Two-Level Defect-Correction Method for Steady Navier-Stokes Problem with Friction Boundary Conditions
DOI:
https://doi.org/10.4208/aamm.2014.m595Keywords:
Navier-Stokes equations, friction boundary conditions, variational inequality problems, defect-correction method, two-level mesh method.Abstract
In this paper, we present two-level defect-correction finite element method for steady Navier-Stokes equations at high Reynolds number with the friction boundary conditions, which results in a variational inequality problem of the second kind. Based on Taylor-Hood element, we solve a variational inequality problem of Navier-Stokes type on the coarse mesh and solve a variational inequality problem of Navier-Stokes type corresponding to Newton linearization on the fine mesh. The error estimates for the velocity in the $H^1$ norm and the pressure in the $L^2$ norm are derived. Finally, the numerical results are provided to confirm our theoretical analysis.
Downloads
Published
2021-07-01
Abstract View
- 44590
Pdf View
- 3857
Issue
Section
Articles