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Abstract

This paper presents three regularized models for the logarithmic Klein-Gordon equa-

tion. By using a modified Crank-Nicolson method in time and the Galerkin finite element

method (FEM) in space, a fully implicit energy-conservative numerical scheme is con-

structed for the local energy regularized model that is regarded as the best one among the

three regularized models. Then, the cut-off function technique and the time-space error

splitting technique are innovatively combined to rigorously analyze the unconditionally op-

timal and high-accuracy convergence results of the numerical scheme without any coupling

condition between the temporal step size and the spatial mesh width. The theoretical

framework is uniform for the other two regularized models. Finally, numerical experiments

are provided to verify our theoretical results. The analytical techniques in this work are

not limited in the FEM, and can be directly extended into other numerical methods. More

importantly, this work closes the gap for the unconditional error/stability analysis of the

numerical methods for the logarithmic systems in higher dimensional spaces.
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1. Introduction

In this paper, we consider the Klein-Gordon equation with the logarithmic nonlinear term

(LogKGE)

utt(x, t)−∆u(x, t) + u(x, t) + λu(x, t)f
(
|u(x, t)|2

)
= 0, (x, t) ∈ Ω× (0, T ], (1.1a)

u(x, 0) = φ0(x), ut(x, 0) = φ1(x), x ∈ Ω, (1.1b)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (1.1c)

where u(x, t) is a real valued scalar field, λ is a parameter measuring the force of the nonlinear

interaction, φ0(x) and φ1(x) are given sufficiently smooth functions, Ω ⊂ Rd (d = 1, 2, 3) is

a bounded convex polygonal or polyhedral domain fixed on a Lipschitz continuous boundary

∂Ω, and

f(ρ) = ln ρ, ρ = |u(x, t)|2 > 0. (1.2)
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The LogKGE (1.1) admits the law of energy conservation defined by

E(t) =

∫

Ω

(
|ut(x, t)|2 + |∇u(x, t)|2 + |u(x, t)|2 + λF

(
|u(x, t)|2

))
dx ≡ E(0), t ∈ [0, T ], (1.3)

where u(·, t) ∈ H1(Rd), ut(·, t) ∈ L2(Rd) and

F (ρ) =

∫ ρ

0

f(s)ds =

∫ ρ

0

ln sds = ρ ln ρ− ρ, ρ > 0. (1.4)

The logarithmic nonlinearity is widely used in various physical models for different fields of

research, such as the logarithmic Schrödinger equation (LogSE) established in quantum me-

chanics or quantum optics [15, 16], the logarithmic Korteweg-de Vries equation and logarith-

mic Kadomtsev-Petviashvili equation applied to characterize oceanography and fluid dynam-

ics [22, 45], the Cahn-Hilliard equation with logarithmic potentials [18, 20] studied in material

sciences, and so on. Additionally, the LogKGE is regarded as the relativistic version of the

LogSE [13], which has been introduced into the quantum field theory by Rosen [37]. This

equation has attracted widespread attention due to its fundamental importance in the study of

quantum field theory and its connection to various physical phenomena.

In the past decades, many scholars have devoted themselves to studying the well-posedness

of the Cauchy problem for LogKGEs. Bartkowski et al. [13] proved the existence and uniqueness

of weak solutions and classical solutions for one-dimensional LogKGE. Later, Natali et al. [35]

gave the orbital stability results of periodic standing waves of one-dimensional LogKGE. By

employing the auxiliary equation method, Alzaleq et al. [2] found new bounded and unbounded

exact traveling wave solutions for LogKGE with three different forms. In [46], the author

indicated that LogKGE possessed Gaussons: Solitary wave solutions of Gaussian shape. Since

the analytical solutions of most nonlinear Klein-Gordon equations are not easy to find, a series

of numerical methods have been considered, including finite difference methods (FDMs) [8,

11, 12, 14, 30, 50], FEMs [17, 24, 44], spectral methods [9], exponential wave integrator [8] and

operator splitting [10] Fourier pseudospectral methods, and so on. However, due to the blow-up

of the logarithmic nonlinear term near the origin, these numerical methods cannot be directly

applied to logarithmic equations.

In order to avoid the blow-up, Bao et al. [5,6] proposed a regularized FDM and a regularized

splitting method for LogSE, and established their error bound. Li et al. [27] applied the FDM

to solve the numerical solutions of the regularized LogSE in an unbounded domain. Later,

for the LogKGE, two energy-conservative regularized FDMs were employed and their error

estimates were obtained [48, 49]. It is well known that logarithmic function will only appear

numerical blow-up when ρ → 0+, and this phenomenon will not occur when the value of ρ is

large. Therefore, Bao et al. [7] recently presented an energy regularized logarithmic Schrödinger

equation (ERLogSE) through local energy regularization (LER) technique, that is, a sequence

of polynomials approximation to the interaction energy density F (ρ) at near origin. Inspired

by above works, Yan et al. [47] extended the LER technique to the LogKGE. A conservative

Crank-Nicolson FDM and an explicit FDM were raised for the obtained ERLogKGE. Through

the above analysis and our knowledge, it is found that there exists no research focusing on

the FEM for the LogKGE. However, we must emphasize that the finite element discretization

allows us to work in a very low regularity states, which cannot be done by spectral methods

or FDMs. Additionally, the FEM exhibits excellent adaptability to complex geometric regions

and boundary conditions. In this work, we aim to bridge this gap by developing an energy-

conservative FEM for the LogKGE (1.1).
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Conservative numerical schemes have been widely studied because they can capture more

detailed physical processes by preserving some invariant properties (see [1, 3, 4, 39, 41, 47] and

references therein). And the existence of these conservation properties is crucial to ensure the

stability and convergence of numerical schemes [19]. In addition, through extensive numeri-

cal experiments, Sanz-Serna et al. [39] have found that conservative schemes perform better

than nonconservative ones, as the latter may be prone to linear blow-up. A classical energy-

conservative method for the some nonlinear PDEs is the modified Crank-Nicolson scheme stud-

ied by Sanz-Serna [38]. Unfortunately, it is always a full-implicit scheme that presents signif-

icant challenges in error analysis, especially for the FEM. In both classical papers [1, 39], the

optimal L2-norm error estimates for modified Crank-Nicolson FEM were analyzed, but they

need a time-space ratio constraint. Bao et al. [3, 4] established uniform error estimates for the

modified Crank-Nicolson FDM, and similar coupling condition was obtained. For the LogKGE

(1.1), Yan et al. [49] studied the optimal H1-seminorm error estimates of the Crank-Nicolson

FDM in one-dimension space. However, if one wants to generalize the analytical methods to

high-dimension space, the time-space ratio constraint must be required.

With the purpose of eliminating the time-space ratio restrictions of the error estimates,

a time-space error splitting technique was proposed in [25, 26], which has been widely utilized

in error estimates of numerical schemes for a large number of nonlinear models [28, 29, 40, 43].

Indeed, removing the time-space ratio constraint for a numerical scheme can lead to significant

improvements in computational efficiency, making it possible to solve larger and more complex

problems with greater accuracy and efficiency, and better agreement with experimental data.

However, the most applications of the time-space error splitting technique are always limited to

the linearized numerical schemes, which may be not enough to analyze the unconditional error

estimates of a full-implicit numerical scheme. From [1,3,4,28,40], we learn that cut-off function

technique is an effective method to deal with general nonlinear numerical schemes, which can

truncate nonlinear terms into global Lipschitz functions with compact support in d-dimensions

(d=1, 2, 3). The cut-off function technique can ensure that once the continuous solutions or

the time discrete solutions are bounded, the numerical solutions will not be too far away from

them.

In this work, we present an energy conservative numerical scheme for the LogKGE (1.1),

which uses the Galerkin FEM for space discretization and the Crank-Nicolson scheme for time

discretization. Subsequently, we innovatively combine the time-space error splitting technique

with the cut-off function technique to obtain the optimal error estimates of Crank-Nicolson

FEM, which not only eliminates any coupling condition between the temporal step size and

the spatial mesh width, but also overcomes the difficulties of the fully implicit scheme in error

analysis. Moreover, we point that the error analytical method in this work can be naturally

applicable to the cases of any dimension spaces, which can be regarded a great improvement

compared with the existing references [47, 49]. In addition, in order to achieve the similar H1-

norm error convergence order as in [47, 49] under the condition of low regularity, we devote to

the study of methods to improve the accuracy of finite element solutions. At present, one of the

methods to improve accuracy is to adopt postprocessing technology, which involves performing

some kind of processing on the numerical results obtained using FEMs. The seniors have already

done a lot of excellent work in this regard, please refer to [23,33,36] and references therein. Lin

et al. [31, 34] improved the global convergence order by using rectangular grids and combining

interpolation postprocessing techniques. Shi et al. [29,40] utilized interpolation postprocessing

technique to obtain the global superconvergence results. Motivated by their works, we apply
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the interpolated postprocessing technique to study the numerical scheme of the ERLogKGE,

resulting in significant improvements in the accuracy of finite element solutions in H1-norm,

while keeping the computational complexity within reasonable limits. This contribution is one

of the key highlights of this work.

The overall structure of the paper is as follows. In Section 2, three regularized models of

LogKGE are introduced. For the ERLogKGE, we propose its Crank-Nicolson FEM and prove

the energy conservation of the numerical scheme in Section 3. In Section 4, the main results of

this paper are stated, including unconditionally optimal and high accuracy convergence results.

Section 5 is devoted to the proof of the convergence results by using the cut-off error splitting

technique. In Section 6, we provide numerical experiments to verify the accuracy and validity

of the theoretical results. Finally, some conclusions are drawn in Section 7.

2. Several Regularized Models for LogKGE

In order to avoid the blow-up phenomenon of the logarithmic nonlinearity at the origin,

three regularized models [7, 47] for LogKGE (1.1) were established, which all rely on a small

regularization parameter ε, 0 < ε ≪ 1. Their specific forms are as follows:

RLogKGE I:

uε
tt(x, t)−∆uε(x, t)+uε(x, t)+λuε(x, t)f̃ ε

(
|uε(x, t)|2

)
= 0, (x, t) ∈ Ω× (0, T ], (2.1a)

uε(x, 0) = φ0(x), uε
t (x, 0) = φ1(x), x ∈ Ω, (2.1b)

uε(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (2.1c)

where

f̃ ε
(
|uε(x, t)|2

)
= 2 ln (ε+ |uε(x, t)|)

with

F̃ ε(ρ) =

∫ ρ

0

f̃ ε(s) ds = ρ ln(ε+
√
ρ)2 + 2ε

√
ρ− ρ− ε2 ln

(
1 +

√
ρ

ε

)2

, ρ = |uε(x, t)|2.

RLogKGE II:

uε
tt(x, t)−∆uε(x, t)+uε(x, t)+λuε(x, t)f̂ ε

(
|uε(x, t)|2

)
= 0, (x, t) ∈ Ω× (0, T ], (2.2a)

uε(x, 0) = φ0(x), uε
t (x, 0) = φ1(x), x ∈ Ω, (2.2b)

uε(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (2.2c)

where

f̂ ε
(
|uε(x, t)|2

)
= ln

(
ε2 + |uε(x, t)|2

)

with

F̂ ε(ρ) =

∫ ρ

0

f̂ ε(s) ds = (ε2 + ρ) ln(ε2 + ρ)− ρ− 2ε2 ln ε, ρ = |uε(x, t)|2.

The LER technique is that we regularize the energy density function F (ρ) only locally in

the region {ρ : ρ < ε2} by a sequence of polynomials, and keep it unchanged in {ρ : ρ > ε2},
i.e.

F ε
n(ρ) = F (ρ) χ{ρ≥ε2} + P ε

n+1(ρ)χ{ρ<ε2}, n ≥ 2, (2.3)
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where χA is the characteristic function of the set A, and P ε
n+1 is a polynomial of degree n+ 1,

and the specific expression is as follows (please refer to literature [47] for the detailed derivation

process):

P ε
n+1(ρ) = ρ

(
ln(ε2)− 1−

n∑

k=1

1

k

(
1− ρ

ε2

)k
)
. (2.4)

Differentiating (2.3) with respect to ρ and utilizing (1.4) and (2.4), we get

f ε
n(ρ) =

(
F ε
n

)′
(ρ) = ln ρ χ{ρ≥ε2} +

(
P ε
n+1

)′
(ρ) χ{ρ<ε2}

= ln ρχ{ρ≥ε2}+

(
ln(ε2)−n+ 1

n

(
1− ρ

ε2

)n
−

n−1∑

k=1

1

k

(
1− ρ

ε2

)k
)
χ{ρ<ε2}, ρ ≥ 0. (2.5)

Therefore, the ERLogKGE is given as follows:

ERLogKGE:

uε
tt(x, t)−∆uε(x, t)+uε(x, t)+λuε(x, t)f ε

n

(
|uε(x, t)|2

)
= 0, (x, t) ∈ Ω× (0, T ], (2.6a)

uε(x, 0) = φ0(x), uε
t (x, 0) = φ1(x), x ∈ Ω, (2.6b)

uε(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (2.6c)

where f ε
n is defined by (2.5).

Remark 2.1. In ERLogKGE, we demand F ε
n(ρ) ∈ Cn([0,+∞)), and F ε

n(0) = F (0) = 0 that

allows the regularized energy to be well-defined on the whole space. Meanwhile, as the derivative

of F ε
n(ρ), we observe that fε

n(ρ) ∈ Cn−1([0,+∞)) for n ≥ 2.

Remark 2.2. Notice that RLogKGE I and RLogKGE II are global regularized models for

LogKGE (1.1), involving a direct regularization of f(ρ) in (1.2). In theory, however, logarith-

mic functions only blow-up when ρ → 0+ , not when ρ is large. Therefore, the ERLogKGE

regularizes F (ρ) only locally in the region {ρ : ρ < ε2}, and keep it unchanged in {ρ : ρ > ε2}.
Moreover, some numerical experiments have shown that the ERLogKGE is better than other

two global regularized models [47].

Remark 2.3. For convenience, we only focus on the numerical method of the ERLogKGE

(2.6) with λ = 1. In what follows, we will build an energy-conservative numerical scheme of the

ERLogKGE (2.6), and carry out a series of theoretical analyses on the constructed numerical

method, including conservation, and unconditional optimal and high-accuracy convergence. It

should be noted that all theories are equally applicable to the other two models, and we only

verify them through some numerical examples.

3. Energy-conservative Finite Element Numerical Scheme

Let Ω be a bounded and convex polygon in R2 (or polyhedron in R3). We define Th as a

quasi-uniform partition of Ω, dividing Ω into M elements by triangles or rectangles in R2 (or

tetrahedra or hexahedra in R3). Define h = maxTi∈Th
{diamTi}, i = 1, 2, . . . ,M , as the maxi-

mum diameter of the element. Let Wh ⊂ H1
0 (Ω) be a finite dimensional subspace, which consists

of continuous piecewise polynomials of degree r (r ≥ 1) on Th. Below we give specific definitions

about some finite element spaces in R2. For Q1 finite element space, let T̂ :=[−1, 1]× [−1, 1] be
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the reference element on x̂− ŷ plane with the vertices Â1:=(−1,−1), Â2 := (1,−1), Â3 := (1, 1)

and Â4 := (−1, 1). Then, the conforming finite element {T̂ , P̂ , Σ̂} can be defined as

P̂ = span{1, x̂, ŷ, x̂ŷ}, Σ̂ =
{
v̂
(
Âi

)
, i = 1, 2, 3, 4

}
.

For P1 finite element space, let T̂ be an isosceles right triangle on λ1 − λ2 reference plane with

the vertices Â1 := (1, 0), Â2 := (0, 1) and Â3 := (0, 0). Then, the conforming finite element

{T̂ , P̂ , Σ̂} can be defined as

P̂ = span{λ1, λ2, 1− λ1 − λ2}, Σ̂ =
{
v̂
(
Âi

)
, i = 1, 2, 3

}
.

Define the Ritz projection operator Rh: H
1
0 (Ω) → Wh by [42]

(
∇(v −Rhv),∇ωh

)
= 0, ∀ωh ∈ Wh, (3.1)

which satisfies for any v ∈ Hs(Ω) ∩H1
0 (Ω),

‖v −Rhv‖L2 + h‖∇(v −Rhv)‖L2 ≤ CΩh
s‖v‖Hs , 1 ≤ s ≤ r + 1, (3.2)

where CΩ is a constant independent of h. For bilinear elements, there exists a constant CIh

independent of h, which satisfies [42]

‖Ihv −Rhv‖H1 ≤ CIhh
2‖v‖H3 , ∀ v ∈ H1

0 (Ω) ∩H3(Ω), (3.3)

where Ih : v ∈ H1(Ω) → Ihv ∈ Wh be the associated interpolation operator. Recall the inverse

inequality in the finite element space, where there exists a constant Cinv independent of h such

that

‖ωh‖L∞ ≤ Cinvh
− d

2 ‖ωh‖L2 , ∀ωh ∈ Wh. (3.4)

It should be noted that if the mesh partition is quasi-uniform, then (3.2) and (3.4) are always

valid in finite element space.

Let {tk| tk = kτ, 0 ≤ k ≤ N} be a uniform partition of [0, T ] with the time step τ = T/N .

For convenience, we let uk := u(·, tk), k = 1, 2, . . . , N , and define the following operators:

δ2tω
k =

ωk+1 − 2ωk + ωk−1

τ2
, δ+t ω

k =
ωk+1 − ωk

τ
, δ−t ω

k =
ωk − ωk−1

τ
,

δtω
k =

ωk+1 − ωk−1

2τ
, ω̂k =

ωk+1 + ωk−1

2
.

Based on the above preparations, the Crank-Nicolson FEM is defined for ERLogKGE (2.6) to

seek Uε,k+1
h ∈ Wh such that

(
δ2tU

ε,k
h , ωh

)
+
(
∇Ûε,k

h ,∇ωh

)
+
(
Ûε,k
h , ωh

)

+
(
Gε

n

(
Uε,k+1
h , Uε,k−1

h

)
, ωh

)
= 0, ∀ωh ∈ Wh (3.5)

for k = 1, 2, . . . , N − 1, where the initial and first step finite element solutions are determined

by

Uε,0
h = Rhφ0, Uε,1

h = Rh

(
φ0 + τφ1 +

τ2

2

(
∆φ0 − φ0 − φ0f

ε
n

(
|φ0|2

)))
. (3.6)
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Here, Gε
n(z1, z2) is defined for z1, z2 ∈ R as

Gε
n(z1, z2) :=

∫ 1

0

f ε
n

(
θ |z1|2 + (1− θ) |z2|2

)
dθ · z1 + z2

2

=
F ε
n

(
|z1|2

)
− F ε

n

(
|z2|2

)

|z1|2 − |z2|2
· z1 + z2

2
(3.7)

with F ε
n is defined by (2.3).

Theorem 3.1. The fully discrete scheme (3.5) satisfies the energy conservation law, i.e.

Eε,N−1 = Eε,N−2 = · · · = Eε,0,

where

Eε,k :=
1

2τ

∥∥δ+t Uε,k
h

∥∥2
L2 +

1

4τ

(∣∣Uε,k+1
h

∣∣2
H1 +

∣∣Uε,k
h

∣∣2
H1

)
+

1

4τ

(∥∥Uε,k+1
h

∥∥2
L2 +

∥∥Uε,k
h

∥∥2
L2

)

+
1

4τ

∫

Ω

(
F ε
n

(∣∣Uε,k+1
h

∣∣2
)
+ F ε

n

(∣∣Uε,k
h

∣∣2
))

dx, 0 ≤ k ≤ N − 1.

Proof. Taking ωh = δtU
ε,k
h in (3.5) gives

(
δ2tU

ε,k
h , δtU

ε,k
h

)
+
(
∇Ûε,k

h ,∇δtU
ε,k
h

)
+
(
Ûε,k
h , δtU

ε,k
h

)

+
(
Gε

n

(
Uε,k+1
h , Uε,k−1

h

)
, δtU

ε,k
h

)
= 0. (3.8)

By using

δ2tU
ε,k
h =

1

τ

(
δ+t U

ε,k
h − δ+t U

ε,k−1
h

)
, δtU

ε,k
h =

1

2

(
δ+t U

ε,k
h + δ+t U

ε,k−1
h

)
,

we can easily get

(
δ2tU

ε,k
h , δtU

ε,k
h

)
=

1

2τ

(
δ+t U

ε,k
h − δ+t U

ε,k−1
h , δ+t U

ε,k
h + δ+t U

ε,k−1
h

)

=
1

2τ

(∥∥δ+t Uε,k
h

∥∥2
L2 −

∥∥δ+t Uε,k−1
h

∥∥2
L2

)
. (3.9)

It is obvious that

(
∇Ûε,k

h ,∇δtU
ε,k
h

)
=

1

4τ

(
∇Uε,k+1

h +∇Uε,k−1
h ,∇Uε,k+1

h −∇Uε,k−1
h

)

=
1

4τ

(∣∣Uε,k+1
h

∣∣2
H1 −

∣∣Uε,k−1
h

∣∣2
H1

)
, (3.10)

(
Ûε,k
h , δtU

ε,k
h

)
=

1

4τ

(
Uε,k+1
h + Uε,k−1

h , Uε,k+1
h − Uε,k−1

h

)

=
1

4τ

(∥∥Uε,k+1
h

∥∥2
L2 −

∥∥Uε,k−1
h

∥∥2
L2

)
. (3.11)

Meanwhile, according to the definition of Gε
n in (3.7), we have

(
Gε

n

(
Uε,k+1
h , Uε,k−1

h

)
, δtU

ε,k
h

)

=

∫

Ω

F ε
n

(∣∣Uε,k+1
h

∣∣2)− F ε
n

(∣∣Uε,k−1
h

∣∣2)
∣∣Uε,k+1

h

∣∣2 −
∣∣Uε,k−1

h

∣∣2 · U
ε,k+1
h + Uε,k−1

h

2
· δtUε,k

h dx

=
1

4τ

∫

Ω

(
F ε
n

(∣∣Uε,k+1
h

∣∣2
)
− F ε

n

(∣∣Uε,k−1
h

∣∣2
))

dx. (3.12)
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Substituting (3.9)-(3.12) into (3.8) gives

1

2τ

(∥∥δ+t Uε,k
h

∥∥2
L2 −

∥∥δ+t Uε,k−1
h

∥∥2
L2

)
+

1

4τ

(∣∣Uε,k+1
h

∣∣2
H1 −

∣∣Uε,k−1
h

∣∣2
H1

)

+
1

4τ

(∥∥Uε,k+1
h

∥∥2
L2 −

∥∥Uε,k−1
h

∥∥2
L2

)

+
1

4τ

∫

Ω

(
F ε
n

(∣∣Uε,k+1
h

∣∣2
)
− F ε

n

(∣∣Uε,k−1
h

∣∣2
))

dx = 0, 1 ≤ k ≤ N − 1,

which completes the proof. �

Remark 3.1. In Theorem 3.1, the law of energy conservation has been proven. However,

the energy here is not a discrete version of the energy (1.3) of the original equation and it

corresponds only to the energy of the ERLogKGE. Thankfully, we have learned that the energy

of ERLogKGE converges twice to the energy of the original equation depending on the small

regularization parameter ε, i.e O(ε2), which has been proven in reference [47].

4. Main Results

Suppose that the solution of system (2.6) exists and satisfies

‖φ0‖Hr+1(Ω) + ‖uε‖L∞(0,T ;Hr+1(Ω)) +
∥∥uε

t

∥∥
L2(0,T ;H2(Ω))

+
∥∥uε

tt

∥∥
L2(0,T ;Hr+1(Ω))

+
∥∥uε

tttt

∥∥
L2(0,T ;H1(Ω))

≤ Cr. (4.1)

Under the regularity assumption (4.1), we define

K0 := max
1≤k≤N

‖uε,k‖L∞(Ω) + 1, (4.2)

where K0 is a constant independent of τ, h and N .

Next, we will state the first main result of this paper. Under the assumption of regularity

(4.1), the unconditional optimal error estimates of the modified Crank-Nicolson finite element

scheme under the L2-norm and H1-norm are presented.

Theorem 4.1. Assume that the system (2.6) has unique solution uε satisfying (4.1). Then the

fully discrete scheme (3.5)-(3.6) has unique solution Uε,k
h . Moreover, there exist τ1 > 0, h1 > 0,

such that when τ ≤ τ1 and h ≤ h1, there are

∥∥uε,k − Uε,k
h

∥∥
L2 ≤ C(τ2 + hr+1),

∥∥∇
(
uε,k − Uε,k

h

)∥∥
L2 ≤ C(τ2 + hr), 0 ≤ k ≤ N, (4.3)

where C is a positive constant that is independent of τ and h but related to uε. In addition, it

could be different in different places.

Remark 4.1. The optimal error estimates in Theorem 4.1 are established without the re-

striction of time-space ratio, which is different from the work in [49] that must require τ ≤
O(| ln h|−1/2) in two-dimensions.

In the following theorem, we shall show such a phenomenon that when the rectangle meshes

are used for quasi-uniform partition of Ω ⊂ R2 and bilinear finite element is selected for

Wh ⊂ H1
0 (Ω), the error between finite element interpolation and finite element solution is much

smaller than that between analytic solution and finite element solution in H1-seminorm sense.
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Theorem 4.2. Assuming (3.3) and (4.3) hold. Then, the superclose results are obtained

∥∥∇
(
Ihu

ε,k − Uε,k
h

)∥∥
L2 ≤ C(τ2 + h2), 0 ≤ k ≤ N, (4.4)

where the interpolation operator Ih is the same as in (3.3).

Remark 4.2. By comparing (4.4) with the second inequality of r = 1 in (4.3), it can be seen

that the convergence order of (4.4) is one order higher in space under H1-seminorm, which is

the phenomenon of superclose.

Under the premise of (4.4), we can further obtain the following high-accuracy convergence

results by using interpolated postprocessing technique, which is another main contribution of

this paper.

Theorem 4.3. Under the assumptions of Theorem 4.2, we have

∥∥∇
(
uε,k − I2hU

ε,k
h

)∥∥
L2 ≤ C(τ2 + h2), 0 ≤ k ≤ N, (4.5)

where the interpolation postprocessing operator I2h is defined in [32].

Remark 4.3. Take r = 1 in (4.3). Comparing (4.3) with (4.5), we find that the accuracy of

the processed finite element solutions is improved by one order in space, that is, the global

convergence order is developed from O(τ2 +h) to O(τ2 +h2) under H1-seminorm. In addition,

at the same rate of convergence, the result in Theorem 4.5 allows us to use lower regularity

compared to the Crank-Nicolson finite difference scheme [49].

Remark 4.4. At present, there are roughly two ways to improve the accuracy of finite element

solutions: one is to encrypt the mesh or increase the number of piecewise polynomials in the

finite element space, and the other is to adopt postprocessing technique. Using the first method

will greatly increase computation, but the speed of computer technology development always

cannot keep up with the demand for FEMs. However, the second approach only needs to add

the postprocessing process to the finite element solutions, which improves the accuracy while

the computation increases little. Therefore, we adopt interpolated postprocessing technique in

this paper to improve the global accuracy of finite element solutions.

The proof of Theorems 4.1-4.3 will be given in Section 5.

5. Error Analysis

In this section, we will consider unconditional optimal error estimates for the fully discrete

scheme. Then combine this result with interpolation postprocessing technique to obtain our

high-accuracy convergence results.

5.1. Error estimates for the time discrete system

Now, we consider the following time discrete system for the modified Crank-Nicolson finite

element scheme (3.5)-(3.6):

δ2tU
ε,k −∆Ûε,k + Ûε,k +Gε

n(U
ε,k+1, Uε,k−1) = 0, k = 1, 2, . . . , N − 1 (5.1)
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with the initial and boundary conditions

Uε,0(x) = φ0(x), Uε,1(x) = φ0(x) + τφ1 +
τ2

2

(
∆φ0 − φ0 − φ0f

ε
n

(
|φ0|2

))
, x ∈ Ω, (5.2)

Uε,k(x) = 0, x ∈ ∂Ω, k = 0, 1, . . . , N. (5.3)

According to (5.1), we have

δ2t u
ε,k −∆ûε,k + ûε,k +Gε

n(u
ε,k+1, uε,k−1) = Rε,k, k = 1, 2 . . . , N − 1, (5.4)

where

Rε,k =
(
δ2t u

ε,k − uε,k
tt

)
−∆

(
ûε,k − uε,k

)
+
(
ûε,k − uε,k

)

+
(
Gε

n(u
ε,k+1, uε,k−1)− uε,kf ε

n

(
|uε,k|2

))
. (5.5)

Denote

eε,kτ = uε,k − Uε,k, 0 ≤ k ≤ N. (5.6)

Since the fully discrete scheme (3.5)-(3.6) is a full-implicit scheme, the boundedness of the

numerical solution Uε,k
h under the L∞-norm cannot be obtained directly. To solve this problem,

we establish an auxiliary problem to handle the nonlinearity Gε
n using the cut-off function

technique. This is the core of our theoretical analysis. Choose a smooth function µ(s) ∈ C∞(R)

such that

µ(s) =





1, |s| ∈ [0, 1),

e
1− 1

1−(1−|s|)2 , |s| ∈ [1, 2),

0, |s| ∈ [2,+∞).

(5.7)

Define

gεn,A(s) = sµ

(
s

K2
0

)
, f ε

n,A(s) = f ε
n(s)µ

(
s

K2
0

)
, (5.8)

where s ≥ 0, s ∈ R. The function f ε
n,A(s) will be used as a truncated function of f ε

n(s). More-

over, f ε
n,A(s) and gεn,A(s) are global Lipschitz functions with compact support in d-dimensions

(d = 1, 2, 3), and the following properties are valid [3]:

∣∣gεn,A(s1)− gεn,A(s2)
∣∣ ≤ CK0 |s1 − s2| , (5.9)∣∣f ε

n,A(s1)− f ε
n,A(s2)

∣∣ ≤ CK0 |
√
s1 −

√
s2| , ∀ s1, s2 ≥ 0, (5.10)

where CK0 is a positive and bounded constant that is related to K0 and independent of τ and h.

In the following lemma, we will give the error estimates of the time discrete system and the

L∞-norm boundedness of the time discrete solution Uε,k.

Lemma 5.1. Suppose that uε is the solution of the system (2.6) satisfying the regularity of

(4.1), and the time discrete system (5.1)-(5.3) have unique solutions Uε,k, 0 ≤ k ≤ N . Then

there exists τ2 > 0 such that when τ ≤ τ2

∥∥eε,kτ

∥∥
L2 +

∥∥∇eε,kτ

∥∥
L2 ≤ C∗

1 τ
2, (5.11)

‖Uε,k‖H2 ≤ C∗
2 , ‖Uε,k‖L∞ ≤ K0, (5.12)

where C∗
1 and C∗

2 are positive constants independent of τ and h.
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Proof. Let us introduce the following auxiliary problem:

δ2tU
ε,k
A −∆Ûε,k

A + Ûε,k
A +Gε

n,A

(
Uε,k+1
A , Uε,k−1

A

)
= 0, k = 1, 2, . . . , N − 1, (5.13)

Uε,0
A (x) = Uε,0(x), Uε,1

A (x) = Uε,1(x), x ∈ Ω (5.14)

with Uε,k
A (x) = 0 on ∂Ω for k = 0, 1, . . . , N . Here, Gε

n,A(z1, z2) for z1, z2 ∈ R is

Gε
n,A(z1, z2) =

∫ 1

0

f ε
n,A

(
θ|z1|2 + (1− θ) |z2|2

)
dθ gεn,A

(
z1 + z2

2

)

=
F ε
n,A

(
|z1|2

)
− F ε

n,A

(
|z2|2

)

|z1|2 − |z2|2
gεn,A

(
z1 + z2

2

)
. (5.15)

From (5.13), we get

δ2t u
ε,k −∆ûε,k + ûε,k +Gε

n,A(u
ε,k+1, uε,k−1) = Rε,k

A , 1 ≤ k ≤ N − 1, (5.16)

where

Rε,k
A =

(
δ2t u

ε,k − uε,k
tt

)
−∆

(
ûε,k − uε,k

)
+
(
ûε,k − uε,k

)

+
(
Gε

n,A(u
ε,k+1, uε,k−1)− uε,kf ε

n

(
|uε,k|2

))
. (5.17)

From (4.2) and the definition of Gε
n,A, we find that Rε,k

A = Rε,k. Define

eε,kτ,A = uε,k − Uε,k
A , 0 ≤ k ≤ N.

Using Taylor’s expansion and the definitions of Uε,0
A and Uε,1

A , we obtain

eε,0τ,A = 0, eε,1τ,A = uε,1 − Uε,1
A ≤ Cτ2. (5.18)

For k ≥ 2, subtracting (5.16) from (5.13), the error equation is given

δ2t e
ε,k
τ,A −∆êε,kτ,A + êε,kτ,A +Gε

n,A(u
ε,k+1, uε,k−1)−Gε

n,A

(
Uε,k+1
A , Uε,k−1

A

)
= Rε,k

A . (5.19)

Multiplying (5.19) by δte
ε,k
τ,A, and then integrating it over Ω arrives at

1

2τ

(∥∥δ−t eε,k+1
τ,A

∥∥2
L2 −

∥∥δ−t eε,kτ,A

∥∥2
L2

)
+

1

4τ

(∥∥∇eε,k+1
τ,A

∥∥2
L2 −

∥∥∇eε,k−1
τ,A

∥∥2
L2

)

+
1

4τ

(∥∥eε,k+1
τ,A

∥∥2
L2 −

∥∥eε,k−1
τ,A

∥∥2
L2

)

=
(
Rε,k

A , δte
ε,k
τ,A

)
−
(
Gε

n,A(u
ε,k+1, uε,k−1)−Gε

n,A

(
Uε,k+1
A , Uε,k−1

A

)
, δte

ε,k
τ,A

)
. (5.20)

Next, we estimate the two terms on the right-hand side of (5.20). Using Taylor’s expansion

for uε at t = tk, the following results are derived:

∥∥δ2t uε,k − uε,k
tt

∥∥2
L2 ≤ τ3

18

∫ tk+1

tk−1

∥∥uε
tttt

∥∥2
L2dt, (5.21)

∥∥∆(ûε,k − uε,k)
∥∥2
L2 ≤ τ3

2

∫ tk+1

tk−1

∥∥uε
tt

∥∥2
H2dt, (5.22)

∥∥ûε,k − uε,k
∥∥2
L2 ≤ τ3

2

∫ tk+1

tk−1

∥∥uε
tt

∥∥2
L2dt. (5.23)
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Reviewing the definitions of the truncation function f ε
n,A(s), g

ε
n,A(s) and (4.2), we have

gεn,A(u
ε,k) = uε,k, f ε

n,A(u
ε,k) = f ε

n(u
ε,k), f ε

n,A

(
|uε,k|2

)
= f ε

n

(
|uε,k|2

)
. (5.24)

According to (5.15) and (5.24), we derive

∥∥Gε
n,A(u

ε,k+1, uε,k−1)− uε,kf ε
n

(
|uε,k|2

)∥∥2
L2

=

∥∥∥∥
∫ 1

0

f ε
n,A

(
θ|uε,k+1|2 + (1 − θ)|uε,k−1|2

)
dθ gεn,A

(
ûε,k

)
− uε,kf ε

n

(
|uε,k|2

) ∥∥∥∥
2

L2

=

∥∥∥∥
∫ 1

0

[
f ε
n

(
θ|uε,k+1|2 + (1− θ)|uε,k−1|2

)
− f ε

n

(
|uε,k|2

) ]
dθ

︸ ︷︷ ︸
=:I

ûε,k

+

∫ 1

0

f ε
n

(
|uε,k|2

)
dθ
(
ûε,k − uε,k

)

︸ ︷︷ ︸
=:II

∥∥∥∥
2

L2

. (5.25)

By the differential mean value theorem, Taylor’s expansion and f ε
n ∈ Cn−1([0,+∞)) for n ≥ 2,

we get

I ≤
∣∣∣∣
∫ 1

0

[
f ε
n

(
θ|uε,k+1|2 + (1− θ)|uε,k−1|2

)
− f ε

n

(
|uε,k|2

)]
dθ

∣∣∣∣

≤
∣∣∣∣
∫ 1

0

(
f ε
n

)′(
ξ1(θ)

)[
θ |uε,k+1|2 + (1− θ) |uε,k−1|2 − |uε,k|2

]
dθ

∣∣∣∣

≤ max
θ

∣∣(f ε
n

)′(
ξ1(θ)

)∣∣
∣∣∣∣
∫ 1

0

[
θ |uε,k+1|2 + (1− θ)|uε,k−1|2 − |uε,k|2

]
dθ

∣∣∣∣

≤ max
θ

∣∣(f ε
n

)′(
ξ1(θ)

)∣∣
∣∣∣∣
|uε,k+1|2 + |uε,k−1|2

2
− |uε,k|2

∣∣∣∣

≤ max
θ

∣∣(f ε
n

)′(
ξ1(θ)

)∣∣
∣∣∣∣
1

2

∫ tk+1

tk

(tk+1−t)∂tt
(
|uε|2

)
(x, t)dt+

1

2

∫ tk−1

tk

(tk−1−t)∂tt
(
|uε|2

)
(x, t)dt

∣∣∣∣

≤ τ

2
max

θ

∣∣(f ε
n

)′(
ξ1(θ)

)∣∣
∣∣∣∣
∫ tk+1

tk−1

∂tt
(
|uε|2

)
(x, t)dt

∣∣∣∣ ≤ Cτ

∣∣∣∣
∫ tk+1

tk−1

∂tt
(
|uε|2

)
(x, t)dt

∣∣∣∣, (5.26)

II ≤
∣∣∣∣
∫ 1

0

f ε
n

(
|uε,k|2

)
dθ
(
ûε,k − uε,k

)∣∣∣∣

≤ τ

2

∥∥f ε
n

∥∥
L∞

∣∣∣∣
∫ tk+1

tk−1

uε
tt(x, t)dt

∣∣∣∣ ≤ Cτ

∣∣∣∣
∫ tk+1

tk−1

uε
tt(x, t)dt

∣∣∣∣, (5.27)

where ξ1(θ) is a bounded function between |uε,k|2 and θ |uε,k+1|2+(1−θ) |uε,k−1|2. Substituting
(5.26) and (5.27) into (5.25), we have

∥∥Gε
n,A(u

ε,k+1, uε,k−1)− uε,kf ε
n

(
|uε,k|2

)∥∥2
L2

≤ Cτ3
∫ tk+1

tk−1

(∥∥∂tt
(
|uε|2

)∥∥2
L2 +

∥∥uε
tt

∥∥2
L2

)
dt. (5.28)

Combining (5.17), (5.21)-(5.23) and (5.28), we obtain the estimate of the first term on the right

side of (5.20)

∣∣(Rε,k
A , δte

ε,k
τ,A

)∣∣ ≤ 1

2

∥∥Rε,k
A

∥∥2
L2 +

1

2

∥∥δteε,kτ,A

∥∥2
L2 ≤ Cτ3P k +

1

2

∥∥δteε,kτ,A

∥∥2
L2 , (5.29)
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where

P k =

∫ tk+1

tk−1

(∥∥uε
tttt

∥∥2
L2 +

∥∥uε
tt

∥∥2
H2 +

∥∥∂tt
(
|uε|2

)∥∥2
L2

)
dt.

Now, for the convenience of writing, we denote

ηε,k(θ) = θ |uε,k+1|2 + (1− θ) |uε,k−1|2,
ηε,kτ,A(θ) = θ

∣∣Uε,k+1
A

∣∣2 + (1− θ)
∣∣Uε,k−1

A

∣∣2.
(5.30)

For the second term on the right side of (5.20), we use the Cauchy-Schwarz inequality, Young’s

inequality, (5.15) and (5.30) to get

∣∣∣
(
Gε

n,A(u
ε,k+1, uε,k−1)−Gε

n,A

(
Uε,k+1
A , Uε,k−1

A

)
, δte

ε,k
τ,A

)∣∣∣

≤ 1

2

∥∥Gε
n,A(u

ε,k+1, uε,k−1)−Gε
n,A

(
Uε,k+1
A , Uε,k−1

A

)∥∥2
L2 +

1

2

∥∥δteε,kτ,A

∥∥2
L2

≤ 1

2

∥∥∥∥
∫ 1

0

f ε
n,A

(
ηε,k(θ)

)
dθ gεn,A

(
ûε,k

)
−
∫ 1

0

f ε
n,A

(
ηε,kτ,A(θ)

)
dθ gεn,A

(
Ûε,k
A

)∥∥∥∥
2

L2

+
1

2

∥∥δteε,kτ,A

∥∥2
L2

≤ 1

2

∥∥∥∥
∫ 1

0

f ε
n,A

(
ηε,k(θ)

)
dθ

︸ ︷︷ ︸
=:III

[
gεn,A

(
ûε,k

)
− gεn,A

(
Ûε,k
A

)]

︸ ︷︷ ︸
=:IV

+

∫ 1

0

[
f ε
n,A

(
ηε,k(θ)

)
− f ε

n,A

(
ηε,kτ,A(θ)

)]
dθ

︸ ︷︷ ︸
=:V

gεn,A
(
Ûε,k
A

)
︸ ︷︷ ︸

=:VI

∥∥∥∥
2

L2

+
1

2

∥∥δteε,kτ,A

∥∥2
L2 . (5.31)

According to (5.8), (5.9) and f ε
n ∈ Cn−1([0,+∞)) for n ≥ 2, we can easily obtain

III ≤
∣∣∣∣
∫ 1

0

f ε
n,A

(
ηε,k(θ)

)
dθ

∣∣∣∣ ≤
∣∣∣∣
∫ 1

0

f ε
n

(
ηε,k(θ)

)
dθ

∣∣∣∣ ≤ C, (5.32)

IV ≤
∣∣∣gεn,A

(
ûε,k

)
− gεn,A

(
Ûε,k
A

)∣∣∣ ≤ CK0

∣∣∣∣
uε,k+1 − Uε,k+1

A

2
+

uε,k−1 − Uε,k−1
A

2

∣∣∣∣

≤ 1

2
CK0

(∣∣eε,k+1
τ,A

∣∣+
∣∣eε,k−1

τ,A

∣∣). (5.33)

Similarly, by utilizing the properties of f ε
n,A in (5.10), we have

V ≤
∣∣∣∣
∫ 1

0

[
f ε
n,A

(
ηε,k(θ)

)
− f ε

n,A

(
ηε,kτ,A(θ)

)]
dθ

∣∣∣∣

≤ CK0

∣∣∣∣
∫ 1

0

(√
ηε,k(θ)−

√
ηε,kτ,A(θ)

)
dθ

∣∣∣∣

≤ CK0

∣∣∣∣∣

∫ 1

0

θ
(
|uε,k+1|2 − |Uε,k+1

A |2
)
+ (1 − θ)

(
|uε,k−1|2 − |Uε,k−1

A |2
)

√
ηε,k(θ) +

√
ηε,kτ,A(θ)

dθ

∣∣∣∣∣

≤ CK0

∣∣∣∣∣

∫ 1

0

θ
(
|uε,k+1| − |Uε,k+1

A |
)(
|uε,k+1|+ |Uε,k+1

A |
)

√
θ|uε,k+1|+

√
θ|Uε,k+1

A |
dθ

∣∣∣∣∣

+ CK0

∣∣∣∣∣

∫ 1

0

(1− θ)
(
|uε,k−1| − |Uε,k−1

A |
)(
|uε,k−1|+ |Uε,k−1

A |
)

√
1− θ|uε,k−1|+

√
1− θ|Uε,k−1

A |
dθ

∣∣∣∣∣
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≤ CK0

(∫ 1

0

√
θ
∣∣eε,k+1

τ,A

∣∣dθ +
∫ 1

0

√
1− θ

∣∣eε,k−1
τ,A

∣∣dθ
)

≤ 2

3
CK0

(∣∣eε,k+1
τ,A

∣∣+
∣∣eε,k−1

τ,A

∣∣). (5.34)

Next we are going to discuss the boundedness of the term VI. From (5.8), we have

VI ≤
∣∣gεn,A

(
Ûε,k
A

)∣∣ =
∣∣∣∣Û

ε,k
A µ

Ûε,k
A

K2
0

∣∣∣∣.

When |Ûε,k
A | ∈ [0,K2

0 ), we get

µ
Ûε,k
A

K2
0

= 1, VI ≤
∣∣Ûε,k

A

∣∣ ≤ K2
0 . (5.35)

When |Ûε,k
A | ∈ [K2

0 , 2K
2
0), we set

|c| =
∣∣∣∣
Ûε,k
A

K2
0

∣∣∣∣,

which satisfies

|c| ∈ [1, 2), 1− 1

1− (1− |c|)2 ∈ (−∞, 0]. (5.36)

Then, according to the definition of (5.7) and (5.36), we obtain

0 < µ(c) = e
1− 1

1−(1−|c|)2 ≤ 1, VI ≤
∣∣Ûε,k

A

∣∣ |µ(c)| ≤ 2K2
0 . (5.37)

When |Ûε,k
A | ∈ [2K2

0 ,+∞), we get from (5.7) that

µ
Ûε,k
A

K2
0

= 0, VI = 0. (5.38)

Based on (5.35), (5.37) and (5.38), we infer that

VI ≤ 2K2
0 . (5.39)

Substituting (5.32)-(5.34) and (5.39) into (5.31), we derive the estimate of the second term on

the right side of (5.20)

∣∣∣
(
Gε

n,A(u
ε,k+1, uε,k−1)−Gε

n,A

(
Uε,k+1
A , Uε,k−1

A

)
, δte

ε,k
τ,A

)∣∣∣

≤ C
(∥∥eε,k+1

τ,A

∥∥2
L2 +

∥∥eε,k−1
τ,A

∥∥2
L2

)
+

1

2

∥∥δteε,kτ,A

∥∥2
L2 . (5.40)

Thus, using (5.20), (5.29) and (5.40), we have

1

2τ

(∥∥δ−t eε,k+1
τ,A

∥∥2
L2 −

∥∥δ−t eε,kτ,A

∥∥2
L2

)
+

1

4τ

(∥∥∇eε,k+1
τ,A

∥∥2
L2 −

∥∥∇eε,k−1
τ,A

∥∥2
L2

)

+
1

4τ

(∥∥eε,k+1
τ,A

∥∥2
L2 −

∥∥eε,k−1
τ,A

∥∥2
L2

)

≤ Cτ3P k + C
(∥∥eε,k+1

τ,A

∥∥2
L2 +

∥∥eε,k−1
τ,A

∥∥2
L2

)
+
∥∥δteε,kτ,A

∥∥2
L2 .
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Summing above the inequality for time step 1, 2, . . . ,m, 1 ≤ m ≤ N − 1, the following result is

given:

∥∥δ−t eε,m+1
τ,A

∥∥2
L2 +

∥∥∇eε,m+1
τ,A

∥∥2
L2

≤ 2
∥∥δ−t eε,1τ,A

∥∥2
L2 + Cτ4

m∑

k=1

P k + Cτ
m+1∑

k=0

(∥∥eε,kτ,A

∥∥2
L2 +

∥∥δ−t eε,kτ,A

∥∥2
L2

)
. (5.41)

Furthermore, we obtain from (4.1) and (5.41) that

∥∥δ−t eε,m+1
τ,A

∥∥2
L2 +

∥∥∇eε,m+1
τ,A

∥∥2
L2

≤ 2

1− Cτ

∥∥δ−t eε,1τ,A

∥∥2
L2 +

Cτ4

1− Cτ
+

Cτ

1− Cτ

m∑

k=0

(∥∥∇eε,kτ,A

∥∥2
L2 +

∥∥δ−t eε,kτ,A

∥∥2
L2

)
. (5.42)

By applying the discrete Grönwall inequality to (5.42), there exists positive constants τ∗1 and

C∗
1 such that when τ ≤ τ∗1 ,

∥∥δ−t eε,m+1
τ,A

∥∥
L2 +

∥∥∇eε,m+1
τ,A

∥∥
L2 ≤ C∗

1 τ
2, 1 ≤ m ≤ N − 1. (5.43)

Multiplying (5.19) by ∆êε,kτ,A and integrating the result over Ω, we obtain

∥∥∆êε,kτ,A

∥∥2
L2 =

(
δ2t e

ε,k
τ,A,∆êε,kτ,A

)
+
(
êε,kτ,A,∆êε,kτ,A

)
−
(
Rε,k

A ,∆êε,kτ,A

)

+
(
Gε

n,A(u
ε,k+1, uε,k−1)−Gε

n,A

(
Uε,k+1
A , Uε,k−1

A

)
,∆êε,kτ,A

)
. (5.44)

By utilizing the Cauchy-Schwarz inequality, (5.29), (5.40), and (5.43), we deduce from (5.44)

that

∥∥∆êε,kτ,A

∥∥
L2 ≤

∥∥δ2t eε,kτ,A

∥∥
L2 +

∥∥êε,kτ,A

∥∥
L2

+
∥∥Gε

n,A(u
ε,k+1, uε,k−1)−Gε

n,A

(
Uε,k+1
A , Uε,k−1

A

)∥∥
L2 +

∥∥Rε,k
A

∥∥
L2 ≤ Cτ. (5.45)

According to (5.45) and (5.18), we get

∥∥∆eε,k+1
τ,A

∥∥
L2 +

∥∥∆eε,kτ,A

∥∥
L2 ≤ 2

k∑

i=1

∥∥∆êε,iτ,A

∥∥
L2 +

∥∥∆eε,1τ,A

∥∥
L2

≤ CT + Cτ2 ≤ CT + 1, (5.46)

when τ ≤ τ∗2 =
√
1/C. Furthermore, using (5.18), (5.43) and (5.46), we obtain

∥∥eε,kτ,A

∥∥
H2 ≤

∥∥eε,kτ,A

∥∥
L2 +

∥∥∇eε,kτ,A

∥∥
L2 +

∥∥∆eε,kτ,A

∥∥
L2 ≤ C, 0 ≤ k ≤ N, (5.47)

∥∥Uε,k
A

∥∥
H2 ≤ ‖uε,k‖H2 +

∥∥eε,kτ,A

∥∥
H2 ≤ ‖uε,k‖H2 + C ≤ C∗

2 , 0 ≤ k ≤ N. (5.48)

Based on Gagliardo-Nirenberg inequality, we can easily conclude

∥∥eε,kτ,A

∥∥
L∞ ≤ C

∥∥eε,kτ,A

∥∥ 3
4

H2

∥∥eε,kτ,A

∥∥ 1
4

L2 + C
∥∥eε,kτ,A

∥∥
L2 ≤ Cτ

1
2 + Cτ2 ≤ τ

1
4 , (5.49)

when τ ≤ τ∗3 = C−4. It further implies that

∥∥Uε,k
A

∥∥
L∞ ≤ ‖uε,k‖L∞ +

∥∥eε,kτ,A

∥∥
L∞ ≤ ‖uε,k‖L∞ + τ

1
4

≤ ‖uε,k‖L∞ + 1 ≤ K0, 0 ≤ k ≤ N, (5.50)
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when τ ≤ τ∗4 = 1. Obviously, by the definitions of f ε
n,A and gεn,A, and thanks to (5.50), we have

the following results:

f ε
n,A

(
ηε,kτ,A(θ)

)
= f ε

n

(
ηε,kτ,A(θ)

)
, gεn,A

(
Ûε,k
A

)
= Ûε,k

A . (5.51)

From (5.51), we find that the auxiliary problem (5.13)-(5.14) is totally equivalent to the time

discrete system (5.1)-(5.3), which implies

Uε,k = Uε,k
A , k = 0, 1, . . . , N.

Taking τ2 = min{τ∗1 , τ∗2 , τ∗3 , τ∗4 }, we have when τ ≤ τ2,

∥∥eε,kτ

∥∥
L2 +

∥∥∇eε,kτ

∥∥
L2 ≤ C∗

1 τ
2,

∥∥eε,kτ

∥∥
H2 ≤ C,

‖Uε,k‖H2 ≤ C∗
2 , ‖Uε,k‖L∞ ≤ K0, k = 0, 1, . . . , N.

Therefore, the proof is complete. �

Although we have obtained the boundedness of the solutions of the time discrete system

in the sense of L∞-norm, we notice that the convergence order of ‖∆eε,kτ ‖L2 is only O(1).

Then, in order to obtain error estimates for fully discrete numerical scheme, we need to use the

conclusion of Lemma 5.1 to raise the convergence order of ‖∆eε,kτ ‖L2 to O(τ2).

Lemma 5.2. Suppose f ε
n ∈ C2([0,+∞)). Under the assumptions of Lemma 5.1, there exists

τ3 > 0, when τ ≤ τ3 the following results hold:

∥∥eε,kτ

∥∥
H2 ≤ C∗

3 τ
2,

∥∥δtUε,k
∥∥
H2 ≤ C∗

4 ,
∥∥δ2tUε,k

∥∥
H2 ≤ C∗

4 , 0 ≤ k ≤ N, (5.52)

where C∗
3 and C∗

4 are positive constants independent of τ and h.

Proof. Subtracting (5.1) from (5.4), we get the error equation

δ2t e
ε,k
τ −∆êε,kτ + êε,kτ +Gε

n(u
ε,k+1, uε,k−1)

−Gε
n(U

ε,k+1, Uε,k−1) = Rε,k, 1 ≤ k ≤ N − 1. (5.53)

By the definitions of Uε,0 and Uε,1, we have

eε,0τ = 0, eε,1τ = uε,1 − Uε,1 ≤ Cτ2. (5.54)

Multiplying (5.53) by ∆δte
ε,k
τ , and integrating the result over Ω, we deduce

1

2τ

(∥∥∇δ−t e
ε,k+1
τ

∥∥2
L2 −

∥∥∇δ−t e
ε,k
τ

∥∥2
L2

)
+

1

4τ

(∥∥∆eε,k+1
τ

∥∥2
L2 −

∥∥∆eε,k−1
τ

∥∥2
L2

)

+
1

4τ

(∥∥∇eε,k+1
τ

∥∥2
L2 −

∥∥∇eε,k−1
τ

∥∥2
L2

)

=
(
∇Rε,k,∇δte

ε,k
τ

)
−
(
∇
(
Gε

n(u
ε,k+1, uε,k−1)−Gε

n(U
ε,k+1, Uε,k−1)

)
,∇δte

ε,k
τ

)
. (5.55)

Now, let us estimate the two terms at the right of (5.55). Similar to the estimate of (5.29), we

can easily conclude

∣∣(∇Rε,k,∇δte
ε,k
τ

)∣∣ ≤ 1

2
‖∇Rε,k‖2L2 +

1

2

∥∥∇δte
ε,k
τ

∥∥2
L2

≤ Cτ3Qk +
1

2

∥∥∇δte
ε,k
τ

∥∥2
L2 , (5.56)
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where

Qk =

∫ tk+1

tk−1

(∥∥uε
tttt

∥∥2
H1 +

∥∥uε
tt

∥∥2
H2 +

∥∥∂tt
(
|uε|2

)∥∥2
H1

)
dt.

Denote ηε,kτ (θ) = θ |Uε,k+1|2+(1−θ) |Uε,k−1|2. Using the Cauchy-Schwarz inequality, Young’s

inequality, (3.7) and (5.30), we get

∣∣(∇
(
Gε

n(u
ε,k+1, uε,k−1)−Gε

n(U
ε,k+1, Uε,k−1)

)
,∇δte

ε,k
τ

)∣∣

≤ 1

2

∥∥∇
(
Gε

n(u
ε,k+1, uε,k−1)−Gε

n(U
ε,k+1, Uε,k−1)

) ∥∥2
L2 +

1

2

∥∥∇δte
ε,k
τ

∥∥2
L2

≤ 1

2

∥∥∥∥
∫ 1

0

(f ε
n)

′
(
ηε,k(θ)

)
∇
(
ηε,k(θ)

)
dθ ûε,k −

∫ 1

0

(f ε
n)

′
(
ηε,kτ (θ)

)
∇
(
ηε,kτ (θ)

)
dθÛε,k

︸ ︷︷ ︸
=:VII

+

∫ 1

0

f ε
n

(
ηε,k(θ)

)
dθ ∇ûε,k −

∫ 1

0

f ε
n

(
ηε,kτ (θ)

)
dθ ∇Ûε,k

︸ ︷︷ ︸
=:VIII

∥∥∥∥
2

L2

+
1

2

∥∥∇δte
ε,k
τ

∥∥2
L2 . (5.57)

For VII, we need to make the following deformations:

VII ≤
∣∣∣∣
∫ 1

0

[
(f ε

n)
′ (
ηε,k(θ)

)
− (f ε

n)
′ (
ηε,kτ (θ)

)]
∇ηε,k(θ)dθ ûε,k

∣∣∣∣

+

∣∣∣∣
∫ 1

0

(f ε
n)

′ (
ηε,kτ (θ)

)
∇ηε,k(θ)dθ

(
ûε,k − Ûε,k

)∣∣∣∣

+

∣∣∣∣
∫ 1

0

(f ε
n)

′ (ηε,kτ (θ)
) (

∇ηε,k(θ)−∇ηε,kτ (θ)
)
dθ Ûε,k

∣∣∣∣ :=
3∑

j=1

Ej . (5.58)

Assume that f ε
n ∈ C2([0,+∞)). Utilizing the differential mean value theorem, (4.1), (4.2) and

(5.30), we derive

E1 ≤
∣∣∣∣
∫ 1

0

[
(f ε

n)
′ (
ηε,k(θ)

)
− (f ε

n)
′ (
ηε,kτ (θ)

)]
∇ηε,k(θ)dθ ûε,k

∣∣∣∣

≤ ‖uε‖L∞

∣∣∣∣
∫ 1

0

(f ε
n)

′′ (
ξ2(θ)

) (
ηε,k(θ) − ηε,kτ (θ)

)
∇ηε,k(θ)dθ

∣∣∣∣

≤ ‖uε‖L∞ max
θ

∣∣(f ε
n)

′′
(
ξ2(θ)

)∣∣
∣∣∣∣
∫ 1

0

(
ηε,k(θ) − ηε,kτ (θ)

) (
θ∇|uε,k+1|2 + (1 − θ)∇|uε,k−1|2

)
dθ

∣∣∣∣
≤ ‖uε‖L∞‖∇uε‖L∞ max

θ

∣∣(f ε
n)

′′
(
ξ2(θ)

)∣∣

×
∣∣∣∣
∫ 1

0

[
θ
(
|uε,k+1|2 − |Uε,k+1|2

)
+ (1− θ)

(
|uε,k−1|2 − |Uε,k−1|2

) ]
dθ

∣∣∣∣

≤ 1

4
‖uε‖L∞‖∇uε‖L∞ max

θ

∣∣(f ε
n)

′′
(
ξ2(θ)

)∣∣ ∣∣|uε,k+1|2 − |Uε,k+1|2 + |uε,k−1|2 − |Uε,k−1|2
∣∣

≤ 1

2
K0‖uε‖L∞‖∇uε‖L∞ max

θ

∣∣(f ε
n)

′′
(
ξ2(θ)

)∣∣ (∣∣eε,k+1
τ

∣∣+
∣∣eε,k−1

τ

∣∣)

≤ C
(∣∣eε,k+1

τ

∣∣+
∣∣eε,k−1

τ

∣∣) , (5.59)
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where ξ2(θ) is a bounded function between ηε,k(θ) and ηε,kτ (θ). From (4.1) and (5.30), we have

E2 ≤
∣∣∣∣
∫ 1

0

(f ε
n)

′ (
ηε,kτ (θ)

)
∇ηε,k(θ)dθ

(
ûε,k − Ûε,k

)∣∣∣∣

≤ max
θ

∣∣(f ε
n)

′
(
ηε,kτ (θ)

)∣∣
∣∣∣∣
∫ 1

0

∇ηε,k(θ)dθ
(
ûε,k − Ûε,k

)∣∣∣∣

≤ 1

4
max

θ

∣∣(f ε
n)

′
(
ηε,kτ (θ)

)∣∣ ∣∣(∇|uε,k+1|2 +∇|uε,k−1|2
) (

eε,k+1
τ + eε,k−1

τ

)∣∣

≤ 1

2
‖uε‖L∞ ‖∇uε‖L∞ max

θ

∣∣(f ε
n)

′
(
ηε,kτ (θ)

)∣∣ (∣∣eε,k+1
τ

∣∣+
∣∣eε,k−1

τ

∣∣)

≤ C
(∣∣eε,k+1

τ

∣∣+
∣∣eε,k−1

τ

∣∣) . (5.60)

Similar to the estimate of E2, we get

E3 ≤
∣∣∣∣
∫ 1

0

(f ε
n)

′ (
ηε,kτ (θ)

) (
∇ηε,k(θ)−∇ηε,kτ (θ)

)
dθÛε,k

∣∣∣∣

≤ ‖Uε‖L∞ max
θ

∣∣(f ε
n)

′
(
ηε,kτ (θ)

)∣∣
∣∣∣∣
∫ 1

0

(
∇ηε,k(θ) −∇ηε,kτ (θ)

)
dθ

∣∣∣∣

≤ 1

2
‖Uε‖L∞ max

θ

∣∣(f ε
n)

′
(
ηε,kτ (θ)

)∣∣ ∣∣ (∇|uε,k+1|2−∇|Uε,k+1|2
)
+
(
∇|uε,k−1|2 −∇|Uε,k−1|2

) ∣∣

≤ 1

2
‖Uε‖L∞ max

θ

∣∣(f ε
n)

′
(
ηε,kτ (θ)

)∣∣ ∣∣ (2|uε,k+1| ∇|uε,k+1| − 2|Uε,k+1|∇|Uε,k+1|
)

+
(
2|uε,k−1|∇|uε,k−1| − 2|Uε,k−1|∇|Uε,k−1|

) ∣∣
≤ K0‖∇uε‖L∞‖Uε‖L∞ max

θ

∣∣(f ε
n)

′
(
ηε,kτ (θ)

)∣∣ (∣∣eε,k+1
τ

∣∣+
∣∣∇eε,k+1

τ

∣∣+
∣∣eε,k−1

τ

∣∣+
∣∣∇eε,k−1

τ

∣∣)

≤ C
(∣∣eε,k+1

τ

∣∣+
∣∣eε,k−1

τ

∣∣+
∣∣∇eε,k+1

τ

∣∣+
∣∣∇eε,k−1

τ

∣∣) . (5.61)

Substituting (5.59)-(5.61) into (5.58), we obtain

VII ≤ C
(∣∣eε,k+1

τ

∣∣+
∣∣eε,k−1

τ

∣∣+
∣∣∇eε,k+1

τ

∣∣+
∣∣∇eε,k−1

τ

∣∣) . (5.62)

Utilizing (5.12) and (5.30), we have

VIII ≤
∣∣∣∣
∫ 1

0

[
f ε
n

(
ηε,k(θ)

)
− f ε

n

(
ηε,kτ (θ)

)]
dθ∇ûε,k +

∫ 1

0

f ε
n

(
ηε,kτ (θ)

)
dθ
(
∇êε,kτ

)∣∣∣∣

≤
∣∣∣∣
∫ 1

0

(f ε
n)

′ (
ξ3(θ)

) (
ηε,k(θ) − ηε,kτ (θ)

)
dθ ∇ûε,k

∣∣∣∣+ C
∣∣∇eε,k+1

τ +∇eε,k−1
τ

∣∣

≤ 1

2
‖∇uε‖L∞ max

θ

∣∣(f ε
n)

′
(
ξ3(θ)

)∣∣ ∣∣|uε,k+1|2 − |Uε,k+1|2 + |uε,k−1|2 − |Uε,k−1|2
∣∣

+ C
∣∣∇eε,k+1

τ +∇eε,k−1
τ

∣∣
≤ K0‖∇uε‖L∞ max

θ

∣∣(f ε
n)

′
(
ξ3(θ)

)∣∣ (∣∣eε,k+1
τ

∣∣+
∣∣eε,k−1

τ

∣∣)+ C
∣∣∇eε,k+1

τ +∇eε,k−1
τ

∣∣

≤ C
(∣∣eε,k+1

τ

∣∣+
∣∣eε,k−1

τ

∣∣+
∣∣∇eε,k+1

τ

∣∣+
∣∣∇eε,k−1

τ

∣∣) , (5.63)

where ξ3(θ) is a bounded function between ηε,k(θ) and ηε,kτ (θ). Substituting (5.62) and (5.63)

into (5.57), we derive

∣∣(∇
(
Gε

n(u
ε,k+1, uε,k−1)−Gε

n(U
ε,k+1, Uε,k−1)

)
,∇δte

ε,k
τ

)∣∣

≤ C
(∥∥eε,k+1

τ

∥∥2
L2 +

∥∥eε,k−1
τ

∥∥2
L2 +

∥∥∇eε,k+1
τ

∥∥2
L2 +

∥∥∇eε,k−1
τ

∥∥2
L2

)
+

1

2

∥∥∇δte
ε,k
τ

∥∥2
L2 . (5.64)
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Furthermore, substitute (5.56) and (5.64) into (5.55), and replace k by i, and sum up from 1 to k,

1

2τ

(∥∥∇δ−t eε,k+1
τ

∥∥2
L2 −

∥∥∇δ−t e
ε,1
τ

∥∥2
L2

)
+

1

4τ

(∥∥∆eε,k+1
τ

∥∥2
L2 −

∥∥∆eε,1τ

∥∥2
L2 +

∥∥∆eε,kτ

∥∥2
L2

)

+
1

4τ

(∥∥∇eε,k+1
τ

∥∥2
L2 −

∥∥∇eε,1τ

∥∥2
L2 +

∥∥∇eε,kτ

∥∥2
L2

)

≤ Cτ3
k∑

i=1

Qi + C

k+1∑

i=0

(∥∥eε,iτ

∥∥2
L2 +

∥∥∇eε,iτ

∥∥2
L2 +

∥∥∇δ−t e
ε,i
τ

∥∥2
L2

)
. (5.65)

By utilizing (4.1), (5.54) and Poincaré inequality, we obtain

∥∥∇δ−t eε,k+1
τ

∥∥2
L2 +

∥∥∆eε,k+1
τ

∥∥2
L2

≤ 2
∥∥∇δ−t e

ε,1
τ

∥∥2
L2 + Cτ4 + Cτ

k+1∑

i=0

(∥∥∆eε,iτ

∥∥2
L2 +

∥∥∇δ−t e
ε,i
τ

∥∥2
L2

)
. (5.66)

Next, according to the discrete Grönwall inequality, there exists positive constants τ∗5 and C∗
3

such that when τ ≤ τ∗5 , we have from (5.66) that

∥∥∇δ−t e
ε,k+1
τ

∥∥
L2 +

∥∥∆eε,k+1
τ

∥∥
L2 ≤ C∗

3 τ
2, 1 ≤ k ≤ N − 1. (5.67)

Furthermore, combining (5.11) and (5.67), we have the following series of conclusions for

0 ≤ k ≤ N :

∥∥∆eε,kτ

∥∥
H2 ≤

∥∥eε,kτ

∥∥
L2 +

∥∥∇eε,kτ

∥∥
L2 +

∥∥∆eε,kτ

∥∥
L2 ≤ C∗

3 τ
2,

∥∥δtUε,k
∥∥
H2 ≤

∥∥δtuε,k
∥∥
H2 +

∥∥δteε,kτ

∥∥
H2 ≤

∥∥δtuε,k
∥∥
H2 + Cτ ≤ C∗

4 ,∥∥δ2tUε,k
∥∥
H2 ≤

∥∥δ2t uε,k
∥∥
H2 +

∥∥δ2t eε,kτ

∥∥
H2 ≤

∥∥δ2t uε,k
∥∥
H2 + 4C ≤ C∗

4 .

Therefore, taking τ3 = min{τ2, τ∗5 }, when τ ≤ τ3, the proof of Lemma 5.2 is complete. �

Remark 5.1. Since n in (2.3) is an arbitrary constant, and n ≥ 2, we can ensure that

f ε
n ∈ C2([0,+∞)) when we take n = 3. In other words, we use the piecewise quartic poly-

nomials to approximate F (ρ) near the origin to obtain the desired convergence results.

Remark 5.2. In this part, we provide the existence and uniqueness proof of the solutions to the

auxiliary problem (5.13), and the proof process is slightly different from that of reference [21].

Since this proof process is very complicated, we have not shown the details here. For simplify

of presentation, we only give a general analytical framework:

1. Using the Brouwer’s fixed point theorem, show the existence and uniqueness of the solu-

tions for the auxiliary problem (5.13) in the following finite-dimensional space:

XN := {φm, 1 ≤ m ≤ N},

where {φm,m ∈ N} denotes a countable basis of H1
0 (Ω).

2. Prove the H1-norm boundedness of the solution in H1
0 (Ω) as Lemma 5.1.

3. Using Rellich embedding theorem and Vitali’s theorem, prove the strong convergence of

every terms of the infinite-dimensional system, and thus the existence of the solutions of

the auxiliary problem (5.13) in H1
0 (Ω) is obtained.
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4. The uniqueness of the solutions for the auxiliary problem (5.13) can be derived similar as

the error analysis in Section 5.1.

Remark 5.3. From the proof process of Lemmas 5.1 and 5.2, it can be seen that the auxiliary

problem (5.13) and the time discrete system (5.1) are equivalent, so the existence and uniqueness

of the solutions of time discrete system (5.1) is also naturally established.

5.2. Error estimates for the fully discrete scheme

In this section, we will give the L∞-norm estimates for the numerical solutions Uε,k
h .

Lemma 5.3. Assume that uε is the solution of the system (2.6) satisfying (4.1), and the fully

discrete system (3.5)-(3.6) has unique solutions Uε,k
h , 0 ≤ k ≤ N . Then, there exists τ4 > 0 and

h∗
1 > 0 such that when τ ≤ τ4 and h ≤ h∗

1, there hold
∥∥∇
(
RhU

ε,k − Uε,k
h

)∥∥
L2 ≤ C∗

5 (τ
2 + h2),

∥∥Uε,k
h

∥∥
L∞ ≤ K0,

where C∗
5 is a positive constant independent of τ and h.

Proof. Similar to the error analysis of the time discrete system, we need the following

auxiliary problems based on cut-off techniques for k = 1, 2, . . . , N − 1,

(
δ2tU

ε,k
h,A, ωh

)
+
(
∇̂Uε,k

h,A,∇ωh

)
+
(̂Uε,k

h,A, ωh

)

+
(
Gε

n,A

(
Uε,k+1
h,A , Uε,k−1

h,A

)
, ωh

)
= 0, ∀ωh ∈ Wh (5.68)

with Uε,0
h,A = Rhφ0 and

Uε,1
h,A = Rh

(
φ0 + τφ1 +

τ2

2

(
∆φ0 − φ0 − φ0f

ε
n

(
|φ0|2

)))
.

Define

ϑε,k
h,A = RhU

ε,k − Uε,k
h,A, 0 ≤ k ≤ N. (5.69)

By the definition of Uε,0, Uε,1 and Uε,0
h,A, U

ε,1
h,A, we have

ϑε,0
h,A = RhU

ε,0 − Uε,0
h,A = 0, ϑε,1

h,A = RhU
ε,1 − Uε,1

h,A = 0. (5.70)

Subtracting (5.68) from (5.1) with ωh = δtϑ
ε,k
h,A, we get the error equation for k ≥ 2,

1

2τ

(∥∥δ−t ϑε,k+1
h,A

∥∥2
L2 −

∥∥δ−t ϑε,k
h,A

∥∥2
L2

)
+

1

4τ

(∥∥∇ϑε,k+1
h,A

∥∥2
L2 −

∥∥∇ϑε,k−1
h,A

∥∥2
L2

)

+
1

4τ

(∥∥ϑε,k+1
h,A

∥∥2
L2 −

∥∥ϑε,k−1
h,A

∥∥2
L2

)

= −
(
δ2t
(
Uε,k −RhU

ε,k
)
, δtϑ

ε,k
h,A

)
−
(
Ûε,k −RhÛε,k, δtϑ

ε,k
h,A

)

−
(
Gε

n

(
Uε,k+1, Uε,k−1

)
−Gε

n,A

(
Uε,k+1
h,A , Uε,k−1

h,A

)
, δtϑ

ε,k
h,A

)
. (5.71)

By utilizing the Cauchy-Schwarz inequality, Young’s inequality, (3.2) and (5.52), we derive

∣∣(δ2t
(
Uε,k −RhU

ε,k
)
, δtϑ

ε,k
h,A

)∣∣ ≤ Ch4‖δ2tUε,k
∥∥2
H2 +

1

2
‖δtϑε,k

h,A

∥∥2
L2

≤ Ch4 +
1

2

∥∥δtϑε,k
h,A

∥∥2
L2 , (5.72)

∣∣(Ûε,k −RhÛε,k, δtϑ
ε,k
h,A

)∣∣ ≤ Ch4‖Ûε,k‖2H2 +
1

2

∥∥δtϑε,k
h,A

∥∥2
L2

≤ Ch4 +
1

2

∥∥δtϑε,k
h,A

∥∥2
L2 . (5.73)
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In order to estimate the third term of the right-hand side of (5.71), we need to do the following

processing:

∣∣∣
(
Gε

n(U
ε,k+1, Uε,k−1)−Gε

n,A

(
Uε,k+1
h,A , Uε,k−1

h,A

)
, δtϑ

ε,k
h,A

)∣∣∣

≤ 1

2

∥∥∥Gε
n(U

ε,k+1, Uε,k−1)−Gε
n,A

(
Uε,k+1
h,A , Uε,k−1

h,A

)∥∥∥
2

L2
+

1

2

∥∥δtϑε,k
h,A

∥∥2
L2

≤ 1

2

∥∥∥∥
∫ 1

0

f ε
n

(
ηε,kτ (θ)

)
dθ
(
Ûε,k − gεn,A

(̂
Uε,k
h,A

))
︸ ︷︷ ︸

=:IX

+

∫ 1

0

[
f ε
n

(
ηε,kτ (θ)

)
− f ε

n,A

(
ηε,kh,A(θ)

)]
dθ

︸ ︷︷ ︸
=:X

gεn,A
(̂
Uε,k
h,A

)∥∥∥∥
2

L2

+
1

2

∥∥δtϑε,k
h,A

∥∥2
L2 , (5.74)

where

ηε,kh,A(θ) = θ
∣∣Uε,k+1

h,A

∣∣2 + (1− θ)
∣∣Uε,k−1

h,A

∣∣2.

Using the estimates methods similar to III and VI, we have

∣∣∣∣
∫ 1

0

f ε
n

(
ηε,kτ (θ)

)
dθ

∣∣∣∣ ≤ ‖f ε
n‖L∞ ,

∣∣gεn,A
(̂
Uε,k
h,A

)∣∣ ≤ 2K2
0 . (5.75)

Due to ‖Uε,k‖L∞ ≤ K0, we can obtain by the definition of gεn,A and f ε
n,A

gεn,A
(
Ûε,k

)
= Ûε,k, f ε

n,A

(
ηε,kτ (θ)

)
= f ε

n

(
ηε,kτ (θ)

)
. (5.76)

Based on (5.76), (5.9), (5.10) and (5.69), we deduce

IX ≤
∣∣Ûε,k − gεn,A

(̂Uε,k
h,A

)∣∣ =
∣∣gεn,A

(
Ûε,k

)
− gεn,A

(̂Uε,k
h,A

)∣∣ ≤ CK0

∣∣Ûε,k − ̂Uε,k
h,A

∣∣

≤ 1

2
CK0

(∣∣Uε,k+1 −RhU
ε,k+1

∣∣+
∣∣Uε,k−1 −RhU

ε,k−1
∣∣+
∣∣ϑε,k+1

h,A

∣∣+
∣∣ϑε,k−1

h,A

∣∣
)
, (5.77)

X ≤
∣∣∣∣
∫ 1

0

[
f ε
n

(
ηε,kτ (θ)

)
− f ε

n,A

(
ηε,kh,A(θ)

)]
dθ

∣∣∣∣ =
∣∣∣∣
∫ 1

0

[
f ε
n,A

(
ηε,kτ (θ)

)
− f ε

n,A

(
ηε,kh,A(θ)

)]
dθ

∣∣∣∣

≤ CK0

∫ 1

0

∣∣∣
√
ηε,kτ (θ)−

√
ηε,kh,A(θ)

∣∣∣dθ

≤ CK0

∫ 1

0

(√
θ
∣∣Uε,k+1 − Uε,k+1

h,A

∣∣ +
√
1− θ

∣∣Uε,k−1 − Uε,k−1
h,A

∣∣
)
dθ

≤ 1

2
CK0

(∣∣Uε,k+1 −RhU
ε,k+1

∣∣+
∣∣Uε,k−1 −RhU

ε,k−1
∣∣+
∣∣ϑε,k+1

h,A

∣∣+
∣∣ϑε,k−1

h,A

∣∣
)
. (5.78)

Substituting (5.75), (5.77) and (5.78) into (5.74), and then using (3.2) and (5.12), we get

∣∣∣
(
Gε

n(U
ε,k+1, Uε,k−1)−Gε

n,A

(
Uε,k+1
h,A , Uε,k−1

h,A

)
, δtϑ

ε,k
h,A

)∣∣∣

≤ C
(∥∥Uε,k+1 −RhU

ε,k+1
∥∥2
L2 +

∥∥Uε,k−1 −RhU
ε,k−1

∥∥2
L2 +

∥∥ϑε,k+1
h,A

∥∥2
L2 +

∥∥ϑε,k−1
h,A

∥∥2
L2

)

+
1

2

∥∥δtϑε,k
h,A

∥∥2
L2 ≤ Ch4 + C

(∥∥ϑε,k+1
h,A

∥∥2
L2 +

∥∥ϑε,k−1
h,A

∥∥2
L2

)
+

1

2

∥∥δtϑε,k
h,A

∥∥2
L2 . (5.79)
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Then, based on (5.72), (5.73) and (5.79), the following equation can be obtained from (5.71)

that:

1

2τ

(∥∥δ−t ϑε,k+1
h,A

∥∥2
L2 −

∥∥δ−t ϑε,k
h,A

∥∥2
L2

)
+

1

4τ

(∥∥∇ϑε,k+1
h,A

∥∥2
L2 −

∥∥∇ϑε,k−1
h,A

∥∥2
L2

)

+
1

4τ

(∥∥ϑε,k+1
h,A

∥∥2
L2 −

∥∥ϑε,k−1
h,A

∥∥2
L2

)

≤ Ch4 + C
(∥∥ϑε,k+1

h,A

∥∥2
L2 +

∥∥ϑε,k−1
h,A

∥∥2
L2

)
+

3

2

∥∥δtϑε,k
h,A

∥∥2
L2 .

Replacing k by i in the above inequality, and summing up from 1 to k, and then utilizing

ϑε,0
h,A = 0, ϑε,1

h,A = 0 and Poincaré inequality, we have

∥∥δ−t ϑε,k+1
h,A

∥∥2
L2 +

∥∥∇ϑε,k+1
h,A

∥∥2
L2 ≤ Ch4 + Cτ

k+1∑

i=1

(∥∥∇ϑε,i
h,A

∥∥2
L2 +

∥∥δ−t ϑε,i
h,A

∥∥2
L2

)
. (5.80)

Thus, by discrete Grönwall inequality, there exists constants τ∗6 ≥ 0 and C∗
5 ≥ 0 such that

∥∥δ−t ϑε,k+1
h,A

∥∥
L2 +

∥∥∇ϑε,k+1
h,A

∥∥
L2 ≤ C∗

5 h2, 1 ≤ k ≤ N − 1, (5.81)

when τ ≤ τ∗6 . Furthermore, we can derive the following estimates result:

∥∥Uε,k+1
h,A

∥∥
L∞ ≤

∥∥ϑε,k+1
h,A

∥∥
L∞ +

∥∥RhU
ε,k+1 − Uε,k+1

∥∥
L∞ + ‖Uε,k+1 − uε,k+1‖L∞ + ‖uε,k+1‖L∞

≤ Ch− d
2

∥∥ϑε,k+1
h,A

∥∥
L2 +

∥∥RhU
ε,k+1 − Uε,k+1

∥∥
W 1,4 + C

∥∥eε,k+1
τ

∥∥
H2 + ‖uε,k+1‖L∞

≤ Ch− d
2 h2 + Ch1− d

4 ‖Uε,k+1‖H2 + Cτ2 + ‖uε,k+1‖L∞

≤ Ch
1
4 + Cτ2 + ‖uε,k+1‖L∞

≤ 1 + ‖uε,k+1‖L∞ ≤ K0, (5.82)

when h ≤ h∗
1 = (2C)−4 and τ ≤ τ∗7 = (2C)−1/2. At the same time, it implies

f ε
n,A

(
ηε,kh,A(θ)

)
= f ε

n

(
ηε,kh,A(θ)

)
, gεn,A

(̂Uε,k
h,A

)
= ̂Uε,k

h,A. (5.83)

Therefore, (3.5) and (5.68) are equivalent, that are, Uε,k
h,A = Uε,k

h and

∥∥δ−t
(
RhU

ε,k − Uε,k
h

)∥∥
L2 +

∥∥∇
(
RhU

ε,k − Uε,k
h

)∥∥
L2 ≤ C∗

5h
2,

∥∥Uε,k
h

∥∥
L∞ ≤ K0, 0 ≤ k ≤ N.

(5.84)

Taking τ ≤ τ4 = min{τ3, τ∗6 , τ∗7 } and h ≤ h∗
1, the proof of Lemma 5.3 is complete. �

Remark 5.4. Under the assumption of Lemmas 5.1-5.3, the solutions of fully discrete scheme

(3.5)-(3.6) with r = 1 satisfying

∥∥uε,k − Uε,k
h

∥∥
L2 ≤

∥∥eε,kτ

∥∥
L2 +

∥∥Uε,k −RhU
ε,k
∥∥
L2 +

∥∥RhU
ε,k − Uε,k

h

∥∥
L2 ≤ C(τ2 + h2),

∥∥∇(uε,k − Uε,k
h )

∥∥
L2 ≤

∥∥∇eε,kτ

∥∥
L2 +

∥∥∇(Uε,k −RhU
ε,k)
∥∥
L2 +

∥∥∇(RhU
ε,k − Uε,k

h )
∥∥
L2

≤ C(τ2 + h).
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5.3. Proof of Theorem 4.1

In this section, we will give the proof of Theorem 4.1 based on the series of analyses in

Sections 5.1 and 5.2. The unconditional optimal error estimates for the fully discrete scheme

under L2-norm and H1-seminorm will be demonstrated and it plays an important role in the

proof of Theorem 4.2. For convenience, we define ςε,k = Rhu
ε,k−Uε,k

h . Obviously, we notice that

ςε,0 = 0. (5.85)

Subtracting (3.5) from (5.4), the error equation is obtained

(
δ2t ς

ε,k, ωh

)
+
(
∇ς̂ε,k,∇ωh

)
+
(
ς̂ε,k, ωh

)

= −
(
δ2t
(
uε,k −Rhu

ε,k
)
, ωh

)
−
(
ûε,k −Rhûε,k, ωh

)
+
(
Rε,k, ωh

)

−
(
Gε

n(u
ε,k+1, uε,k−1)−Gε

n

(
Uε,k+1
h , Uε,k−1

h

)
, ωh

)
, 1 ≤ k ≤ N − 1, (5.86)

where Rε,k is defined in (5.5). Letting ωh = δtς
ε,k into (5.86), we get

1

2τ

(∥∥δ−t ςε,k+1
∥∥2
L2 −

∥∥δ−t ςε,k
∥∥2
L2

)
+

1

4τ

(
‖∇ςε,k+1‖2L2 − ‖∇ςε,k−1‖2L2

)

+
1

4τ

(
‖ςε,k+1‖2L2 − ‖ςε,k−1‖2L2

)

= −
(
ûε,k −Rhûε,k, δtς

ε,k
)
−
(
δ2t
(
uε,k −Rhu

ε,k
)
, δtς

ε,k
)
+
(
Rε,k, δtς

ε,k
)

−
(
Gε

n(u
ε,k+1, uε,k−1)−Gε

n

(
Uε,k+1
h , Uε,k−1

h

)
, δtς

ε,k
)

:=
4∑

i=1

Ii, 1 ≤ k ≤ N − 1. (5.87)

By using the Cauchy-Schwarz inequality, Young’s inequality, (5.5), (3.2) and (4.1), we get

I1 ≤
∣∣−
(
ûε,k −Rhûε,k, δtς

ε,k
)∣∣ ≤ Ch2r+2 +

1

4

∥∥δtςε,k
∥∥2
L2 , (5.88)

I2 ≤
∣∣−
(
δ2t
(
uε,k −Rhu

ε,k
)
, δtς

ε,k
)∣∣

≤ C
∥∥δ2t
(
uε,k −Rhu

ε,k
)∥∥2

L2 +
1

4

∥∥δtςε,k
∥∥2
L2

≤ Ch2r+2

∫ 1

−1

(1− |s|)
∥∥uε

tt(x, τs+ tn)
∥∥2
Hr+1ds+

1

4

∥∥δtςε,k
∥∥2
L2

≤ Ch2r+2 +
1

4

∥∥δtςε,k
∥∥2
L2 , (5.89)

I3 ≤
∣∣(Rε,k, δtς

ε,k
)∣∣ ≤ C‖Rε,k‖2L2 +

1

4

∥∥δtςε,k
∥∥2
L2 ≤ Cτ4 +

1

4

∥∥δtςε,k
∥∥2
L2 . (5.90)

Next, we estimate the last term on the right hand side of (5.87). According to the Cauchy-

Schwarz inequality, Young’s inequality, the L∞-norm boundedness of Uε,k
h

f ε
n ∈ Cn−1

(
[0,+∞)

)
, n ≥ 2,

we derive

I4 ≤
∣∣−
(
Gε

n(u
ε,k+1, uε,k−1)−Gε

n

(
Uε,k+1
h , Uε,k−1

h

)
, δtς

ε,k
)∣∣
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≤ C

∥∥∥∥
∫ 1

0

f ε
n

(
ηε,k(θ)

)
dθûε,k −

∫ 1

0

f ε
n

(
ηε,kh (θ)

)
dθÛε,k

h

∥∥∥∥
2

L2

+
1

4

∥∥δtςε,k
∥∥2
L2

≤ C

∥∥∥∥
∫ 1

0

(
f ε
n

(
ηε,k(θ)

)
− f ε

n

(
ηε,kh (θ)

))
dθ ûε,k+

∫ 1

0

f ε
n

(
ηε,kh (θ)

)
dθ
(
ûε,k − Ûε,k

h

)∥∥∥∥
2

L2

+
1

4

∥∥δtςε,k
∥∥2
L2

≤ C

∥∥∥∥
∫ 1

0

(f ε
n)

′
(
ξ4(θ)

)(
ηε,k(θ)−ηε,kh (θ)

)
dθûε,k+

∫ 1

0

f ε
n

(
ηε,kh (θ)

)
dθ
(
ûε,k−Ûε,k

h

)∥∥∥∥
2

L2

+
1

4

∥∥δtςε,k
∥∥2
L2

≤ C

(
max

θ

∣∣(f ε
n)

′
(
ξ4(θ)

)∣∣ ‖uε,k‖L∞ +max
θ

∣∣f ε
n

(
ηε,kh (θ)

)∣∣
)

×
(∥∥uε,k+1 − Uε,k+1

h

∥∥2
L2 +

∥∥uε,k−1 − Uε,k−1
h

∥∥2
L2

)
+

1

4

∥∥δtςε,k
∥∥2
L2

≤ Ch2r+2 + C‖ςε,k+1‖2L2 + C‖ςε,k−1‖2L2 +
1

4

∥∥δtςε,k
∥∥2
L2 , (5.91)

where

ηε,kh (θ) = θ
∣∣Uε,k+1

h

∣∣2 + (1− θ)
∣∣Uε,k−1

h

∣∣2,
and ξ4(θ) is a bounded function between ηε,k(θ) and ηε,kh (θ). Substituting (5.88)-(5.91) into

(5.87), we have

1

2τ

(∥∥δ−t ςε,k+1
∥∥2
L2 −

∥∥δ−t ςε,k
∥∥2
L2

)
+

1

4τ

(
‖∇ςε,k+1‖2L2 − ‖∇ςε,k−1‖2L2

)

+
1

4τ

(
‖ςε,k+1‖2L2 − ‖ςε,k−1‖2L2

)

≤ Ch2r+2 + Cτ4 + C‖ςε,k+1‖2L2 + C‖ςε,k−1‖2L2 +
∥∥δtςε,k

∥∥2
L2 . (5.92)

Denote

W ε,k =
∥∥δ−t ςε,k+1

∥∥2
L2 +

1

2

(
‖∇ςε,k+1‖2L2 + ‖∇ςε,k‖2L2

)

+
1

2

(
‖ςε,k+1‖2L2 + ‖ςε,k‖2L2

)
, 1 ≤ k ≤ N − 1. (5.93)

From (5.92) and (5.93), the following inequality is achieved:

W ε,k −W ε,k−1 ≤ Cτh2r+2 + Cτ5 + Cτ(W ε,k +W ε,k−1). (5.94)

Then replacing k by i in (5.94), summing the result from 1 to k, we derive

W ε,k ≤ W ε,0 + Ch2r+2 + Cτ4 + Cτ

k∑

i=1

(W ε,i +W ε,i−1). (5.95)

Applying the discrete Grönwall inequality to (5.95) gives the result

W ε,k ≤ Ch2r+2 + Cτ4, (5.96)

where τ ≤ τ∗8 . From the definition of W ε,k, we obtain

‖∇ςε,k+1‖L2 + ‖ςε,k+1‖L2 ≤ Chr+1 + Cτ2, 0 ≤ k ≤ N − 1. (5.97)

Thus, by the triangle inequality, (3.2), (5.85) and (5.97), the optimal error estimates are deduced
∥∥uε,k − Uε,k

h

∥∥
L2 ≤

∥∥uε,k −Rhu
ε,k
∥∥
L2 + ‖ςε,k‖L2 ≤ C(τ2 + hr+1),

∥∥∇
(
uε,k−Uε,k

h

)∥∥
L2 ≤

∥∥∇
(
uε,k−Rhu

ε,k
)∥∥

L2+‖∇ςε,k‖L2 ≤ C(τ2+hr), 0 ≤ k ≤ N. (5.98)

Taking τ ≤ τ1 = min{τ4, τ∗8 } and h1 ≤ h∗
1, the proof of Theorem 4.1 is complete. �
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5.4. Proof of Theorems 4.2 and 4.3

In this section, we need to clarify that the two Theorems 4.2 and 4.3 are derived based on

quasi-uniform rectangular partitions and bilinear finite elements (r = 1) for Ω. The specific

proof process of Theorem 4.2 is as follows:
∥∥∇
(
Ihu

ε,k − Uε,k
h

)∥∥
L2 ≤

∥∥∇
(
Ihu

ε,k −Rhu
ε,k
)∥∥

L2 +
∥∥∇
(
Rhu

ε,k − Uε,k
h

)∥∥
L2

≤ Ch2 ‖uε,k‖H3 + ‖∇ςε,k‖L2

≤ Ch2 ‖uε,k‖H3 + C(τ2 + h2)

≤ C(τ2 + h2), (5.99)

where using the triangle inequality, (3.3) and (5.97). The proof of Theorem 4.2 is complete. �

Next, we introduce the interpolated postprocessing operator I2h structured by [32], which

possesses the following four properties:

I2hu
ε |K̃ ∈ Q2(K̃), ∀uε ∈ C(K̃),

I2hIhu
ε = I2hu

ε, ∀uε ∈ C(K̃),∥∥I2huε − uε
∥∥
H1 ≤ Ch2‖uε‖H3 , ∀uε ∈ H3(Ω),

‖I2hωh‖H1 ≤ C‖ωh‖H1 , ∀ωh ∈ Sh(Ω),

where K̃ is the element formed by merging four adjacent elements on Th, Q2 is a biquadratic

polynomial space, C(K̃) is continuous function space on K̃, and Sh(Ω) is the finite element

space. Based on Theorem 4.2 and the interpolated postprocessing operator I2h, we derive the

Theorem 4.3.
∥∥∇
(
uε,k − I2hU

ε,k
h

)∥∥
L2 ≤

∥∥∇
(
uε,k − I2hIhu

ε,k
)∥∥

L2 +
∥∥∇
(
I2hIhu

ε,k − I2hU
ε,k
h

)∥∥
L2

≤
∥∥∇
(
uε,k − I2hu

ε,k
)∥∥

L2 +
∥∥∇I2h

(
Ihu

ε,k − Uε,k
h

)∥∥
L2

≤ Ch2‖uε,k‖H3 + C
∥∥∇
(
Ihu

ε,k − Uε,k
h

)∥∥
L2

≤ Ch2‖uε,k‖H3 + C(τ2 + h2)

≤ C(τ2 + h2). (5.100)

Therefore, the high-accuracy convergence result under H1-seminorm of the finite element solu-

tions is obtained by using interpolated postprocessing technique. The proof of Theorem 4.3 is

complete. �

Remark 5.5. By the numerical results in [47], we learned that three regularized models in

Section 2 converge linearly to LogKGE under L2-norm, L∞-norm and H1-norm, with a conver-

gence order of O(ε). Based on the above conclusions, triangle inequality and Theorems 4.1-4.3,

we can obtain
∥∥uk − Uε,k

h

∥∥
L2 ≤ C(τ2 + h2 + ε),

∥∥∇
(
Ihu

k − Uε,k
h

)∥∥
L2 ≤ C(τ2 + h2 + ε),

∥∥∇
(
uk − I2hU

ε,k
h

)∥∥
L2 ≤ C(τ2 + h2 + ε).

When ε is small enough or ε . τ2 and ε . h2, the energy-conservative Crank-Nicolson FEM for

LogKGE (1.1) has the following unconditional optimal and high-accuracy convergence results:
∥∥uk − Uε,k

h

∥∥
L2 ≤ C(τ2 + h2),

∥∥∇
(
Ihu

k − Uε,k
h

)∥∥
L2 ≤ C(τ2 + h2),

∥∥∇
(
uk − I2hU

ε,k
h

)∥∥
L2 ≤ C(τ2 + h2).
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6. Numerical Results

In this section, we will provide some numerical examples to confirm our theoretical results.

For the purpose of comparison, the energy conservative Crank-Nicolson finite element numerical

scheme proposed in Section 3 is applied to three regularized models to test energy conservation,

unconditional optimal and high-accuracy convergence. Denote {Uε,k
h | 0 ≤ k ≤ N} as the

numerical solutions for the LogKGE of time division τ and space division h at time T .

Example 6.1. Consider the following LogKGE (λ = 1):

utt(x, t)−∆u(x, t) + u(x, t) + λu(x, t)f
(
|u(x, t)|2

)
= 0, (x, t) ∈ Ω× (0, T ], (6.1a)

u(x, 0) = sin(πx) sin(πy), ut(x, 0) = 0, x ∈ Ω, (6.1b)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (6.1c)

where

f
(
|u(x, t)|2

)
= ln

(
|u(x, t)|2

)
,

and Ω = [0, 1] × [0, 1]. The corresponding three regularized models with a small regularized

parameter (0 < ε ≪ 1) can be summarized as

uε
tt(x, t)−∆uε(x, t) + uε(x, t) + λuε(x, t)f ε

reg

(
|uε(x, t)|2

)
= 0, (x, t) ∈ Ω× (0, T ],

uε(x, 0) = sin(πx) sin(πy), uε
t (x, 0) = 0, x ∈ Ω,

uε(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

where f ε
reg represents three forms f̃ ε, f̂ ε and f ε

n.

Take n = 3 and ε = 1e-08. Define error and convergence order [51]

e(τ, h) = max
0≤k≤N

∣∣∣∣U
ε,k
h (τ, h)− Uε,2k

h
2

(
τ

2
,
h

2

)∣∣∣∣, Order(τ, h) = log2
‖e(τ, h)‖

‖e(τ/2, h/2)‖ .

For this example, we mainly conduct the following tests:

• We first verify the error estimates under L2-norm and L∞-norm, as well as the convergence

orders for the Crank-Nicolson FEM with three different nonlinear terms. Errors and

convergence orders at T = 1 are shown in Tables 6.1-6.3. From the data in tables, we

see that there are only slight differences of ‖e(τ, h)‖L2 and ‖e(τ, h)‖L∞ for three different

regularized models. This is because our ε is small enough to be negligible, we get

f̃ ε(ρ) = f̂ ε(ρ) = f ε
n(ρ), ρ > 0.

In addition, the convergence orders of ‖e(τ, h)‖L2 and ‖e(τ, h)‖L∞ are close to 2, which

are accordance with the theoretical results.

• Next, we test the discrete energy conservation law for the Crank-Nicolson FEM of three

different nonlinear terms fixed h = 1/16. The values of discrete energy Eε
h(t) and its

relative error ∆Eε
h(t) are provided in Tables 6.4-6.6, where ∆Eε

h(t) is defined by

∆Eε
h(t) =

∣∣Eε
h(t)− Eε

h(0)
∣∣

Eε
h(0)

.

Furthermore, we also plot Eε
h(t) and ∆Eε

h(t) in Figs. 6.1-6.2.
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Table 6.1: Errors and convergence orders at T = 1 for f̃ε (Example 6.1).

h τ ‖e(τ, h)‖L2 Order(τ, h) ‖e(τ, h)‖L∞ Order(τ, h)

1/8 1/16 1.7636766504e-02 1.9092 3.6333017120e-02 1.9307

1/16 1/32 4.6957790812e-03 1.9608 9.5305403668e-03 1.9532

1/32 1/64 1.2062621591e-03 1.9825 2.4610757068e-03 1.9870

1/64 1/128 3.0525038502e-04 * 6.2084334130e-04 *

1/128 1/256 * * * *

Table 6.2: Errors and convergence orders at T = 1 for f̂ε (Example 6.1).

h τ ‖e(τ, h)‖L2 Order(τ, h) ‖e(τ, h)‖L∞ Order(τ, h)

1/8 1/16 1.7636766424e-02 1.9092 3.6333016982e-02 1.9307

1/16 1/32 4.6957790461e-03 1.9608 9.5305403291e-03 1.9532

1/32 1/64 1.2062621441e-03 1.9825 2.4610756768e-03 1.9870

1/64 1/128 3.0525037787e-04 * 6.2084332838e-04 *

1/128 1/256 * * * *

Table 6.3: Errors and convergence orders at T = 1 for fε
n (Example 6.1).

h τ ‖e(τ, h)‖L2 Order(τ, h) ‖e(τ, h)‖L∞ Order(τ, h)

1/8 1/16 1.7636766424e-02 1.9092 3.6333016982e-02 1.9307

1/16 1/32 4.6957790461e-03 1.9608 9.5305403291e-03 1.9532

1/32 1/64 1.2062621441e-03 1.9825 2.4610756768e-03 1.9870

1/64 1/128 3.0525037786e-04 * 6.2084332836e-04 *

1/128 1/256 * * * *

Table 6.4: The values of discrete energy and its relative error for f̃ε (Example 6.1).

T Eε
h(t) ∆Eε

h(t)

0 2.377502005986851e+02 0

5 2.377502005986806e+02 1.876847367252277e-14

10 2.377502005986738e+02 4.769822290023303e-14

15 2.377502005986769e+02 3.466788130593379e-14

20 2.377502005986860e+02 3.705876967186025e-15

Table 6.5: The values of discrete energy and its relative error for f̂ε (Example 6.1).

T Eε
h(t) ∆Eε

h(t)

0 2.377501997885252e+02 0

5 2.377501997885268e+02 6.933576284813681e-15

10 2.377501997885267e+02 6.335854191295260e-15

15 2.377501997885291e+02 1.649712978110841e-14

20 2.377501997885426e+02 7.328072866535838e-14
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Table 6.6: The values of discrete energy and its relative error for fε
n (Example 6.1).

T Eε
h(t) ∆Eε

h(t)

0 2.377501997885250e+02 0

5 2.377501997885240e+02 4.303599073332631e-15

10 2.377501997885222e+02 1.195444187036842e-14

15 2.377501997885263e+02 5.259954422962105e-15

20 2.377501997885369e+02 4.985002259943632e-14
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250

300

350

10 11 12 13
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237.7502

237.750201

Fig. 6.1. The discrete energy conservation of Crank-Nicolson FEM with three different nonlinear term

(Example 6.1).

0 5 10 15 20

t

-5

-3.5

-2

-0.5

1

2.5

4

5.5

7

8.5

10
10-14

0 5 10 15 20

t

-5

-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20
10-14

0 5 10 15 20

t

-5

-2.5

0

2.5

5

7.5

10

12.5

15

17.5

20
10-14

Fig. 6.2. The relative errors of discrete energy for f̃ , f̂ and fε
n (Example 6.1).

Example 6.2. Consider LogKGE with the following exact solution (λ = 1):

utt(x, t) −∆u(x, t) + u(x, t) + λu(x, t)f
(
|u(x, t)|2

)
= g(x, t), (x, t) ∈ Ω× (0, T ], (6.2a)

u(x, 0) = φ0(x), ut(x, 0) = φ1(x), x ∈ Ω, (6.2b)

u(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (6.2c)

where

f
(
|u(x, t)|2

)
= ln(|u(x, t)|2),
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Ω = [0, 1]× [0, 1] and the function g(x, t) is determined by the given solution

u(x, t) = e−t sin(πx) sin(πy).

The corresponding three regularized models with a small regularized parameter (0 < ε ≪ 1)

are presented as

uε
tt(x, t)−∆uε(x, t) + uε(x, t) + λuε(x, t)f ε

reg

(
|uε(x, t)|2

)
= gε(x, t), (x, t) ∈ Ω× (0, T ],

uε(x, 0) = φ0(x), uε
t (x, 0) = φ1(x), x ∈ Ω,

uε(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ],

where f ε
reg means the same as in Example 6.1.

In the calculation process, let n = 3, T = 1 and ε = 1e-08. We employ the Crank-Nicolson

FEM with three different nonlinear terms to (6.2) to verify the unconditional optimal and

high-accuracy convergence results. For this example, we make the following works:

• The unconditional optimal error estimates of L2-norm, high-accuracy results, and conver-

gence orders of the numerical scheme with three different nonlinear terms are shown in

Fig. 6.3. Moreover, we observe the convergence orders of ‖uk −Uε,k
h ‖L2, ‖Ihuk −Uε,k

h ‖H1

and ‖uk − I2hU
ε,k
h ‖H1 in both time and space are close to 2, which are consistent with

our theoretical results.

• Let τ2 = h/2, we check the error estimates and convergence orders of ‖uk −Uε,k
h ‖H1 with

three different nonlinear terms. We see the convergence orders in time are close 2 and

in space are close 1, as exhibited in Fig. 6.4. These are accordance with our theoretical

results.
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Fig. 6.3. The error estimates and high-accuracy convergence results for f̃ , f̂ and fε
n (Example 6.2).
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Fig. 6.4. The error estimates and convergence orders in time and space of ‖uk − U
ε,k

h ‖H1 for f̃ , f̂ and

fε
n (Example 6.2).

7. Conclusions

In this paper, we first proposed three regularized models for LogKGE. Then a fully implicit

energy-conservative Crank-Nicolson Galerkin FEM was designed for one of the regularized mod-

els, namely ERLogKGE. By innovative combination of the cut-off function technique and the

time-space error splitting technique, we strictly proved the discrete energy conservation law,

unconditional optimal and high-accuracy convergence results of the numerical scheme. Finally,

two numerical experiments which both test three different nonlinear terms were provided to

verify the correctness and effectiveness of our theoretical results.
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