The Negative Spectrum of Schrödinger Operators with Fractal Potentials

Authors

  • B. Wu, H. Y. Wang & W. Y. Su

DOI:

https://doi.org/10.4208/ata.2015.v31.n4.4

Keywords:

Anisotropic function space, anisotropic fractal, Schrödinger operators, negative eigenvalues.

Abstract

Let $Γ ⊂ \mathbb{R}^2$ be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schrödinger operators associated with the formal expression $$H_β =id−∆+βtr^Γ_b, β∈R,$$ acting in the anisotropic Sobolev space $W^{1,α}_2(\mathbb{R}^2)$, where $∆$ is the Dirichlet Laplanian in $\mathbb{R}^2$ and $tr^Γ_b$ is a fractal potential (distribution) supported by $Γ$.

Published

2017-10-07

Abstract View

  • 43898

Pdf View

  • 4100

Issue

Section

Articles

How to Cite

The Negative Spectrum of Schrödinger Operators with Fractal Potentials. (2017). Analysis in Theory and Applications, 31(4), 381-393. https://doi.org/10.4208/ata.2015.v31.n4.4