DOI: 10.4208/ata.OA-2023-0009 September 2025

Estimates for Parabolic Schrödinger Operators with Certain Nonnegative Potentials

Yanhui Wang*

Department of Mathematics, Jiaozuo University, Jiaozuo, Henan 454003, China

Received 22 March 2023; Accepted (in revised version) 26 March 2025

Abstract. In this paper, the parabolic Schrödinger operator $\mathcal{P} = \partial_t - \Delta + V(x)$ on \mathbb{R}^{n+1} is considered, where $n \geq 3$, nonnegative potential V belongs to the reverse Hölder class RH_q with $q \geq n/2$. The L^p boundedness of operators $V^\alpha \mathcal{P}^{-\beta}$, $V^\alpha \nabla \mathcal{P}^{-\beta}$ and their adjoint operators are established.

Key Words: L^p estimate, parabolic Schrödinger operator, reverse Hölder class.

AMS Subject Classifications: 42B25, 35J10, 42B37

1 Introduction and results

For $1 < q \le \infty$, a nonnegative locally L^q -integrable function V is said to belong to the reverse Hölder class RH_q if there exists a constant C > 0 such that the reverse Hölder inequality

$$\left(\frac{1}{|B|}\int_{B}V(y)^{q}dy\right)^{1/q}\leq \frac{C}{|B|}\int_{B}V(y)dy$$

holds for every ball $B \subset \mathbb{R}^n$.

Clearly, if V belongs to RH_q with q>1, then V is a Muckenhoup A_∞ weight; see [4]. From the weight theory, we know V(x)dx is a doubling measure and the class RH_q has self-improvement property [5]; that is, if $V \in RH_q$ for some q>1, then there exists $\epsilon>0$ such that $V \in RH_{q+\epsilon}$.

In this paper, we consider the parabolic Schrödinger operators

$$\mathcal{P} = \partial_t - \Delta + V(x)$$
 on \mathbb{R}^{n+1} , $n \ge 3$,

^{*}Corresponding author. Email address: wangyanhuihao@126.com (Y. Wang)

where the potential V belongs to the reverse Hölder class RH_q for $q \ge n/2$. We concentrate on the L^p boundedness of the operators

$$T_1 = V^{\alpha} \mathcal{P}^{-\beta}, \qquad 0 \le \alpha \le \beta \le 1,$$

$$T_2 = V^{\alpha} \nabla \mathcal{P}^{-\beta}, \qquad 0 \le \alpha \le 1/2 \le \beta \le 1, \quad \beta - \alpha \ge 1/2,$$

and their adjoint operators.

Let $V \in RH_q$ for $q \ge n/2$. When $(\alpha, \beta) = (1,1)$, Gao and Jiang in [2] showed the L^p -boundedness of T_1 for $1 . Based on this result, they obtained the <math>L^p$ -boundedness of operator $\nabla^2 \mathcal{P}^{-1}$. Carbonaro et al. in [1] improved the results in [2] by the potential V with the variables x; t, which is essentially the generalization to \mathbb{R}^{n+1} of the condition of [2]. Suppose $V \in RH_q$ with n/2 < q < n. When $(\alpha, \beta) = (0, 1/2)$, $1 , <math>1/p_0 = 1/q - 1/n$, Tang and Han [7] established the L^p -boundedness of T_2 ; For $(\alpha, \beta) = (1/2, 1)$, $1 , <math>1/p_0 = 3/q - 1/n$, they also obtained the the L^p -boundedness of T_2 .

Assume $V \in RH_q$ with $q \ge n/2$ and $\mathcal{L} = -\Delta + V$. In [5], Shen studied the L^p -boundedness of operators $V\mathcal{L}^{-1}$, $V^{1/2}\mathcal{L}^{-1/2}$ and $V^{1/2}\nabla\mathcal{L}^{-1}$. In [6], Sugano researched the L^p -boundedness of operators $V^{\alpha}\mathcal{L}^{-\beta}$ for $0 \le \alpha \le \beta \le 1$, She also obtained the L^p -boundedness of operators $V^{\alpha}\nabla\mathcal{L}^{-\beta}$ for $0 \le \alpha \le 1/2 \le \beta \le 1$, $\beta - \alpha \ge 1/2$.

Inspired by the above results, we have the following results.

Theorem 1.1. *Suppose* $V \in RH_q$ *with some* $q \ge n/2$, $0 < \alpha \le \beta \le 1$.

(i) If
$$\left(\frac{q}{\alpha}\right)' \le p_1 < \frac{n+2}{2(\beta-\alpha)} \quad and \quad \frac{1}{p_2} = \frac{1}{p_1} - \frac{2(\beta-\alpha)}{n+2},$$

 $||T_1^*(f)||_{L^{p_2}(\mathbb{R}^{n+1})} \le C||f||_{L^{p_1}(\mathbb{R}^{n+1})};$

(ii) If
$$1 < p_1 \le \frac{1}{\frac{\alpha}{q} + \frac{2(\beta - \alpha)}{n+2}} \quad and \quad \frac{1}{p_2} = \frac{1}{p_1} - \frac{2(\beta - \alpha)}{n+2},$$

then

then

$$||T_1(f)||_{L^{p_2}(\mathbb{R}^{n+1})} \le C||f||_{L^{p_1}(\mathbb{R}^{n+1})}.$$

Theorem 1.2. *Suppose* $V \in RH_q$ *with some* $q \ge n/2$ *, and*

$$\begin{cases} 0 \le \alpha \le \frac{1}{2} \le \beta \le 1, & \text{if } q \ge n, \\ 0 \le \alpha \le \frac{1}{2} < \beta \le 1, & \text{if } n/2 \le q < n. \end{cases}$$