Commun. Comput. Phys., 9 (2011), pp. 1235-1256.

Lattice Boltzmann Simulation of Droplet Generation in a Microfluidic Cross-Junction

Haihu Liu 1, Yonghao Zhang 1*

1 Department of Mechanical Engineering, University of Strathclyde, Glasgow G1 1XJ, UK.

Received 23 October 2009; Accepted (in revised version) 10 November 2010
Available online 28 January 2011


Using the lattice Boltzmann multiphase model, numerical simulations have been performed to understand the dynamics of droplet formation in a microfluidic cross-junction. The influence of capillary number, flow rate ratio, viscosity ratio, and viscosity of the continuous phase on droplet formation has been systematically studied over a wide range of capillary numbers. Two different regimes, namely the squeezing-like regime and the dripping regime, are clearly identified with the transition occurring at a critical capillary number $Ca_{cr}$. Generally, large flow rate ratio is expected to produce big droplets, while increasing capillary number will reduce droplet size. In the squeezing-like regime ($Ca\le Ca_{cr}$), droplet breakup process is dominated by the squeezing pressure and the viscous force; while in the dripping regime ($Ca >Ca_{cr}$), the viscous force is dominant and the droplet size becomes independent of the flow rate ratio as the capillary number increases. In addition, the droplet size weakly depends on the viscosity ratio in both regimes and decreases when the viscosity of the continuous phase increases. Finally, a scaling law is established to predict the droplet size.

Notice: Undefined variable: ams in /var/www/html/issue/abstract/readabs.php on line 163
PACS: 47.55.db, 47.55.df, 47.61.-k, 47.61.Jd
Key words: Droplet generation, microdroplet technology, lattice Boltzmann method, multiphase flow.

*Corresponding author.
Email: (H. Liu), (Y. Zhang)

The Global Science Journal