A Posteriori Error Analysis of Any Order Finite Volume Methods for Elliptic Problems

Authors

  • Yuanyuan Zhang School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China
  • Min Yang School of Mathematics and Information Sciences, Yantai University, Yantai 264005, China

DOI:

https://doi.org/10.4208/aamm.OA-2019-0012

Keywords:

Any order finite volume methods, a posteriori error estimate.

Abstract

In this paper, we construct and analyze the a posteriori error estimators for any order finite volume methods (FVMs) for solving the elliptic boundary value problems in $R^2$. We shall prove that the a posteriori error estimators yield the global upper and local lower bounds for the $H^1$-norm error of the corresponding FVMs. So that the a posteriori error estimators are equivalent to the true errors in a certain sense. Lots of numerical experiments are performed to illustrate the theoretical results.

Published

2020-01-17

Abstract View

  • 45126

Pdf View

  • 3229

Issue

Section

Articles