Approximation of the Cubic Functional Equations in Lipschitz Spaces

Authors

  • A. Ebadian, N. Ghobadipour, I. Nikoufar & M. Eshaghi Gordji

DOI:

https://doi.org/10.4208/ata.2014.v30.n4.2

Keywords:

Cubic functional equation, Lipschitz space, stability.

Abstract

Let $\mathcal{G}$ be an Abelian group and let $\rho:\mathcal{G} \times \mathcal{G} \rightarrow [0, \infty)$ be a metric on $\mathcal{G}$. Let $\varepsilon$ be a normed space. We prove that under some conditions if $f:\mathcal{G}\to\varepsilon$ is an odd function and $C_x:\mathcal{G}\to\varepsilon$ defined by $C_x(y):=2f(x+y)+2f(x-y)+12f(x)-$ $f(2x+y)-f(2x-y)$ is a cubic function for all $x\in \mathcal{G},$ then there exists a cubic function $C:\mathcal{G}\to\varepsilon$ such that $f-C$ is Lipschitz. Moreover, we investigate the stability of cubic functional equation $2f(x+y)+2f(x-y)+12f(x)-f(2x+y)$ $-f(2x-y)=0$ on Lipschitz spaces.

Published

2014-11-05

Abstract View

  • 44172

Pdf View

  • 3939

Issue

Section

Articles

How to Cite

Approximation of the Cubic Functional Equations in Lipschitz Spaces. (2014). Analysis in Theory and Applications, 30(4), 354-362. https://doi.org/10.4208/ata.2014.v30.n4.2