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Abstract

This paper is concerned with the numerical solution of Volterra integro-differential

equations with noncompact operators. The focus is on the problems with weakly singular

solutions. To handle the initial weak singularity of the solution, a fractional collocation

method is applied. A rigorous hp-version error analysis of the numerical method under

a weighted H1-norm is carried out. The result shows that the method can achieve high

order convergence for such equations. Numerical experiments are also presented to confirm

the effectiveness of the proposed method.
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1. Introduction

Volterra integro-differential equations (VIDEs) arise in mathematical models of many dif-

ferent research fields, such as population models [28], viscoelastic phenomena [19], capillarity

theory [4]. In this paper, we consider the VIDEs of the form

tγu′(t) = a(t)u(t) + g(t) +

∫ t

0

(t− s)−µsµ+γ−1K(t, s)u(s)ds, t ∈ I := [0, T ] (1.1)

with the initial condition u(0) = u0, where 0 ≤ µ < 1, γ > 0, µ + γ ≥ 1, and a(t), g(t) and

K(t, s) are given smooth functions. The Eq. (1.1) can be equivalently written as the following
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cordial Volterra integro-differential equation (CVIDE):

u′(t) = aγ(t)u(t) + gγ(t) + (Kµ,γu)(t), t ∈ I := [0, T ], (1.2)

where

aγ(t) = t−γa(t), gγ(t) = t−γg(t),

and

(Kµ,γu)(t) = t−γ

∫ t

0

(t− s)−µsµ+γ−1K(t, s)u(s)ds.

The operator Kµ,γ can be viewed as a cordial operator defined in [29, 30], where the author

pointed out that such an operator is noncompact if K(0, 0) 6= 0. One can also see that when

γ = 0, the Eq. (1.2) reduces to a second kind VIDE.

There have been many researches on the numerical solution for several different classes of

Volterra integral or integro-differential equations, such as collocation methods [3, 9, 11, 13, 26,

36, 38, 39], discontinuous Galerkin methods [17], block boundary value methods [40], spectral

collocation methods [6, 10, 35, 37], spectral Galerkin methods [8, 27], hp-version collocation or

Galerkin methods [15, 16, 32, 33]. All the above studies focus on the second kind Volterra-type

equations.

For third kind VIDEs with form (1.1) or (1.2), however, there are only few works. One can

see the study for the case that µ = 0 in [12] and for the case that Kµ,γ is compact in [22].

For CVIDEs with noncompact cordial operators, continuous piecewise-polynomial collocation

methods were considered in [25], where the convergence and superconvergence of the method

were analysed. Based on smooth transformation, the Legendre spectral collocation method was

employed in [14]. A related topic is the numerical solution of Volterra integral equations (VIEs)

with the integral operator Kµ,γ , which are also referred as third-kind VIEs [5, 18, 20]. For the

latter, collocation methods [1, 31], multistep collocation methods [21] and Legendre Galerkin

spectral methods [2] have received attention. Recently, an hp-version method, which can provide

a flexible choice of locally varying time steps and approximation orders, was developed for

solving third-kind VIEs in [34]. To the best of our knowledge, hp-version methods have not

been considered for the VIDEs of the form (1.2), although such kind of methods has been widely

studied for solving second kind VIDEs and VIEs.

In this paper, we apply a fractional collocation method to the Eq. (1.2) with noncompact

cordial operator and nonsmooth solution. The method is based on piecewise fractional poly-

nomial collocation with fractional exponent λ (0 < λ ≤ 1) which is a user-chosen parameter.

Different from the classical polynomial collocation method, the approximation spaces for frac-

tional collocation method are constructed using fractional polynomials of the form
∑N

k=0 ckt
kλ

instead of standard polynomials. The motivation for using such spaces is that when the solution

exhibits weak singularity at the initial point t = 0, the present fractional approximation spaces

with a suitable λ can match well with this kind of singularity appearing in the solutions. We

mention that such spaces have previously been used for the numerical solution of second kind

weakly singular VIDEs, see for example [8, 9, 16].

For the proposed fractional collocation method, an hp-error estimate is established under

a weighted H1-norm. The error bound explicitly depends on the local time steps, the local

approximation orders, and the regularity of u(t1/λ) and u′(t1/λ). Notice that for typical weakly

singular solutions, u(t1/λ) and u′(t1/λ) can have a better regularity than the original solution

u(t) for suitable λ. This means that fractional collocation can achieve high order of convergence

even for weakly singular solutions.
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This paper is organized as follows. In Section 2, we introduce some notations and give our

numerical scheme for (1.2). In Section 3, some technical lemmas are derived. An hp-version

error estimate of the proposed method is given in Section 4. The effectiveness of the proposed

method is demonstrated by numerical experiments in Section 5. Finally, some concluding

remarks are given in Section 6.

2. Fractional Collocation Method

In this section, we propose a fractional collocation scheme for solving the Eq. (1.2) numeri-

cally. Firstly, we give some notations.

2.1. Preliminaries

Let M ∈ N. Define a mesh

TM = {ti : 0 = t0 < t1 < · · · < tM = T }

on the interval I and set σi = (ti−1, ti], hi = ti − ti−1. We introduce the piecewise fractional

polynomial space Sλ(TM ),

Sλ(TM ) :=
{

w(t) : w(t)|t∈σi
∈ Pλ

Ni
, i = 1, . . . ,M

}

,

where 0 < λ ≤ 1 and Pλ
Ni

:= span{1, tλ, · · · , tNiλ} with {Ni}Mi=1 being a set of natural numbers.

For any function v(t) defined on I, we denote by vi(t) the function v(t) on σi.

Let {cα,βi,k , θα,βi,k }Ni

k=0 be the standard Jacobi-Gauss quadrature nodes and weights on Λ :=

[−1, 1]. Let σ̂i := (tλi−1, t
λ
i ] and hi,λ = tλi − tλi−1. Define {ξα,βi,k }Ni

k=0 ∈ σ̂i and {ωα,β
i,k }Ni

k=0 as

follows:

ξα,βi,k :=
1

2

(

tλi−1 + tλi + cα,βi,k hi,λ

)

, ωα,β
i,k := θα,βi,k

(

hi,λ

2

)1+α+β

, (2.1)

and the associated Lagrange basis polynomials {L̂α,β
i,k }Ni

k=0 on σ̂i are defined by

L̂α,β
i,k (s) =

Ni
∏

j=0,j 6=k

s− ξα,βi,j

ξα,βi,k − ξα,βi,j

, s ∈ σ̂i, k = 0, . . . , Ni. (2.2)

Then, we can define the corresponding interpolation operators Îα,βNi,i
: C(σ̂i) → P 1

Ni
(σ̂i) for

i = 1, . . . ,M by

(

Îα,βNi,i
z
)

(s) :=

Ni
∑

k=0

L̂α,β
i,k (s)z

(

ξα,βi,k

)

, s ∈ σ̂i.

Next, we introduce a nonlinear transformation ρ(s) := s1/λ and for any function w, let ŵ(s) :=

w(ρ(s)). The collocation points {tα,βi,k }Ni

k=0 ∈ σi are given by

Xi :=
{

tα,βi,k : tα,βi,k = ρ
(

ξα,βi,k

)

, k = 0, . . . , Ni

}

. (2.3)

Define fractional basis functions {Lλ,α,β
i,k }Ni

k=0 on σi by

Lλ,α,β
i,k (t) :=

Ni
∏

j=0,j 6=k

tλ −
(

tα,βi,j

)λ

(

tα,βi,k

)λ −
(

tα,βi,j

)λ
, t ∈ σi, k = 0, . . . , Ni.
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The corresponding interpolation operator Iλ,α,βNi,i
: C(σi) → Pλ

Ni
(σi) is defined as

(

Iλ,α,βNi,i
w
)

(t) :=

Ni
∑

k=0

Lλ,α,β
i,k (t)w

(

tα,βi,k

)

, t ∈ σi.

By t = ρ(s), one has for t ∈ σi,

(

Iλ,α,βNi,i
w
)

(t) =

Ni
∑

k=0

Lλ,α,β
i,k (t)w

(

tα,βi,k

)

=

Ni
∑

k=0

L̂α,β
i,k (s)w

(

ρ
(

ξα,βi,k

))

=
(

Îα,βNi,i
ŵ
)

(s). (2.4)

Let {cLi,k, θLi,k}Ni+1
k=0 be the standard Legendre-Gauss-Lobatto quadrature nodes and weights

on Λ. Replace cα,βi,k in (2.1) with cLi,k. Similarly as in (2.1)-(2.2), we define

ξLi,k :=
1

2

(

tλi−1 + tλi + cLi,khi,λ

)

, ωL
i,k =

1

2
θLi,khi,λ,

L̂L
i,k(s) :=

Ni
∏

j=0,j 6=k

s− ξLi,j
ξLi,k − ξLi,j

, s ∈ σ̂i, k = 0, . . . , Ni + 1,

and the interpolation operator ÎLNi+1,i : C(σ̂i) → P 1
Ni+1(σ̂i)

(

ÎLNi+1,iw
)

(s) :=

Ni+1
∑

k=0

L̂L
i,k(s)w

(

ξLi,k
)

.

Using t = ρ(s), we further define

tLi,k = ρ
(

ξLi,k
)

, Lλ,L
i,k (t) =

Ni
∏

j=0,j 6=k

tλ −
(

tLi,j
)λ

(

tLi,k
)λ −

(

tLi,j
)λ

, t ∈ σi, k = 0, . . . , Ni + 1,

and the interpolation operator Iλ,LNi+1,i : C(σi) → Pλ
Ni+1(σi)

(

Iλ,LNi+1,iw
)

(t) =

Ni+1
∑

k=0

Lλ,L
i,k (t)w(ti,k).

Similar to (2.4), one can easily verify that for t = ρ(s)
(

Iλ,LNi+1,iw
)

(t) =
(

ÎLNi+1,iŵ
)

(s). (2.5)

Throughout this paper, let c be a generic positive constant which is independent of diameter

of the mesh and local approximation orders Ni. Note that it may have different values in

different places.

2.2. The fractional collocation scheme

With the above preparations, we now give the fractional collocation scheme for solving (1.2)

numerically. For the prescribed collocation points {Xi}Mi=1, find functions V ∈ Sλ(TM ) and U

such that for i = 1, 2, . . . ,M ,

V (t) = aγ(t)Ui(t) + gγ(t) +

i−1
∑

j=1

t−γ

∫ tj

tj−1

(t− s)−µsµ+γ−1Iλ,LNj+1,j

(

K(t, s)Uj(s)
)

ds

+ t−γ

∫ t

ti−1

(t− s)−µsµ+γ−1Iλ,LNi+1,i

(

K(t, s)Ui(s)
)

ds, t ∈ Xi, (2.6a)
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Ui(t) = Ui−1(ti−1) +

∫ t

ti−1

Vi(s)ds, t ∈ σi (2.6b)

with U0(t0) = u0. It follows from (2.6b) that the numerical solution U(t) is continuous. Since

V ∈ Sλ(TM ), we write V in the following local representation:

V (t) =

Ni
∑

l=0

Lλ,α,β
i,l (t)V

(

tα,βi,l

)

, t ∈ σi.

Combining this local representation with (2.6b) gives

Ui(t) = Ui−1(ti−1) +

Ni
∑

l=0

βi,l(t)Vi,l,

where Vi,l = Vi(t
α,β
i,l ) and

βi,l(t) =

∫ t

ti−1

Lλ,α,β
i,l (s)ds.

Then collocation scheme (2.6a) becomes

Vi,k = aγ
(

tα,βi,k

)

(

Ui−1(ti−1) +

Ni
∑

l=0

βi,l

(

tα,βi,k

)

Vi,l

)

+ gγ
(

tα,βi,k

)

+

i−1
∑

j=1

Nj+1
∑

p=0

Uj

(

tLj,p
)

φi,j
k,p

+

Ni+1
∑

p=0

(

Ui−1(ti−1) +

Ni
∑

l=0

βi,l

(

tLi,p
)

Vi,l

)

φi,i
k,p, k = 0, . . . , Ni, (2.7)

where

φi,j
k,p =



















(

tα,βi,k

)−γ
K
(

tα,βi,k , tLj,p
)

∫ tj

tj−1

(

tα,βi,k − s
)−µ

sµ+γ−1Lλ,L
j,p (s)ds, 1 ≤ j ≤ i− 1,

(

tα,βi,k

)−γ
K
(

tα,βi,k , tLi,p
)

∫ tα,β

i,k

ti−1

(

tα,βi,k − s
)−µ

sµ+γ−1Lλ,L
i,p (s)ds, j = i.

The system (2.7) can be equivalently written in the following matrix form:

(

INi+1 −AiBi − Φi,iBL
i

)

Vi = Ui−1(ti−1)
(

Ai +Φi,i
)

r +Gi +

i−1
∑

j=1

Φi,jUj , (2.8)

where INi+1 is the identity matrix of order Ni + 1,

Gi :=
(

gγ
(

tα,βi,0

)

, · · · , gγ
(

tα,βi,Ni

))T
, r := (1, · · · , 1)T

and

Vi : = (Vi,0, · · · , Vi,Ni
)T , Uj :=

(

Uj

(

tLj,0
)

, · · · , Uj

(

tLj,Nj+1

))T
,

Ai : = diag
(

aγ
(

tα,βi,0

)

, · · · , aγ
(

tα,βi,Ni

))

, Φi,j :=
(

φi,j
k,p

)

k=0,...,Ni

p=0,...,Nj+1
,

Bi : =
(

βi,l

(

tα,βi,k

))

k=0,...,Ni

l=0,...,Ni

, BL
i :=

(

βi,l

(

tLi,p
))

p=0,...,Ni+1
l=0,...,Ni

.

When Vi is solved by (2.8), the collocation solution on σi can be obtained by (2.6b).
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Next, we discuss the solvability of the scheme (2.8). For any fixed Ni, by the definition of Bi

and BL
i , we derive

‖Bi‖∞ = max
0≤k≤Ni

Ni
∑

l=0

∣

∣βi,l

(

tα,βi,k

)∣

∣ ≤ max
0≤k≤Ni

∫ tα,β

i,k

ti−1

Ni
∑

l=0

∣

∣Lλ,α,β
i,l (s)

∣

∣ds ≤ chi, (2.9)

∥

∥BL
i

∥

∥

∞
= max

0≤p≤Ni+1

Ni
∑

l=0

∣

∣βi,l

(

tLi,p
)∣

∣ ≤ max
0≤p≤Ni+1

∫ tLi,p

ti−1

Ni
∑

l=0

∣

∣Lλ,α,β
i,l (s)

∣

∣ds ≤ chi. (2.10)

For Φi,i, one has

‖Φi,i‖∞ ≤ max
0≤k≤Ni

Ni+1
∑

p=0

(

tα,βi,k

)−γ∣
∣K
(

tα,βi,k , tLi,p
)∣

∣

∫ tα,β

i,k

ti−1

(

tα,βi,k − s
)−µ

sµ+γ−1
∣

∣Lλ,L
i,p (s)

∣

∣ds

≤ c max
0≤k≤Ni

(

tα,βi,k

)µ−1
Ni+1
∑

p=0

∫ tα,β

i,k

ti−1

(

tα,βi,k − s
)−µ∣

∣Lλ,L
i,p (s)

∣

∣ds

≤ c max
0≤k≤Ni

(

tα,βi,k

)µ−1
∫ tα,β

i,k

ti−1

(

tα,βi,k − s
)−µ

ds ≤ c. (2.11)

By (2.9)-(2.11), one obtains that for sufficiently small h, where h = max1≤i≤M hi,

∥

∥AiBi + Φi,iBL
i

∥

∥

∞
≤ ‖Ai‖∞‖Bi‖∞ + ‖Φi,i‖∞

∥

∥BL
i

∥

∥

∞
≤ 1

2
.

Then the following inequality holds:

∥

∥

(

INi+1 −AiBi − Φi,iBL
i

)−1∥
∥

∞
≤ 2,

which shows that the system (2.8) has a unique solution. So the collocation scheme (2.6) defines

a unique collocation solution for problem (1.1).

3. Some Useful Lemmas

Let L2(σ̂i), H
m(σ̂i) be the usual Sobolev spaces defined on σ̂i. On the interval I, we define

the weighted Sobolev space H1
0,λ−1(I) by

H1
0,λ−1(I) :=

{

w(t) : ∂k
t w(t) ∈ L2

0,λ−1(I), 0 ≤ k ≤ 1
}

equipped with norm ‖ · ‖H1

0,λ−1
(I) as follows:

‖w‖H1

0,λ−1
(I) =

(

(w,w)L2

0,λ−1
(I) + (∂tw, ∂tw)L2

0,λ−1
(I)

)
1

2 ,

where

L2
0,λ−1(I) :=

{

w(t) :

∫

I

w2(t)tλ−1dt < ∞
}

,

(w, v)L2

0,λ−1
(I) =

∫

I

w(t)v(t)tλ−1dt.

Now we give some lemmas that are needed in the convergence analysis.
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Lemma 3.1 ([33]). For w ∈ Hm(σ̂i) with 1 ≤ m ≤ Ni + 2,

∥

∥w − ÎLNi+1,iw
∥

∥

Hk(σ̂i)
≤ chm−k

i,λ (Ni + 1)k−m
∥

∥∂m
t w
∥

∥

L2(σ̂i)
, k = 0, 1.

Lemma 3.2. For w ∈ Hm(σ̂i) with 1 ≤ m ≤ Ni + 1 and α, β ≤ 0,

∥

∥w − Îα,βNi,i
w
∥

∥

L2(σ̂i)
≤ chm

i,λN
−m
i

∥

∥∂m
t w
∥

∥

L2(σ̂i)
.

Proof. One can see the details for the special case that α = β = −1/2 in [16, Lemma 2].

For α, β ≤ 0, the proof is similar. �

Lemma 3.3 ([7, 23]). For any w ∈ H1(a, b),

max
x∈[a,b]

|w(x)| ≤ 1√
b− a

‖w‖L2(a,b) +
√
b− a‖w′‖L2(a,b).

In the rest of the paper, let u be the solution of (1.2) and v := u′. Let e(t) := u(t)− U(t),

e′(t) := v(t)− V (t). For a given t ∈ σi, we define the piecewise functions

F (t, s)|s∈σj
:= K(t, s)uj(s)− Iλ,LNj+1,j

(

K(t, s)uj(s)
)

, 1 ≤ j ≤ i,

H(t, s)|s∈σj
:= Iλ,LNj+1,j

(

K(t, s)uj(s)−K(t, s)Uj(s)
)

, 1 ≤ j ≤ i.

Then the following lemmas hold.

Lemma 3.4. For fixed 1 ≤ i ≤ M , assume that K(t, s1/λ)|t∈σi,s∈σ̂j
∈ Cmj+1(σi × σ̂j),

u(t1/λ)|σ̂j
∈ Hmj+1(σ̂j) with 1 ≤ mj ≤ Nj + 1 for j = 1, . . . , i. Then for t ∈ σi one has

max
s∈[0,ti]

|F (t, s)|2 ≤ c max
1≤j≤i

h
2mj+1
j,λ (Nj + 1)−2mj

∥

∥∂mj+1
s

(

K
(

t, s
1

λ

)

uj

(

s
1

λ

))
∥

∥

2

L∞(σi;L2(σ̂j))
.

Proof. Lemma 3.3 gives

max
s∈[0,ti]

|F (t, s)|2 = max
1≤j≤i

max
s∈σ̂j

∣

∣F
(

t, ρ(s)
)∣

∣

2

≤ c max
1≤j≤i

(

h−1
j,λ

∥

∥F
(

t, ρ(s)
)∥

∥

2

L2(σ̂j)
+ hj,λ

∥

∥∂sF
(

t, ρ(s)
)∥

∥

2

L2(σ̂j)

)

. (3.1)

By (2.5) and Lemma 3.1, one has for l = 0, 1,

∥

∥∂(l)
s F

(

t, ρ(s)
)
∥

∥

2

L2(σ̂j)

=

∫ tλj

tλ
j−1

∣

∣∂(l)
s

(

K
(

tα,βi,k , ρ(s)
)

uj

(

ρ(s)
)

−ÎLNj+1,j

(

K
(

tα,βi,k , ρ(s)
)

uj

(

ρ(s)
)))∣

∣

2
ds

≤ ch
2(mj+1−l)
j,λ (Nj + 1)−2(mj+1−l)

∥

∥∂mj+1
s

(

K
(

t, s
1

λ

)

uj

(

s
1

λ

))∥

∥

2

L∞(σi;L2(σ̂j))
. (3.2)

Combining (3.1) and (3.2) yields the desired result. �

Lemma 3.5. For fixed 1 ≤ i ≤ M , assume that u(t1/λ)|σ̂j
∈ H1(σ̂j) for j = 1, . . . , i and

K(t, s1/λ) ∈ C1(I × Î). Then for t ∈ σi one has

max
s∈[0,ti]

|H(t, s)|2 ≤ cT 2−2λ max
1≤j≤i

(

h−1
j,λ

∫ tj

tj−1

|e(t)|2tλ−1dt+ hj,λ

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

.
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Proof. By Lemma 3.3, one has

max
s∈[0,ti]

|H(t, s)|2 = max
1≤j≤i

max
s∈σ̂j

∣

∣H
(

t, ρ(s)
)
∣

∣

2

≤ max
1≤j≤i

(

h−1
j,λ

∥

∥H
(

t, ρ(s)
)
∥

∥

2

L2(σ̂j)
+ hj,λ

∥

∥∂sH
(

t, ρ(s)
)
∥

∥

2

L2(σ̂j)

)

. (3.3)

Then (2.5) and [23, Lemma 3.3] yield

∥

∥H
(

t, ρ(s)
)∥

∥

2

L2(σ̂j)
=

∫ tλj

tλ
j−1

∣

∣ÎLNj+1,j

(

K
(

tα,βi,k , ρ(s)
)

uj

(

ρ(s)
)

−K
(

tα,βi,k , ρ(s)
)

Uj

(

ρ(s)
))∣

∣

2
ds

≤
Nj+1
∑

k=0

(

K
(

tα,βi,k , ρ
(

ξLj,k
))

uj

(

ρ
(

ξLj,k
))

−K
(

tα,βi,k , ρ
(

ξLj,k
))

Uj

(

ρ
(

ξLj,k
))

)2

ωL
j,k.

Considering
Nj+1
∑

k=0

ωL
j,k =

hj,λ

2

Nj+1
∑

k=0

θLj,k = hj,λ,

we have

∥

∥H
(

t, ρ(s)
)
∥

∥

2

L2(σ̂j)
≤ c

Nj+1
∑

k=0

(

uj

(

ρ
(

ξLj,k
))

− Uj

(

ρ
(

ξLj,k
))

)2

ωL
j,k

≤ chj,λ

∥

∥uj

(

ρ(s)
)

− Uj

(

ρ(s)
)∥

∥

2

L∞(σ̂j)
.

Lemma 3.3 then gives that

∥

∥H
(

t, ρ(s)
)∥

∥

2

L2(σ̂j)
≤ c

∫ tλj

tλ
j−1

∣

∣e
(

ρ(s)
)∣

∣

2
ds+ ch2

j,λ

∫ tλj

tλ
j−1

∣

∣∂se
(

ρ(s)
)∣

∣

2
ds

= cλ

∫ tj

tj−1

|e(t)|2tλ−1dt+ cλ−1T 2−2λh2
j,λ

∫ tj

tj−1

|e′(t)|2tλ−1dt. (3.4)

By the triangle inequality and Lemma 3.1 with k = 1,m = 1, one obtains

∥

∥∂sH
(

t, ρ(s)
)
∥

∥

2

L2(σ̂j)
=

∫ tλj

tλ
j−1

∣

∣∂sÎ
L
Nj+1,j

(

K
(

t, ρ(s)
)

uj

(

ρ(s)
)

−K
(

t, ρ(s)
)

Uj

(

ρ(s)
))
∣

∣

2
ds

≤ c

∫ tλj

tλ
j−1

∣

∣∂s
(

K
(

t, ρ(s)
)

uj

(

ρ(s)
)

−K
(

t, ρ(s)
)

Uj

(

ρ(s)
))∣

∣

2
ds

= c

∫ tj

tj−1

∣

∣∂s
(

K(t, s)uj(s)−K(t, s)Uj(s)
)∣

∣

2
λ−1s1−λds,

which leads to

∥

∥∂sH
(

t, ρ(s)
)
∥

∥

2

L2(σ̂j)
≤ cλ−1

∫ tj

tj−1

|e(t)|2t1−λdt+ cλ−1

∫ tj

tj−1

|e′(t)|2t1−λdt

≤ cλ−1T 2−2λ

(
∫ tj

tj−1

|e(t)|2t1−λdt+

∫ tj

tj−1

|e′(t)|2t1−λdt

)

. (3.5)

Substituting (3.4) and (3.5) into (3.3) gives the desired result. �
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4. Convergence Analysis

In this section, we derive an hp-version error bound for the collocation solution generated

by the scheme (2.6).

The triangle inequality gives
∫ ti

ti−1

|e′(t)|2tλ−1dt ≤ 2

∫ ti

ti−1

∣

∣v(t)− Iλ,α,βNi,i
v(t)

∣

∣

2
tλ−1dt

+ 2

∫ ti

ti−1

∣

∣Iλ,α,βNi,i
v(t)− V (t)

∣

∣

2
tλ−1dt. (4.1)

We firstly estimate the second term on the right of (4.1).

Lemma 4.1. For fixed 1 ≤ i ≤ M , assume that u(t1/λ)|σ̂j
∈ Hmj+1(σ̂j) with 1 ≤ mj ≤ Nj +1

for j = 1, . . . , i and aγ(t) ∈ C(I),K(t, s1/λ) ∈ Cm+1(I × Î) with m = max1≤j≤M mj. Then

one has
∫ ti

ti−1

∣

∣Iλ,α,βNi,i
v(t) − V (t)

∣

∣

2
tλ−1dt

≤ cQi + cT 2−2λhi,λ max
1≤j≤i

(

h−1
j,λ

∫ tj

tj−1

|e(t)|2tλ−1dt+ hj,λ

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

,

where

Qi := hi,λ max
1≤j≤i

h
2mj+1
j,λ (Nj + 1)−2mj

∥

∥∂mj+1
s

(

K
(

t, s
1

λ

)

uj

(

s
1

λ

))∥

∥

2

L∞(σi;L2(σ̂j))
.

Proof. From the Eq. (1.2), one gets

Iλ,α,βNi,i
vi(t) = Iλ,α,βNi,i

(

aγ(t)ui(t) + gγ(t)
)

+ Iλ,α,βNi,i

(

i−1
∑

j=1

t−γ

∫ tj

tj−1

(t− s)−µsµ+γ−1K(t, s)uj(s)ds

)

+ Iλ,α,βNi,i

(

t−γ

∫ t

ti−1

(t− s)−µsµ+γ−1K(t, s)ui(s)ds

)

, t ∈ σi. (4.2)

Note that V ∈ Sλ(TM ). According to the collocation scheme (2.6a), one has

Vi(t) = Iλ,α,βNi,i
Vi(t) = Iλ,α,βNi,i

(

aγ(t)Ui(t) + gγ(t)
)

+ Iλ,α,βNi,i

(

i−1
∑

j=1

t−γ

∫ tj

tj−1

(t− s)−µsµ+γ−1Iλ,LNj+1,j

(

K(t, s)Uj(s)
)

ds

)

+ Iλ,α,βNi,i

(

t−γ

∫ t

ti−1

(t− s)−µsµ+γ−1Iλ,LNi+1,i

(

K(t, s)Ui(s)
)

ds

)

, t ∈ σi. (4.3)

Then we subtract (4.3) from (4.2). By the triangle inequality, the following estimate holds:

∫ ti

ti−1

∣

∣Iλ,α,βNi,i
v(t)− V (t)

∣

∣

2
tλ−1dt ≤ 2

(

Υ1
i +Υ2

i

)

, (4.4)

where

Υ1
i =

∫ ti

ti−1

∣

∣Iλ,α,βNi,i

(

aγ(t)ui(t)− aγ(t)Ui(t)
)∣

∣

2
tλ−1dt,
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Υ2
i =

∫ ti

ti−1

∣

∣

∣

∣

∣

Iλ,α,βNi,i

(

i−1
∑

j=1

t−γ

∫ tj

tj−1

(t− s)−µsµ+γ−1
(

K(t, s)uj(s)− Iλ,LNj+1,j

(

K(t, s)Uj(s)
))

ds

+t−γ

∫ t

ti−1

(t− s)−µsµ+γ−1
(

K(t, s)ui(s)−Iλ,LNi+1,i

(

K(t, s)Ui(s)
))

ds

)
∣

∣

∣

∣

∣

2

tλ−1dt.

Let ωα,β
i (s) := (tλi − s)α(s − tλi−1)

β for s ∈ σ̂i. By (2.4) and the property of Jacobi-Gauss

quadrature, one has

Υ1
i = λ−1

∫ tλi

tλ
i−1

∣

∣Îα,βNi,i

(

aγ
(

ρ(s)
)

ui

(

ρ(s)
)

− aγ
(

ρ(s)
)

Ui

(

ρ(s)
))∣

∣

2
ds

≤ λ−1h−α−β
i,λ

∫ tλi

tλ
i−1

∣

∣Îα,βNi,i

(

aγ
(

ρ(s)
)

ui

(

ρ(s)
)

− aγ
(

ρ(s)
)

Ui

(

ρ(s)
))∣

∣

2
ωα,β
i (s)ds

= λ−1h−α−β
i,λ

Ni
∑

k=0

(

aγ
(

ρ
(

ξα,βi,k

))

ui

(

ρ
(

ξα,βi,k

))

− aγ
(

ρ
(

ξα,βi,k

))

Ui

(

ρ
(

ξα,βi,k

))

)2

ωα,β
i,k .

According to

Ni
∑

k=0

ωα,β
i,k =

(

hi,λ

2

)1+α+β Ni
∑

k=0

θα,βi,k =

(

hi,λ

2

)1+α+β

B(1 + α, 1 + β), (4.5)

where B(· , ·) is the Beta function, we get

Υ1
i ≤ cλ−1hi,λ

∥

∥e
(

ρ(s)
)∥

∥

2

L∞(σ̂i)
.

Lemma 3.3 then yields

Υ1
i ≤ cλ−1

(

∫ tλi

tλ
i−1

∣

∣e
(

ρ(s)
)∣

∣

2
ds+ h2

i,λ

∫ tλi

tλ
i−1

∣

∣∂se
(

ρ(s)
)∣

∣

2
ds

)

≤ c

∫ ti

ti−1

|e(t)|2tλ−1dt+ cλ−2T 2−2λh2
i,λ

∫ ti

ti−1

|e′(t)|2tλ−1dt. (4.6)

Next, we estimate the term Υ2
i . Let Ψ(t, s) := F (t, s) +H(t, s). By (2.4), one gets

Υ2
i =

∫ ti

ti−1

∣

∣

∣

∣

Iλ,α,βNi,i
t−γ

∫ t

0

(t− s)−µsµ+γ−1Ψ(t, s)ds

∣

∣

∣

∣

2

tλ−1dt

= λ−1

∫ tλi

tλ
i−1

∣

∣

∣

∣

Îα,βNi,i
ρ(τ)−γ

∫ ρ(τ)

0

(

ρ(τ) − s
)−µ

sµ+γ−1Ψ
(

ρ(τ), s
)

ds

∣

∣

∣

∣

2

dτ

≤ λ−1h−α−β
i,λ

∫ tλi

tλ
i−1

∣

∣

∣

∣

Îα,βNi,i
ρ(τ)−γ

∫ ρ(τ)

0

(

ρ(τ)− s
)−µ

sµ+γ−1Ψ
(

ρ(τ), s
)

ds

∣

∣

∣

∣

2

ωα,β
i (τ)dτ.

The property of Jacobi-Gauss quadrature and (4.5) yield that

Υ2
i ≤ λ−1h−α−β

i,λ

Ni
∑

k=0

(

(

tα,βi,k

)−γ
∫ tα,β

i,k

0

(

tα,βi,k − s
)−µ

sµ+γ−1Ψ
(

tα,βi,k , s
)

ds

)2

ωα,β
i,k

≤ λ−1h−α−β
i,λ

Ni
∑

k=0

(

max
s∈[0,ti]

∣

∣Ψ
(

tα,βi,k , s
)
∣

∣

)2
(

(

tα,βi,k

)−γ
∫ tα,β

i,k

0

(

tα,βi,k − s
)−µ

sµ+γ−1ds

)2

ωα,β
i,k

≤ cλ−1hi,λ max
0≤k≤Ni

(

max
s∈[0,ti]

∣

∣Ψ(tα,βi,k , s)
∣

∣

)2

.
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The triangle inequality gives
(

max
s∈[0,ti]

∣

∣Ψ
(

tα,βi,k , s
)∣

∣

)2

≤ 2 max
s∈[0,ti]

(

∣

∣F
(

tα,βi,k , s
)∣

∣

2
+
∣

∣H
(

tα,βi,k , s
)∣

∣

2
)

.

Then by Lemmas 3.4 and 3.5, we obtain

Υ2
i ≤ chi,λ max

1≤j≤i
h
2mj+1
j,λ (Nj + 1)−2mj

∥

∥∂mj+1
s

(

K
(

t, s
1

λ

)

uj

(

s
1

λ

))∥

∥

2

L∞(σi;L2(σ̂j))

+ cT 2−2λhi,λ max
1≤j≤i

(

h−1
j,λ

∫ tj

tj−1

|e(t)|2tλ−1dt+ hj,λ

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

. (4.7)

Combining (4.4), (4.6) and (4.7), we can get the desired result. �

Using Lemma 4.1, we can derive the following error bound for the collocation solution under

a weighted H1-norm.

Theorem 4.1. Assume that u ∈ H1
0,λ−1(I), u(t

1/λ)|σ̂i
∈ Hmi+1(σ̂i) and v(t1/λ)|σ̂i

∈ Hmi(σ̂i)

with 1 ≤ mi ≤ Ni + 1 for i = 1, . . . ,M and aγ(t) ∈ C(I),K(t, s1/λ) ∈ Cm+1(I × Î) with

m = max1≤j≤M mj. The collocation points are chosen as in (2.3) with α, β ≤ 0. Then there

exists a constant c such that

‖e‖2H1

0,λ−1
(I) ≤ exp(cT 4−3λ)

M
∑

i=1

h2mi

i,λ N−2mi

i

×
(

∣

∣v
(

s
1

λ

)
∣

∣

2

Hmi (σ̂i)
+ hi,λ

∥

∥∂mi+1
s

(

K
(

t, s
1

λ

)

ui(s
1

λ

))
∥

∥

2

L∞(I;L2(σ̂i))

)

.

Proof. By (2.4) and Lemma 3.2, one gets
∫ ti

ti−1

∣

∣vi(t)− Iλ,α,βNi,i
vi(t)

∣

∣

2
tλ−1dt

= λ−1

∫ tλi

tλ
i−1

∣

∣v
(

ρ(s)
)

− Îα,βNi,i
v
(

ρ(s)
)∣

∣

2
ds

≤ cλ−1h2mi

i,λ N−2mi

i

∥

∥∂mi
s v

(

s
1

λ

)
∥

∥

2

L2(σ̂i)
. (4.8)

Combining (4.1), Lemma 4.1 and (4.8) yields
∫ ti

ti−1

|e′(t)|2 tλ−1dt

≤ cQ̃i + cT 2−2λhi,λ max
1≤j≤i

(

h−1
j,λ

∫ tj

tj−1

|e(t)|2tλ−1dt+ hj,λ

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

, (4.9)

where

Q̃i := Qi + h2mi

i,λ N−2mi

i

∥

∥∂mi
s v

(

s
1

λ

)∥

∥

2

L2(σ̂i)
.

For sufficiently small hi,λ, (4.9) gives
∫ ti

ti−1

|e′(t)|2tλ−1dt

≤ cQ̃i + cT 2−2λ

∫ ti

ti−1

|e(t)|2tλ−1dt

+ cT 2−2λhi,λ max
1≤j≤i−1

(

h−1
j,λ

∫ tj

tj−1

|e(t)|2tλ−1dt+ hj,λ

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

. (4.10)
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It is easy to get that for j = 1, . . . , i,

e2(tj)− e2(tj−1) = 2

∫ tj

tj−1

e(t)e′(t)dt

≤ 2T 1−λ

(
∫ tj

tj−1

|e(t)|2tλ−1dt+

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

.

Since e(0) = 0, one obtains

e2(ti−1) =
i−1
∑

j=1

(

e2(tj)− e2(tj−1)
)

≤ 2T 1−λ
i−1
∑

j=1

(
∫ tj

tj−1

|e(t)|2tλ−1dt+

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

. (4.11)

By the variable transformation τ = s1/λ and t = x1/λ , we derive

∫ ti

ti−1

|e(t)|2tλ−1dt =

∫ ti

ti−1

(
∫ t

ti−1

e′(τ)dτ + e(ti−1)

)2

tλ−1dt

= λ−1

∫ tλi

tλ
i−1

(
∫ x

tλ
i−1

∂se
(

s
1

λ

)

ds+ e(ti−1)

)2

dx.

It follows from the Cauchy-Schwarz inequality and (4.11) that

∫ ti

ti−1

|e(t)|2tλ−1dt ≤ 2λ−1

∫ tλi

tλ
i−1

(
∫ x

tλ
i−1

∂se
(

s
1

λ

)

ds

)2

dx+ 2λ−1

∫ tλi

tλ
i−1

e2(ti−1)dx

≤ 2λ−1h2
i,λ

∫ tλi

tλ
i−1

∣

∣∂se
(

s
1

λ

)∣

∣

2
ds+ 2λ−1hi,λe

2(ti−1)

≤ 2λ−2T 2−2λh2
i,λ

∫ ti

ti−1

|e′(t)|2tλ−1dt

+ 4λ−1T 1−λhi,λ

i−1
∑

j=1

(
∫ tj

tj−1

|e(t)|2tλ−1dt+

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

. (4.12)

Let

Ri :=

∫ ti

ti−1

|e(t)|2tλ−1dt+

∫ ti

ti−1

|e′(t)|2tλ−1dt.

Then substituting (4.12) into (4.10) yeilds

∫ ti

ti−1

|e′(t)|2tλ−1dt

≤ cQ̃i + cT 4−4λh2
i,λ

∫ ti

ti−1

|e′(t)|2tλ−1dt+ cT 3−3λhi,λ

i−1
∑

j=1

Rj

+ cT 2−2λhi,λ

(

cT 1−λ
i−1
∑

k=1

Rk + cT 2−2λ
i−1
∑

j=1

hj,λ

∫ tj

tj−1

|e′(t)|2tλ−1dt

)

. (4.13)
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By (4.12) and (4.13), we can deduce that, for sufficiently small hi,λ,

Ri ≤ cQ̃i + cT 4−4λhi,λ

i−1
∑

j=1

Rj .

Taking ǫi = h−1
i,λRi, and applying the Gronwall inequality (see, for example, [24, Lemma 3.3]),

one can obtain

Ri ≤ cQ̃i + exp(cT 4−3λ)hi,λ

i−1
∑

j=1

Q̃i. (4.14)

Then substituting Qi into (4.14) gives

‖e‖2H1

0,λ−1
(I) =

M
∑

i=1

Ri ≤ c

M
∑

i=1

Q̃i + exp(cT 4−3λ)

M
∑

i=1

hi,λ

i−1
∑

j=1

Q̃i ≤ exp(cT 4−3λ)

M
∑

i=1

Q̃i

≤ exp(cT 4−3λ)

M
∑

i=1

(

h2mi

i,λ N−2mi

i

∣

∣v
(

s
1

λ

)∣

∣

2

Hmi (σ̂i)
+ hi,λ max

1≤j≤i
h
2mj+1
j,λ (Nj + 1)−2mj

×
∥

∥∂mj+1
s

(

K
(

t, s
1

λ

)

uj

(

s
1

λ

))∥

∥

2

L∞(σi;L2(σ̂j))

)

≤ exp(cT 4−3λ)

M
∑

i=1

h2mi

i,λ N−2mi

i

×
(

∣

∣v
(

s
1

λ

)∣

∣

2

Hmi (σ̂i)
+hi,λ

∥

∥∂mi+1
s

(

K
(

t, s
1

λ

)

ui

(

s
1

λ

))∥

∥

2

L∞(I;L2(σ̂i))

)

,

which is the desired result. �

Remark 4.1. Note that Theorem 4.1 holds for arbitrary meshes. If we consider the following

graded mesh with grading exponent q (q ≥ 1):

TM =

{

ti = T

(

i

M

)q

, i = 0, 1, . . . ,M

}

, (4.15)

one can obtain by the mean value theorem that

hλ ≤







T λM−qλ, if 1 ≤ q ≤ 1/λ,

T λqλM−1, if q > 1/λ,

where

hλ = max
1≤i≤M

hi,λ = max
1≤i≤M

(

tλi − tλi−1

)

.

In this case, we further have the following error estimate:

‖e‖2H1

0,λ−1
(I)

≤ exp(cT 4−3λ)T λ
M
∑

i=1

M−2min{qλmi,mi}N−2mi

i

×
(

∣

∣v
(

s
1

λ

)∣

∣

2

Hmi (σ̂i)
+ hi,λ

∥

∥∂mi+1
s

(

K
(

t, s
1

λ

)

ui

(

s
1

λ

))∥

∥

2

L∞(I;L2(σ̂i))

)

.
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Remark 4.2. From the definition of the H1
0,λ−1-norm it follows that

‖e‖2H1(I) ≤ T 1−λ‖e‖2H1

0,λ−1
(I).

Using Lemma 3.3, we can derive similar error estimates under the L2- and L∞-norms. For

example, if the assumptions in Theorem 4.1 are satisfied and if the graded mesh (4.15) is

employed, then we have

max
t∈I

|e(t)|2

≤ 2(1 + T 2) exp(cT 4−3λ)

M
∑

i=1

M−2min{qλmi,mi}N−2mi

i

×
(

∣

∣v
(

s
1

λ

)∣

∣

2

Hmi (σ̂i)
+ hi,λ

∥

∥∂mi+1
s

(

K
(

t, s
1

λ

)

ui

(

s
1

λ )
)∥

∥

2

L∞(I;L2(σ̂i))

)

.

Remark 4.3. The choice of the fractional exponent λ plays a crucial role in the effectiveness

of our method. More precisely, one can observe from Theorem 4.1 that the order of convergence

of the method depends on the regularity of u(t1/λ) and u′(t1/λ). So, λ should be selected such

that u(t1/λ) and u′(t1/λ) are smooth enough. When the structural properties of the solution

u(t) are known, we can select optimal λ accordingly. When the singularity of u(t) is unknown

and gγ(t) has a weak singularity, a simple but practical strategy is to take λ = 1/r with r being

a moderately large integer. On the one hand, the weak singularity of gγ(t) implies that u′(t)

possibly has a similar weak singularity. On the other hand, the regularity of u(tr) and u′(tr) is

always better than the regularity of u(t) and u′(t) respectively. Hence, r could be selected in

such a way that gγ(t
r) is smooth enough.

5. Numerical Results

In this section, we consider the following numerical example:










tγu′(t) = g(t) + t
5

3u(t) +

∫ t

0

√
3

3π
(t− s)−µsγ+µ−1esu(s)ds, t ∈ [0, 1],

u(0) = 0,

(5.1)

where g(t) is a given function. By selecting different g(t), we test the performance of the

proposed method in different situations.

In the numerical tests, we set α = β = −1/2, take uniform mode Ni = N and employ

graded meshes with grading exponent q (q ≥ 1) defined in (4.15). We will test the p-version

convergence of the method by increasing N for fixed subinterval number M . To show the

h-version convergence of the method, a fixed N is used and mesh sizes will be refined.

In the following, we denote by EM,N the H1
0,λ−1-norm of the errors, namely

EM,N = ‖e‖H1

0,λ−1
(I).

Let r represent the h-version convergence order, computed by r = log2(EM,N/E2M,N).

Example 5.1. Consider VIDE (5.1) with

g(t) = t1+µe−t
(

(1 + µ)tγ−1 − tγ − t
5

3

)

−
√
3

3π
B(1 − µ, 2µ+ γ + 1)t1+µ+γ .
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The exact solution of this problem is u(t) = t1+µe−t. Note that u(t) exhibits weak singularity

at the initial point for µ ∈ (0, 1).

In this example, we set µ = 1/2 and γ = 1. Taking λ = µ = 1/2, one can see that, by

transformation t = s1/λ, u(s1/λ) and u′(s1/λ) are analytic although u(t) and u′(t) are weakly

singular at t = 0. In Fig. 5.1, the convergence rates of p-version of the method are shown for

fixed M = 1 and M = 8. When λ = 1, namely polynomial collocation scheme is applied, the

convergence rates are algebraic in both cases of M = 1 and M = 8. For the proposed fractional

collocation method with λ = 1/2, the convergence results are given in Figs. 5.1(b) and 5.1(c).

On both uniform mesh and graded mesh with q = 2, the exponential convergence is achieved.

The errors and h-version convergence of the method are listed in Tables 5.1 and 5.2. One

can see from Table 5.1 that the fractional collocation method (λ = 1/2) can achieve high order

convergence on uniform mesh (q = 1), while the polynomial collocation method (λ = 1) has an

order barrier. Table 5.2 also shows that, when λ = 1/2, the optimal convergence rates can be

obtained if q = 1/λ is taken. The numerical results are compatible with the theorem analysis.

(a) λ = 1, q = 1 (b) λ = 1/2, q = 1 (c) λ = 1/2, q = 2

Fig. 5.1. H1
0,λ−1-norm errors and p-version convergence for Example 5.1.

Table 5.1: H1
0,λ−1-norm errors and h-version convergence rates on uniform mesh for Example 5.1.

λ = 1 (q = 1) λ = 1/2 (q = 1)

M N = 2 N = 4 N = 2 N = 4

EM,N r EM,N r EM,N r EM,N r

64 5.04E-04 1.01 1.76E-04 1.00 5.09E-05 1.71 3.50E-08 2.70

128 2.51E-04 1.00 8.79E-05 1.00 1.54E-05 1.73 5.31E-09 2.72

256 1.25E-04 1.00 4.40E-05 1.00 4.60E-06 1.74 7.98E-10 2.73

Table 5.2: H1
0,λ−1-norm errors and h-version convergence rates on graded mesh for Example 5.1.

λ = 1/2 (q = 2)

M N = 1 N = 2 N = 3

EM,N r EM,N r EM,N r

64 4.86E-05 2.00 1.84E-07 3.00 6.23E-09 4.00

128 1.22E-05 2.00 2.30E-08 3.00 3.89E-10 4.00

256 3.04E-06 2.00 2.87E-09 3.00 2.43E-12 4.00
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Example 5.2. Consider VIDE (5.1) with

g(t) = t1+ν1e−t
(

(1 + ν1)t
γ−1 − tγ − t

5

3

)

−+t1+ν2e−t
(

(1 + ν2)t
γ−1 − tγ − t

5

3

)

−
√
3

3π

(

B(1 − ν1, 2ν1 + γ + 1)t1+ν1+γ +B(1− ν2, 2ν2 + γ + 1)t1+ν2+γ
)

.

The exact solution of this problem is u(t) = (t1+ν1 + t1+ν2)e−t.

One can see that we cannot guarantee that u(t1/λ) and u′(t1/λ) are always analytic for

general ν1 and ν2. Using this example, we test the performance of our method in the case that

u(t1/λ) and u′(t1/λ) are not smooth enough.

In this example, we set µ = 1/2, γ = 1, ν1 = 1/2, ν2 =
√
5. The fractional parameter λ is

chosen as λ = 1 and λ = 1/2, respectively. The p-version convergence results with fixed M = 1

and M = 8 are shown in Fig. 5.2, which show that fractional collocation method performs

better than polynomial collocation method for this problem. In Tables 5.3 and 5.4, we list

the h-version convergence results on uniform mesh and graded mesh. One can see that the

fractional collocation method can still have high order of convergence.

(a) λ = 1, q = 1 (b) λ = 1/2, q = 1 λ = 1/2, q = 2

Fig. 5.2. H1
0,λ−1-norm errors and p-version convergence for Example 5.2.

Table 5.3: H1
0,λ−1-norm errors and h-version convergence rates on uniform mesh for Example 5.2.

λ = 1 (q = 1) λ = 1/2 (q = 1)

M N = 2 N = 4 N = 2 N = 4

EM,N r EM,N r EM,N r EM,N r

64 5.04E-04 1.00 1.76E-04 1.00 4.34E-05 1.53 8.51E-08 2.30

128 2.51E-04 1.00 8.79E-05 1.00 1.40E-05 1.63 1.57E-08 2.44

256 1.25E-04 1.00 4.40E-05 1.00 4.36E-06 1.68 2.79E-09 2.50

Table 5.4: H1
0,λ−1-norm errors and h-version convergence rates on graded mesh for Example 5.2.

λ = 1/2 (q = 2)

M N = 1 N = 2 N = 3

EM,N r EM,N r EM,N r

64 2.57E-05 2.00 2.01E-07 3.00 1.12E-09 4.00

128 6.42E-06 2.00 2.51E-08 3.00 6.99E-11 4.00

256 1.60E-06 2.00 3.14E-09 3.00 4.37E-12 4.00
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6. Concluding Remarks

In this paper, we considered a fractional collocation method for solving Volterra integral-

differential equations with noncompact operators and nonsmooth solutions. We proved the

solvability of the numerical scheme, and obtained hp-error estimates under the H1
0,λ−1-norm.

The theoretical results showed that, by choosing appropriate fractional exponent λ, both the

p-version and the h-version of the method can attain high order convergence even for nonsmooth

solution. The numerical experiments showed the effectiveness of the method and confirmed the

theoretical analysis.
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