On the Generalized Resolvent of Linear Pencils in Banach Spaces

Authors

  • Qianglian Huang & Shuangyun Gao

DOI:

https://doi.org/10.3969/j.issn.1672-4070.2012.02.005

Keywords:

generalized inverse, generalized resolvent, linear pencils, Moore-Penrose inverse, Fredholm operator, semi-Fredholm operator.

Abstract

Utilizing the stability characterizations of generalized inverses of linear operator, we investigate the existence of generalized resolvent of linear pencils in Banach spaces. Some practical criterions for the existence of generalized resolvents of the linear pencil $\lambda\to T \to \lambda S$ are provided and an explicit expression of the generalized resolvent is also given. As applications, the characterization for the Moore-Penrose inverse of the linear pencil to be its generalized resolvent and the existence of the generalized resolvents of linear pencils of finite rank operators, Fredholm operators and semi-Fredholm operators are also considered. The results obtained in this paper extend and improve many results in this area.

Published

2012-06-07

Abstract View

  • 42960

Pdf View

  • 4306

Issue

Section

Articles

How to Cite

On the Generalized Resolvent of Linear Pencils in Banach Spaces. (2012). Analysis in Theory and Applications, 28(2), 146-155. https://doi.org/10.3969/j.issn.1672-4070.2012.02.005