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Abstract. In this paper, we are concerned with the inverse transmission eigen-
value problem to recover the shape as well as the constant refractive index of
a penetrable medium scatterer. The linear sampling method is employed to
determine the transmission eigenvalues within a certain wavenumber interval
based on far-field measurements. Based on a prior information given by the
linear sampling method, the neural network approach is proposed for the re-
construction of the unknown scatterer. We divide the wavenumber intervals
into several subintervals, ensuring that each transmission eigenvalue is located
in its corresponding subinterval. In each such subinterval, the wavenumber that
yields the maximum value of the indicator functional will be included in the
input set during the generation of the training data. This technique for data
generation effectively ensures the consistent dimensions of model input. The
refractive index and shape are taken as the output of the network. Due to the
fact that transmission eigenvalues considered in our method are relatively small,
certain super-resolution effects can also be generated. Numerical experiments
are presented to verify the effectiveness and promising features of the proposed
method in two and three dimensions.

AMS subject classifications: 35P25, 35R30, 35P15

Key words: Inverse transmission eigenvalue problem, linear sampling method, neural
network, super-resolution.

∗Corresponding author.
Emails: yinweishi@cust.edu.cn (W. Yin), xuzhaobin@mails.cust.edu.cn (Z. Xu), mengpc@
cust.edu.cn (P. Meng), hongyliu@cityu.edu.hk (H. Liu)



2 W. Yin, Z. Xu, P. Meng and H. Liu / Ann. Appl. Math., 40 (2024), pp. 1-22

1 Introduction

In this paper, we are mainly concerned with the interior transmission eigenvalue
problem and its applications to the inverse scattering problem. This problem has
received considerable interest in the literature in recent years [10, 14]. In what
follows, we first present the mathematical formulation of our study.

Let D0⊂Rn (n=2,3) be a bounded and simply connected domain with a smooth
boundary Γ0. The incident field is given by the time-harmonic plane wave in the
form

ui(x) :=eikx·d, (1.1)

where k ∈R+ is the wavenumber, d∈ Sn−1 := {x∈Rn;|x|= 1} is the incident di-
rection and i :=

√
−1. The exterior scattering problem is to find the total field

u=us(x,d,D0)+ui(x) and the transmitted field u0 satisfying

∆u+k2u=0 in Rn\D0,

∆u0+k2n0u0 =0 in D0,

u−u0 =0,
∂u

∂ν
− ∂u0
∂ν

=0 on Γ0,

lim
r→∞

r
n−1
2

(
∂us(x,d,D0)

∂r
−ikus(x,d,D0)

)
=0, r= |x|,

(1.2)

where n0∈L∞(D0) is the positive refractive index and ν is the unit outward nor-
mal. There exists a unique solution u0χD0+uχRn\D0

∈H1
loc(Rn) to the problem (1.2)

(cf. [21]). The associated interior transmission eigenvalue problem to (1.2) for non-
trivial (v,w)∈L2(D0)×L2(D0) can be described by

∆v+k2v=0 in D0,

∆w+k2n0w=0 in D0,

v−w=0,
∂v

∂ν
− ∂w
∂ν

=0 on Γ0.

(1.3)

The wavenumber k∈R+ is called an interior transmission eigenvalues with the associ-
ated transmission eigenfunctions v, w. In order to generate certain super-resolution
effects, a relatively large refractive index should be chosen to obtain the relatively
small transmission eigenvalues. For practical considerations, we assume that the
refractive index of the medium scatterer D0 is relatively small. In order to produce
the super-resolution effect, we introduce a thin coating D1 on the domain D0 (see
Fig. 1), Γ1 :=∂D1. The refractive index n1 in D1 is far larger than n0 in D0, i.e.,
n0�n1. For the subsequent discussion, we regard the domains D1 and D0 as the
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two-layer medium. In this case, the exterior scattering problem becomes to find the
total field u=us(x,d,D0,D1)+ui(x) and the transmitted field u0, u1 such that

∆u+k2u=0 in Rn\D0∪D1,

∆u1+k2n1u1 =0 in D1,

∆u0+k2n0u0 =0 in D0,

u−u1 =0,
∂u

∂ν
− ∂u1
∂ν

=0 on Γ1,

u1−u0 =0,
∂u1
∂ν
− ∂u0
∂ν

=0 on Γ0,

lim
r→∞

r
n−1
2

(
∂us(x,d,D0,D1)

∂r
−ikus(x,d,D0,D1)

)
=0, r= |x|.

(1.4)

Similarly, the corresponding interior transmission eigenvalue problem can be written
in the following form

∆v+k2v=0 in D0∪D1,

∆w++k2n1w+ =0 in D1,

∆w−+k2n0w−=0 in D0,

v−w+ =0,
∂v

∂ν
− ∂w+

∂ν
=0 on Γ1,

w+−w−=0,
∂w+

∂ν
− ∂w−

∂ν
=0 on Γ0.

(1.5)

For convenience, the scattered field us(x,d,D0) and us(x,d,D0,D1) are both named
as us(x,d). This scattered field us(x,d) has the following asymptotic expansion

us(x,d)=γn
eikr

r
n−1
2

{
u∞(x̂,d)+O

(
1

r

)}
, r= |x|→∞, (1.6)

which holds uniformly for all observation directions x̂=x/|x|, where

γn=


eiπ/4√
8kπ

, n=2,

1

4π
, n=3,

and u∞(x̂,d) is regarded as the far-field pattern of us(x,d).
The transmission eigenvalue problem has been extensively investigated in recent

years [1, 4, 9, 10, 14, 18, 19, 22, 32, 35, 36]. And it is well known that the transmission
eigenvalues k ∈R+ can be determined from far-field measurements u∞(x̂,d) using
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Figure 1: Sketch of the geometry.

sampling type method [8,10,19]. We also refer the readers to [1,5,12,29,33,34] and
the references therein for other computational methods. Such eigenvalues encode
the physical information of the scatterer. Therefore, one can further recover the
physical properties of the scatterer with the transmission eigenvalues [7,10,13,23,24].
In particular, we would like to point out that in [10] surface-localized eigenstates are
employed for the qualitative imaging of the shape of the medium scatterer with small
eigenvalues, which can produce super-resolution imaging effects. The transmission
eigenvalues are also related to invisibility cloaks [2, 3, 18, 22,25].

In this paper, we propose a new scheme which consists of two phases for this
kind of the inverse transmission eigenvalue problem. In the first phase, we employ
the linear sampling method to determine the transmission eigenvalues within certain
wavenumber intervals. The linear sampling method has been successfully developed
for inverse scattering problems [10, 11, 31]. In the second phase, a neural network
approach is used to obtain the reconstructions of the shape and material property.
Recently, neural network has been applied for various inverse problems; see [15,
16, 20, 28] and the references therein. By a large number of training data, neural
network can effectively learn the abstract relationship between model input and
output, and reduce the impact of noise. Compared to the classical methods, neural
network deals with the inverse problem from the perspective of data driven, which
makes it possible for many more challenging problems [26, 27, 30]. In our neural
network scheme, we first divide the wavenumber intervals into some subintervals
based on prior information from the linear sampling method. Each transmission
eigenvalue is located in the corresponding subinterval. For each subinterval, the
wavenumber that corresponds to the maximum value of the indicator function will
be included in the input set for training data. This data generation technique
effectively ensures consistent dimensions of the input for the neural network. The
constant refractive index and shape are regarded as the model output. Because
the transmission eigenvalues considered in our method are relatively small, certain
super-resolution effects can also be generated.
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The rest of the paper is arranged as follows. In Section 2, the linear sampling
method (LSM) is proposed to determine the transmission eigenvalues with far-field
measurements. In Section 3, we employ the neural network method to reconstruct
the shape and refractive index of the unknown scatterer. In Section 4, some numeri-
cal examples are presented to demonstrate the effectiveness of the proposed scheme.
Finally, the paper is concluded in Section 5 with some relevant discussions.

2 Determination of the transmission eigenvalues

In this section, the LSM is employed to determine the transmission eigenvalues
within the interval I := (κ0,κ1) using the knowledge of the far-field measurements
u∞(x̂,d). This methodology follows the spirit of [8, 10]. To that end, we define the
far-field operator F :L2(Sn−1)→L2(Sn−1) as

(Fg)(x̂) :=

∫
Sn−1

u∞(x̂,d)g(d)ds(d), x̂∈Sn−1, (2.1)

and the Herglotz wave function as

vg(x) :=

∫
Sn−1

eikx·dg(d)ds(d), x∈Rn. (2.2)

The key to the LSM is to find a regularized solution g∈L2(Sn−1) which satisfies the
following first-kind integral equation

γnFg=Φ∞, (2.3)

where

Φ∞=


eiπ/4√
8πk

e−ikx̂·z, n=2,

1

4π
e−ikx̂·z, n=3,

is the far-field pattern of Φ(x,z). Φ(x,z) signifies the fundamental solution to the
partial differential operator −∆−k2, which is given as

Φ(x,z)=


i

4
H

(1)
0 (k|x−z|), n=2,

eik|x−z|

4π|x−z|
, n=3.

H
(1)
0 denotes the Hankel function of the first kind of order zero. We define D=D0 for

(1.2) and D=D0∪D1 for (1.4). Then in what follows, we introduce the fundamental
theorem of the linear sampling method (cf. [6]).



6 W. Yin, Z. Xu, P. Meng and H. Liu / Ann. Appl. Math., 40 (2024), pp. 1-22

Theorem 2.1. If k is not a transmission eigenvalue in D and z∈D, then for every
δ>0, there exists gδz∈L2(Sn−1) such that

‖Fgδz−Φ∞‖L2(Sn−1)<δ,

and vgδz(x) converges in the H1(D) norm when δ→0.

In this paper, we are more concerned with the case when k is a transmission
eigenvalue. From the results in [8], we know that in this case Theorem 2.1 will
not work. To that end, let F δ be the far-field operator corresponding to the noisy
measurement

(F δg)(x̂) :=

∫
Sn−1

u∞,δ(x̂,d)g(d)ds(d), x̂∈Sn−1, (2.4)

where δ is the noise level. The behavior of vgδz(x) is described in the following
theorem when k is a transmission eigenvalue.

Theorem 2.2. If k is a transmission eigenvalue in D and for all points z∈D the
assumption

lim
δ→0
‖F δgδz−Φ∞‖L2(Sn−1) =0

holds, then for every δ>0, there exists ‖vgδz‖H1(D) can not be bounded when δ→0.

The proofs for D=D0 and D=D0∪D1 are similar in the above two theorems
and thus we omit them here. From these two theorems, we find that the value of
‖gδz‖L2(Sn−1) will be relatively large for k is a transmission eigenvalue and relatively
small otherwise. Hence, ‖gδz‖L2(Sn−1) can be used to determine the transmission
eigenvalues. We refer the readers to Algorithm 3.1 in [10] for the details of this idea.

3 Reconstruction of the scatterer

In this section, a deep residual neural network method is presented to recover the
physical properties of the scatterer by the corresponding transmission eigenvalues.
The refractive index we consider in this section is real constant, and for the case
of complex constant our method can also work well. According to the discussions
in the above section, one can determine the transmission eigenvalues within the
interval I := (κ0,κ1). Let K = {ki, i= 1,2,··· ,Nk} be the true eigenvalues in I de-
termined using the far-field measurements obtained by the linear sampling method.
The wavenumber interval I can be divided into I =

⋃Nk
i=1Ii, and each ki is in the

corresponding subinterval Ii. Hence, the definition of model input is introduced as
follows.
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Definition 3.1. Let Ii denote the ith subinterval of I with I=
⋃Nk
i=1Ii. The input of

the neural network is given by

X=(X1,X2,··· ,XNk)∈RNk , (3.1)

where Xi ∈ Ii is the corresponding wavenumber which can get the maximum of
‖gεz‖L2(Sn−1) in Ii.

We would like to emphasize that Xi is different from ki. ki is the true eigenvalue
while Xi is the input data of our network generated in the interval Ii. The purpose
that we make use of this kind of data is to ensure the same dimensions of the
model input. To define the form of the model output, we first set a reasonable
parameterization of the scatterer.

Assumption 3.1. In 2D, we suppose the scatterer D0 is a starlike domain with
respect to the origin whose boundary Γ0 can be represented as

Γ0 =r0(θ)(cosθ,sinθ), 0≤θ≤2π, (3.2)

where r0(θ) is the radial function and r0(θ) has the following form of the Fourier
expansion

r0(θ)=a0+
J∑
j=1

(aj cosjθ+bj sinjθ). (3.3)

In 3D, we assume that the scattererD0 is a revolving body with boundary Γ0 through
rotating the above 2D shape. Hence the corresponding parameterization in 2D can
be straightforwardly applied to the case of 3D.

Definition 3.2. The output of the neural network is defined as

Y ={Y1,Y2,··· ,YNY }∈RNY . (3.4)

In 2D, for the reconstruction of the shape of the scatterer, Y ={a0,a1,b1,··· ,aJ ,bJ}
and NY = 2J+1. For the simultaneous reconstruction of the refractive index and
shape, Y ={n0,a0,a1,b1,··· ,aJ ,bJ} and NY =2J+2. In 3D, the parameters of model
output are similar to 2D from the perspective of a revolving body.

In what follows, we present the main ingredients in the deep residual neural
network which consists of many residual blocks. Compared to the plain network, the
deep residual learning effectively avoids the degradation problem with the increasing
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Figure 2: Structure of the residual block.

of network depth by the shortcut connections. See Fig. 2 for the structure of the
residual block. The calculation formula is as follows

h(l) =X(l)+F(X(l),W(l)), (3.5a)

X(l+1) =f(h(l)), (3.5b)

where X(l) and X(l+1) are the input and output of the lth residual unit, W(l) is
the weight set which depends on the number of layers in the lth residual unit. F
denotes the residual function which consists of some convolutional layers. f denotes
the rectified linear units activation function f = max(0,x). For the update of the
weights, we define the loss function as

E(Y,Ŷ )=
1

P

P∑
p=1

‖Y (p)−Ŷ (p)‖2RNY , (3.6)

where P is the total number of samples, Y (p) and Ŷ (p) are the exact output and
predicted output of the pth sample in the network, respectively. The norm ‖A‖RNY
satisfies ‖A‖RNY =

√
(A,A) and (A,A) means the standard inner-product in RNY . A

global average pooling layer (Avg-Pool) and a fully-connected layer (FC) are behind
the above discussed residual blocks. See Fig. 3 for the illustration of the neural
network model. It is clear that the main target of deep residual neural network
is to minimize the loss function E(Y,Ŷ ) to obtain the corresponding weights. We
introduce the update ofW(l) as a example with gradient descent. Other weights are
updated in the same way. Starting from a random initial weight W(l)

0 , the sequence
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Figure 3: A schematic illustration of the neural network model.

of the weights {W(l)
m }Mm=1 is calculated iteratively by

W(l)
m+1 =W(l)

m +∆W(l)
m , (3.7a)

∆W(l)
m =−η∂E(Y,Ŷ )

∂W(l)
, (3.7b)

where
∂E(Y,Ŷ )

∂W(l)
=
∂E(Y,Ŷ )

∂X(l+1)

∂X(l+1)

∂h(l)
∂h(l)

∂W(l)
, m=0,1,··· ,M,

and M represents the maximum number of epochs, η is the learning rate. If f is
also an identity mapping: X(l+1)=h(l), the form of the update of the weights can be
changed appropriately. The details of our neural network are given as follows and
dubbed as Algorithm 3.1.

Algorithm 3.1.

Step 1. Generate the network input X by LSM within certain wavenumber interval.

Step 2. Select a suitable parameterization form for 2D and 3D to generate the net-
work output Y .

Step 3. Train the neural network from the generated input and output data.

Step 4. Determine the refractive index and shape information by the recovered
transmission eigenvalues.
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4 Numerical examples

In this section, some numerical experiments are presented to demonstrate the ef-
fectiveness of the proposed method. To solve Eq. (2.4), an adaptive regularisation
method is used to adjust the regularisation parameter, which is used to control
the smoothness of the solution. In 2D, the boundary integral equation method
is employed to compute the far-field measurements u∞(x̂m0 ,dn0), m0 = 1,2,··· ,M0,
n0=1,2,··· ,N0, where M0 and N0 respectively denote the number of incident direc-
tion and observation direction. We take M0 =N0 = 32. In 3D, the corresponding
settings are similar to the cases of 2D. The noisy data is given by

u∞,σ(x̂,d)=u∞(x̂,d)(1+σ∆), (4.1)

where σ is the noise level and we take σ= 1% in all the following examples. 4 is
a random number generated by the normal distribution with mean 0 and standard
deviation 1. The Fourier expansion term is chosen as J=4. The structures of the
neural network are shown in Table 1. NFC depends on the size of the model input
and output. Three residual blocks are taken into account. ρ∈ [1,P ] samples are
randomly selected for batch training. The corresponding hyper parameters for the
network are set and listed in Table 2. The model weights are updated by stochastic
gradient descent algorithm.

Table 1: The structures of the network model.

Name Conv Residual Block-1 Residual Block-2 Residual Block-3 FC

Structure 1×3,8

[
1×3,16
1×3,16

]
×2

[
1×3,32
1×3,32

]
×2

[
1×3,64
1×3,64

]
×2 NFC×NY

Table 2: Hyper parameters of the network.

Hyper parameter P ρ η M

Value 10000 100 10−3 1000

4.1 Example 1

In this example, we consider three distinct shapes: peanut, pear, and flower, de-
noted as D1

0, D
2
0 and D3

0, respectively. The scatterers are located at the origin with
boundary

Γ1
0 :=

{
0.401

√
4.331cos2t+sin2t(cost,sint) : t∈ [0,2π]

}
,
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Figure 4: The plot of the norm of g for 2D scatters. (a) is the plot of the norm of g for the peanut
with index n10 =100.98 at the fixed sampling point (0.6,0.1). (b) is the plot of the norm of g for the
pear-shaped scatterer with index n20 =100 at the fixed sampling point (0.4,0.4). (c) is the plot of the
norm of g for the flower-shaped scatterer with index n30 =100.9 at the fixed sampling point (0.6,0.6).

Γ2
0 :={(1+0.15sin3t)(cost,sint) : t∈ [0,2π]},

Γ3
0 :={(0.436+4.327sin4t)(cost,sint) : t∈ [0,2π]}.

We set the interval I and wavenumbers are equally distributed within I for the
determination of transmission eigenvalue. Using the linear sampling method at
fixed sampling point, we obtain transmission eigenvalues. The specific settings are
as follows in the Table 3.

The four determined transmission eigenvalues of the peanut, obtained through
the linear sampling method at the fixed sampling point (0.6,0.1), are k1 = 0.452,
k2 =0.644, k3 =0.824, and k4 =1.016. The determined five transmission eigenvalues
of the pear are k1 = 0.786, k2 = 0.816, k3 = 0.922, k4 = 0.948 and k5 = 0.988 at fixed
sampling point (0.4,0.4). The determined five transmission eigenvalues of the flower
are k1 = 0.1337, k2 = 0.1550, k3 = 0.1787, k4 = 0.1887 and k5 = 0.2087 by the linear
sampling method at fixed sampling point (0.6,0.6). The plot of the norm of g are
shown in Fig. 4.

See Figs. 5(a), (d) and (g) for the exact physical configuration. Figs. 5(b), (e)
and (h) show the reconstructions of boundary Γ1

0, Γ2
0 and Γ3

0, respectively. Figs. 5(c),
(f) and (i) show the simultaneous reconstructions of refractive index ñ1

0, ñ
2
0, ñ

3
0 and

Table 3: Settings of 2D scatterers.

n0 I wavenumber sample point

peanut 100.98 [0.35,1.05] 117 (0.6,0.1)
pear 100 [0.7,1] 151 (0.4,0.4)

flower 100.9 [0.1,0.25] 121 (0.6,0.6)
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Figure 5: The reconstructions of 2D scatterers D1
0, D2

0 and D3
0. (a) is the exact physical configuration

of the peanut. (b) is the reconstruction for the boundary Γ1
0. (c) is the simultaneous reconstructions for

the refractive index ñ10 and the boundary Γ1
0. (d) is the exact physical configuration of the pear. (e) is

the reconstruction for the boundary Γ2
0. (f) is the simultaneous reconstructions for the refractive index

ñ20 and the boundary Γ2
0. (g) is the exact physical configuration of the flower. (h) is the reconstruction

for the boundary Γ3
0. (i) is the simultaneous reconstructions for the refractive index ñ30 and the boundary

Γ3
0.

boundary Γ1
0, Γ2

0, Γ3
0, respectively.

The recovered results of refractive index are ñ1
0=100.99, ñ2

0=99.341, ñ3
0=100.49.

These results fully illustrate that our method can work well for the scatterer without
a thin coating and can generate certain super-resolution effects because the size of
scatterer is much smaller than the underlying wavelength, 2π/k.
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4.2 Example 2

In this example, we assume D4
0, D

5
0 and D6

0 are respectively 2D scatters with the
thin coatings D1

1, D
2
1 and D3

1. The boundaries are given as follows

Γ4
0 :={(cost,sint) : t∈ [0,2π]},

Γ1
1 :={1.15(cost,sint) : t∈ [0,2π]},

Γ5
0 :={0.4

√
4cos2t+sin2t(cost,sint) : t∈ [0,2π]},

Γ2
1 :={(0.9cost,0.7sint) : t∈ [0,2π]},

Γ6
0 :={(0.058+0.554sin4t)(cost,sint) : t∈ [0,2π]},

Γ3
1 :={(0.9cost,0.7sint) : t∈ [0,2π]}.

The specific settings are as follows in the Table 4. The determined five transmission
eigenvalues of the peanut with the thin coating by the linear sampling method at
fixed sampling point (0.3,0.2) are k1 = 0.754, k2 = 0.781, k3 = 0.799, k4 = 0.847 and
k5 = 0.928. The refractive index in D4

0 and D1
1 are n4

0 = 4 and n1
1 = 280. The four

determined transmission eigenvalues of the pear with the thin coating, obtained
through the linear sampling method at the fixed sampling point (0.1,0.1), are k1 =
0.530, k2 =0.710, k3 =0.785 and k4 =0.970. The refractive index in D5

0 and D2
1 are

n5
0 = 5.25 and n2

1 = 200, respectively. The determined five transmission eigenvalues
of the flower with the thin coating at fixed sampling point (0.1,0.1) are k1 =0.845,
k2 =0.980, k3 =1.235, k4 =1.490 and k5 =1.505. The refractive index in D6

0 and D3
1

are n6
0 = 6.17 and n3

1 = 200, respectively. The plot of the norm of g are shown in
Fig. 6.

See Figs. 7(a), (d) and (g) for the exact physical configuration of the scatters with
the thin coatings. Figs. 7(b), (e) and (h) show the reconstructions of boundary Γ4

0,
Γ5
0 and Γ6

0, respectively. Figs. 7(c), (f) and (i) show the simultaneous reconstructions
of refractive index ñ4

0, ñ
5
0, ñ

6
0 and boundary Γ4

0, Γ5
0, Γ6

0, respectively.

The recovered results of refractive index are ñ4
0 = 3.9669, ñ5

0 = 5.08, ñ6
0 = 6.25.

Clearly, we find that for the case of the scatterer with a thin coating, our method
also has good reconstructions.

Table 4: Settings of 2D scatterers with the thin coating.

n0 n1 I wavenumber sample point

peanut with the thin coating 4.00 280 [0.7,1] 101 (0.3,0.2)
pear with the thin coating 5.25 200 [0.5,1.2] 121 (0.1,0.1)

flower with the thin coating 6.17 200 [0.8,1.6] 121 (0.1,0.1)
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(a) (b) (c)

Figure 6: The plot of the norm of g for 2D scatters with thin coatings. (a) is the plot of the norm of
g for peanut with index n40 =4.00 at the fixed sampling point (0.3,0.2). (b) is the plot of the norm of
g for pear-shaped scatterer with index n50 =5.25 at the fixed sampling point (0.1,0.1). (c) is the plot
of the norm of g for flower-shaped scatterer with index n60=6.17 at the fixed sampling point (0.1,0.1).

4.3 Example 3

In this example, D7
0 is considered as a 3D peanut-shaped. The boundary D7

0

is formed by rotating the two-dimensional peanut. Position the two-dimensional
peanut on the xy-plane with its center at the origin, and rotate it in the direction of
the positive x-axis. Due to the increased complexity of the three-dimensional prob-
lem compared to the two-dimensional one, we directly consider the 3D scatter with
a high refractive index. Additionally, we consider to increase the number of trans-
mission eigenvalues in the inverse problem. The refractive index in D7

0 is n7
0=100.04.

The determined eight transmission eigenvalues are k1=1.0277, k2=1.0377, k3=1.159,
k4 = 1.2289, k5 = 1.2313, k6 = 1.3229, k7 = 1.4562 and k8 = 1.5348. Fig. 8(a) shows
the reconstructions of boundary Γ7

0. Figs. 8(b)-(d) are the projections in the three
directions of Fig. 8(a). Fig. 8(e) shows the simultaneous reconstructions of refractive
index ñ7

0 and boundary Γ7
0. Figs. 8(f)-(h) are the projections in the three directions

of Fig. 8(d). The recovered refractive index is ñ7
0 =100.47, demonstrating the effec-

tiveness of our method in accurately capturing the refractive index variations from
the original value n7

0 = 100.04. These results fully illustrate that our method can
work well for the general 3D scatterers.

4.4 Example 4

In this example, D8
0 is considered as a 3D pear-shaped. The boundary D8

0 is formed
by rotating the two-dimensional pear. Position the two-dimensional pear on the
xy-plane with its center at the origin, and rotate it in the direction of the positive
x-axis. The refractive index in D8

0 is n8
0=100.95. The determined eight transmission
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Figure 7: The reconstructions of 2D scatterers D4
0, D5

0 and D6
0. (a) is the exact physical configuration

of a peanut with the thin coating. (b) is the reconstruction for the boundary Γ4
0. (c) is the simultaneous

reconstructions for the refractive index ñ40 and the boundary Γ4
0. (d) is the exact physical configuration

of a pear with the thin coating. (e) is the reconstruction for the boundary Γ5
0. (f) is the simultaneous

reconstructions for the refractive index ñ50 and the boundary Γ5
0. (g) is the exact physical configuration

of a flower with the thin coating. (h) is the reconstruction for the boundary Γ6
0. (i) is the simultaneous

reconstructions for the refractive index ñ60 and the boundary Γ6
0.

eigenvalues are k1 = 1.2895, k2 = 1.7854, k3 = 1.8986, k4 = 1.9832, k5 = 2.4304, k6 =
2.4951, k7 =2.7424 and k8 =2.870. Fig. 9(a) shows the reconstructions of boundary
Γ8
0. Figs. 9(b)-(d) are the projections in the three directions of Fig. 9(a). Fig. 9(e)

shows the simultaneous reconstructions of refractive index ñ8
0 and boundary Γ8

0.
Figs. 9(f)-(h) are the projections in the three directions of Fig. 9(d). The recovered
refractive index is ñ8

0 =100.52.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8: The reconstructions of the 3D peanut-shaped scatterer D7
0. (a) is the reconstruction for the

boundary Γ7
0. (b)-(d) are projections in the three directions of (a). (e) is the simultaneous reconstruc-

tions for the refractive index ñ70 and the boundary Γ7
0. (f)-(h) are projections in the three directions of

(b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: The reconstructions of the 3D pear-shaped scatterer D8
0. (a) is the reconstruction for

the boundary Γ8
0. (b)-(d) are projections in the three directions of (a). (e) shows the simultaneous

reconstructions of the refractive index ñ80 and the boundary Γ8
0. (f)-(h) are projections in the three

directions of (b).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: The reconstructions of the 3D flower-shaped scatterer D9
0. (a) is the reconstruction for the

boundary Γ9
0. (b)-(d) are projections in the three directions of (a). (e) is the simultaneous reconstruc-

tions for the refractive index ñ90 and the boundary Γ9
0. (f)-(h) are projections in the three directions of

(b).
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4.5 Example 5

In this example, D9
0 is considered as a 3D flower-shaped. The boundary D9

0 is formed
by rotating the two-dimensional flower. Position the two-dimensional flower on the
xy-plane with its center at the origin, and rotate it in the direction of the positive
x-axis. The refractive index in D9

0 is n9
0=100.85. The determined eight transmission

eigenvalues are k1 = 5.0708, k2 = 8.3243, k3 = 8.3708, k4 = 9.0326, k5 = 11.989, k6 =
12.579, k7=12.911 and k8=13.037. Fig. 10(a) shows the reconstructions of boundary
Γ9
0. Figs. 10(b)-(d) are the projections in the three directions of Fig. 9(a). Fig. 10(e)

shows the simultaneous reconstructions of refractive index ñ9
0 and boundary Γ9

0.
Figs. 10(f)-(h) are the projections in the three directions of Fig. 10(d). The recovered
refractive index is ñ9

0 =100.36.

5 Conclusions

In this paper, a two-step approach that combines LSM and neural networks is pro-
posed for solving inverse interior transmission eigenvalue problems. The transmis-
sion eigenvalues are determined within a certain wavenumber interval by LSM. To
avoid the different dimensions of the input in the neural network, we divide the
wavenumber interval into several subintervals based on the transmission eigenval-
ues. Each transmission eigenvalue resides in the corresponding subinterval. The
wavenumber, which yields the maximal value of the indicator function, constitutes
the model input for our neural network. The refractive index and shape are re-
garded as the model output. Results from numerical experiments not only validate
the effectiveness and promise of this two-step hybrid method but also reveal specific
findings or effects. Furthermore, the small transmission eigenvalues in our method
lead to a significant reduction in the size of the scatterer compared to the under-
lying wavelength, resulting in notable super-resolution effects. Hence, our method
can generate certain super-resolution effects. However, our method requires a huge
computational cost, especially for the case of 3D. In the future, we are committed
to exploring a faster algorithm for determining the transmission eigenvalues. Other
challenging and practical problems include extending our research to more difficult
cases of elastic and electromagnetic transmission eigenvalue problems.
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