Commun. Comput. Phys., 2 (2007), pp. 827-880. |
Mathematical Models and Numerical Methods for High Frequency Waves Olof Runborg ^{1*} 1 Department of Numerical Analysis, School of Computer Science and Communication, KTH, 100 44 Stockholm, Sweden.Received 3 December 2006; Accepted (in revised version) 26 January 27 Communicated by Weinan E Available online 20 March 2007 Abstract The numerical approximation of high frequency wave propagation is important in many applications. Examples include the simulation of seismic, acoustic, optical waves and microwaves. When the frequency of the waves is high, this is a difficult multiscale problem. The wavelength is short compared to the overall size of the computational domain and direct simulation using the standard wave equations is very expensive. Fortunately, there are computationally much less costly models, that are good approximations of many wave equations precisely for very high frequencies. Even for linear wave equations these models are often nonlinear. The goal of this paper is to review such mathematical models for high frequency waves, and to survey numerical methods used in simulations. We focus on the geometrical optics approximation which describes the infinite frequency limit of wave equations. We will also discuss finite frequency corrections and some other models. AMS subject classifications: 65-02, 35L05, 78A05 Notice: Undefined variable: pac in /var/www/html/issue/abstract/readabs.php on line 164 Key words: Geometrical optics, wave equation, Helmholtz equation, high frequency waves, eikonal equation, ray tracing, multiscale problems *Corresponding author. Email: olofr@nada.kth.se (O. Runborg) |