Classical Fourier Analysis over Homogeneous Spaces of Compact Groups

Authors

  • A. Ghaani Farashahi

DOI:

https://doi.org/10.4208/ata.2016.v32.n4.3

Keywords:

Compact group, homogeneous space, dual space, Fourier transform, Plancherel (trace) formula, Peter-Weyl Theorem.

Abstract

This paper introduces a unified operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups. Let $G$ be a compact group and $H$ be a closed subgroup of $G$. Let $G/H$ be the left coset space of $H$ in $G$ and $\mu$ be the normalized $G$-invariant measure on $G/H$ associated to the Weil's formula. Then, we present a generalized abstract framework of Fourier analysis for the Hilbert function space $L^2(G/H,\mu)$.

Published

2016-10-02

Abstract View

  • 45145

Pdf View

  • 4447

Issue

Section

Articles

How to Cite

Classical Fourier Analysis over Homogeneous Spaces of Compact Groups. (2016). Analysis in Theory and Applications, 32(4), 339-354. https://doi.org/10.4208/ata.2016.v32.n4.3