On Double Sine and Cosine Transforms, Lipschitz and Zygmund Classes
DOI:
https://doi.org/10.1007/s10496-011-0351-9Keywords:
double sine and cosine Fourier transform, Lipschitz class Lip$(\alpha, \beta)$, $0< \alpha, \beta \leq 1$, Zygmund class Zyg$(\alpha, $0 < \alpha, \beta \leq 2$.Abstract
We consider complex-valued functions $f \in L^1(\mathbf{R}^2_+)$, where $\mathbf{R}_+ := [0,\infty)$, and prove sufficient conditions under which the double sine Fourier transform $\hat{f}_{ss}$ and the double cosine Fourier transform $\hat{f}_{cc}$ belong to one of the two-dimensional Lipschitz classes $Lip(\alpha,\beta )$ for some $0 < \alpha,\beta \leq 1$; or to one of the Zygmund classes Zyg$(\alpha,\beta )$ for some $0 < \alpha,\beta \leq 2$. These sufficient conditions are best possible in the sense that they are also necessary for nonnegative-valued functions $f \in L^1(\mathbf{R}^2_+)$.
Published
2011-11-10
Abstract View
- 42988
Pdf View
- 4130
Issue
Section
Articles
How to Cite
On Double Sine and Cosine Transforms, Lipschitz and Zygmund Classes. (2011). Analysis in Theory and Applications, 27(4), 351-364. https://doi.org/10.1007/s10496-011-0351-9