Riesz Transforms Associated with Schrödinger Operators Acting on Weighted Hardy Spaces

Authors

  • Hua Wang

DOI:

https://doi.org/10.4208/ata.2015.v31.n2.4

Keywords:

Weighted Hardy space, Riesz transform, Schrödinger operator, atomic decomposition, $A_p$ weight.

Abstract

Let $L = −∆+V$ be a Schrödinger operator acting on $L^2(\mathbb{R}^n)$, $n ≥ 1$, where $V \not\equiv 0$ is a nonnegative locally integrable function on $\mathbb{R}^n$. In this article, we will introduce weighted Hardy spaces $H^p_L(w)$ associated with $L$ by means of the square function and then study their atomic decomposition theory. We will also show that the Riesz transform $∇L^{−1/2}$ associated with $L$ is bounded from our new space $H^p_L (w)$ to the classical weighted Hardy space $H^p(w)$ when $n/(n+1)< p<1$ and $w ∈ A_1∩RH_{(2/p)′}$.

Published

2017-04-02

Abstract View

  • 44323

Pdf View

  • 3963

Issue

Section

Articles

How to Cite

Riesz Transforms Associated with Schrödinger Operators Acting on Weighted Hardy Spaces. (2017). Analysis in Theory and Applications, 31(2), 138-153. https://doi.org/10.4208/ata.2015.v31.n2.4