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R4,2
τ,6 := −τ

1
2

2
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0

∫ 1

0

∇4ϕ
(

X̄x
k + rθ∆X̄x
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)

×
(

σ(X̄x
k )∆Wk, σ

(

X̄x
k

)

∆Wk, σ
(

X̄x
k

)

∆Wk,∆X̄x
k

)

drθ(1−θ)2dθ.

It can be shown that

E
∣

∣R4,1
τ,6

∣

∣

2 ≤ K(x)τ2, E
∣

∣R4,2
τ,6

∣

∣ ≤ K(x)τ
1
2 .

Thus, E|R4
τ,6| ≤ K(x)τ1/2 for τ < 1, which combined with (4.39) yields E|Rτ,6| ≤ K(x)τ1/2.

Combining the above estimates for Rτ,i, i = 1, . . . , 6, we obtain limτ→0 E|Rτ | = 0. This

gives the desired conclusion. �
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5. Numerical Experiments

In this section, we perform numerical experiments to verify our theoretical results. First, for

a given test function h, we obtain the approximation of the ergodic limit π(h) numerically by

virtue of the fact limt→∞ E(h(X(t))) = π(h) (see (2.8)). Here, limt→∞ E(h(X(t))) is simulated

by using the numerical solution {X̄n}n≥0 of the BEM method. More precisely, let the step-

size τ be small enough, n sufficiently large, and we use the Monte-Carlo method to simulate

the expectation. Then we have

lim
t→∞

E
(

h
(

X(t)
))

≈ 1

M

M
∑

i=1

h
(

X̄ i
n

)

with {X̄ i
n}Mi=1 being M samplings of X̄n. Second, we verify the CLT for Πτ,α(h), α ∈ (1, 2].

Denote

Zτ,α(h) =
1

τ
α−1
2

(

1

τ−α

τ−α−1
∑

k=0

h
(

X̄k

)

− π(h)

)

.

Then, the CLT shows that for any f ∈ Cb(R
d),

lim
τ→0

Ef
(

Zτ,α(h)
)

=

∫

Rd

f(x)N
(

0, π
(∣

∣σ⊤∇ϕ
∣

∣

2)
)

(dx).

We will numerically verify that Ef(Zτ,α(h)) tends to some constant as τ decreases.

Example 5.1. Consider the following SODE:

{

dX(t) = −
(

X3(t) + 8X(t)
)

dt+ sin
(

X(t)
)

dW (t), t > 0,

X(0) = x0 ∈ R.

It is not difficult to verify that the coefficients of the above equation satisfy Assumptions 2.1-2.3.

Thus, both Theorems 3.1 and 3.2 apply to the above SODE.

First, we numerically simulate the ergodic limit π(h) using the aforementioned method. The

expectation is realized by 10000 sample paths, using the Monte-Carlo method. Fig. 5.1 displays

the evolution of the Monte-Carlo approximation of Eh(X̄n) w.r.t. n with h(x) = sin(x) + 1

starting from different initial values. It is observed that the ergodic limit is 1.

Second, we numerically verify

lim
τ→0

Ef
(

Zτ,2(h)
)

=

∫

Rd

f(x)N
(

0, π
(∣

∣σ⊤∇ϕ
∣

∣

2)
)

(dx).

For this end, we present the error in Table 5.1 between the Monte-Carlo approximation of

Ef(Zτ,2(h)) and its numerical limit. As is shown in Table 5.1, for different test functions f ,

the Monte-Carlo approximation of Ef(Zτ,2(h)) will tend to its limit as τ decreases, which

numerically verifies Theorem 3.2.

Finally, we numerically verify Theorem 3.1 and observe the impact of α on the convergence

speed of Ef(Zτ,α(h)). It is observed in Table 5.2 that for different α, the Monte-Carlo approxi-

mation of Ef(Zτ,α(h)) will tend to its numerical limit, which validates Theorem 3.1. Fixing the

step-size and comparing the errors for different α, we find that the bigger α is, the smaller the

error is. This means a faster convergence speed of Zτ,α(h) in distribution if provided a larger α.
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Fig. 5.1. Monte-Carlo approximation of E(sin(X̄n) + 1) versus n starting from different initial values

with τ = 2−14,M = 10000.

Table 5.1: Error between the Monte-Carlo approximation of Ef(Zτ,2(h)) and its numerical limit for

different step-sizes and f (x0 = 1, M = 10000, h(x) = sin(x) + 1).

f

error τ
0.05 0.045 0.04 0.035 0.03

cos(x) 6.524181E-4 5.543409E-4 4.602158E-4 3.822945E-4 3.075336E-4

e−x
2+1 3.544669E-3 3.012076E-3 2.500865E-3 2.077585E-3 1.67142E-3

f

error τ
0.025 0.02 0.015 0.01 0.005

cos(x) 2.383274E-4 1.791496E-4 1.254459E-4 7.710036E-5 3.614681E-5

e−x
2+1 1.29538E-3 9.737865E-4 6.819094E-4 4.191288E-4 1.965074E-4

Table 5.2: Error between the Monte-Carlo approximation of Ef(Zτ,α(h)) and its numerical limit for

different step-sizes and α (x0 = 1, M = 10000, f(x) = cos(x2) and h(x) = sin(x) + 1).

α

error τ
0.01 0.0095 0.009 0.0085 0.008

α = 1.2 1.239016E-4 1.054936E-4 9.069994E-5 7.741894E-5 6.201456E-5

α = 1.5 2.001556E-5 1.664316E-5 1.233981E-5 1.003665E-5 7.46804E-6

α = 1.8 3.294311E-6 2.481035E-6 1.83967E-6 1.290746E-6 9.055742E-7

α = 2 9.909509E-7 7.218078E-7 4.981431E-7 3.457368E-7 2.232158E-7

α

τ
0.0075 0.007 0.0065 0.006 0.0055

α = 1.2 5.100249E-5 4.004329E-5 3.126639E-5 2.322351E-5 1.504971E-5

α = 1.5 5.478683E-6 3.875865E-6 2.483616E-6 1.455308E-6 6.260837E-7

α = 1.8 5.952795E-7 3.556935E-7 2.045761E-7 9.201485E-8 2.59693E-8

α = 2 1.334745E-7 7.590217E-8 3.755847E-8 1.42301E-8 3.12967E-9
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Example 5.2. Consider the following two-dimensional SODE:














dX(t) = −
(

8X(t) + Y (t)
)

dt+ dW1(t), t > 0,

dY (t) = −
(

X(t) + 8Y (t) + Y (t)3
)

dt+ dW2(t), t > 0,
(

X(0), Y (0)
)

= (x0, y0) ∈ R
2,

where W1 and W2 are two independent standard Brownian motions. It is not hard to check that

the coefficients of the above equation satisfy Assumptions 2.1-2.3. Thus, it admits a unique

invariant measure and Πτ,2(h) (h ∈ C4
b(R

2)) satisfies the CLT. In this experiment, we will

numerically verify Theorem 6.1. Compared with Theorem 3.2, Theorem 6.1 relaxes the bound-

edness condition on ∇ih (i = 0, 1, . . . , 4), allowing ∇ih (i = 0, 1, . . . , 4) to grow polynomially.

First, we numerically compute the ergodic limit π(h) with h(x, y) = x2 + y2 + 1. Fig. 5.2

displays the evolution of the Monte-Carlo approximation of E(X̄2
n + Ȳ 2

n +1) with respect to n.

We observe that the Monte-Carlo approximation of E(X̄2
n + Ȳ 2

n + 1), starting from different

initial values, tends to the ergodic limit which approximately equals to 1.1243. This validates

the unique ergodicity.

Second, we perform numerical experiments to present the convergence of the Monte-Carlo

approximation of Ef(Zτ,2(h)) with h(x, y) = x2 + y2 + 1. We choose four test functions f to

compute the error between the Monte-Carlo approximation of Ef(Zτ,2(h)) and its numerical

limit. As is seen from Table 5.3, the Monte-Carlo approximation of Ef(Zτ,2(h)) will tend to
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Fig. 5.2. Monte-Carlo approximation of E(X̄2
n + Ȳ 2

n + 1) versus n starting from different initial values

with τ = 2−14, M = 10000.

Table 5.3: Error between the Monte–Carlo approximation of Ef(Zτ,2(h)) and its numerical limit for

different step-sizes and f ((x0, y0) = (1, 1), M = 10000 and h(x, y) = x2 + y2 + 1).

f

error τ
0.01 0.009 0.008 0.007 0.006

cos(x) 1.847026E-3 1.783466E-3 1.79837E-3 1.694887E-3 1.641087E-3

cos(x2) 1.660341E-5 1.574741E-5 1.614185E-5 1.490238E-5 1.402271E-5

cos(x3) 2.205107E-7 2.096067E-7 2.186593E-7 2.002097E-7 1.819951E-7

cos(x4) 3.785467E-9 3.667431E-9 3.905721E-9 3.546581E-9 3.058579E-9
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its limit as τ decreases. In addition, it seems that the faster f(x) changes around x = 0, the

faster Ef(Zτ,2(h)) converges.

6. Conclusions and Future Work

In this work, we prove the CLT for the temporal average of the BEM method, which

characterizes the asymptotics of the BEM method in distribution. The drift coefficients of

underlying SODEs are allowed to grow super-linearly. Different proof strategies are used for

different deviation orders, which relies on the relationship between the deviation order and

optimal strong order of the BEM method.

• Deviation order α ∈ (1, 2). In this case, we obtain the CLT for a class of numerical

methods provided numerical methods has mean-square order 1/2 in the infinite time

horizon. As a byproduct, both the BEM method and the truncated EM method studied

in [18] satisfy the CLT for α ∈ (1, 2).

• Deviation order α = 2. In this case, we obtain the CLT of the temporal average of the

BEM method. The arguments mainly depend on the Poisson equation and also require

the p-th (p > 2) moment boundedness of the numerical solution (Theorem 4.1) and

the exponential ergodicity of the BEM method (see (4.9)). We remark that the above

arguments for the CLT of the numerical temporal average may apply to other numerical

methods, if the corresponding p-th (p > 2) moment boundedness and the exponential

ergodicity hold. For example, the truncated EM method in [18] will satisfy the CLT, once

the exponential ergodicity is justified (Note that the p-th (p > 2) moment boundedness

of the truncated EM method has been established in [18, Theorem 5.5]).

In fact, it is possible to weaken the conditions of Theorem 3.2, and we have the following

result.

Theorem 6.1. Let Assumption 2.2 hold with c1 > 15L2
1/2 replaced by c1 being sufficiently

large, and Assumption 2.3 hold. Assume that σ is globally Lipschitz. Let h ∈ C4(Rd) with

∇ih ∈ Poly(q′′,Rd), i = 0, 1, . . . , 4. Then for any x ∈ R
d,

1√
τ

(

Πτ,2(h)− π(h)
) d−→ N

(

0, π(|σ⊤∇ϕ|2)
)

as τ → 0.

Proof. The proof is similar to that of Theorem 3.2 and we only give its sketch. Note that the

main difference lies in the assumptions on σ and h, compared with conditions of Theorem 3.2.

First, the assumptions of σ mainly make a difference on the proof of Theorem 4.1. Fortu-

nately, we can still follow the same argument in Theorem 4.1 to give the p-th moment bound-

edness for the BEM method. Roughly speaking, in this case, (4.3) still holds. Similar to (4.7),

we obtain

(1 + pc1τ)|X̄x
n+1|2p ≤

(

∣

∣X̄x
n

∣

∣

2
+ 2
〈

X̄x
n , σ

(

X̄x
n

)

∆Wn

〉

+K(τ + |∆Wn|2) +K
∣

∣X̄x
n

∣

∣

2|∆Wn|2
)p

due to the linear growth of σ. By a similar analysis for (4.8), one can show that

E|X̄x
n+1|2p ≤

(

1 +A(p,D)τ
)

(1 + pc1τ)
E
∣

∣X̄x
n

∣

∣

2p
+K(p)

(1 + |x|2p−2)τ

(1 + pc1τ)
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for some A(p,D) > 0 dependent on p and D. Using the condition that c1 is sufficiently large,

one can finally obtain

sup
n≥0

E
∣

∣X̄x
n

∣

∣

r ≤ K(1 + |x|r)

for some r large enough.

Second, the assumptions on h mainly impact the regularity of ϕ as the solution to the

Poisson equation. Following the arguments in the proof of Lemmas 4.1-4.2, we have that

∇iϕ ∈ Poly(L0,R
d), i = 0, 1, . . . , 4 for some integer L0 dependent on q′ and q′′.

Finally, other conclusions still hold on basis of the moment boundedness of {X̄n}n≥0 and

the regularity of ϕ. Thus, one can establish the CLT for Πτ,2(h). �

When σ is Lipschitz or of super-linear growth, it is interesting to study how to prove the p-th

(p > 2) moment boundedness of the BEM method in the infinite time horizon for a relatively

small c1. We will study this problem in the future.
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