Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums

Authors

  • Hua Chen School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
  • Jinning Li

DOI:

https://doi.org/10.4208/ata.OA-SU7

Keywords:

One-dimensional fractal drum, Dirichlet eigenvalues, Pόlya conjecture, Minkowski dimension.

Abstract

Let $\Omega$, with finite Lebesgue measure $|\Omega|$, be a non-empty open subset of $\mathbb{R}$, and $\Omega=\bigcup_{j=1}^\infty\Omega_j$, where the open sets $\Omega_j$ are pairwise disjoint and the boundary $\Gamma=\partial\Omega$ has Minkowski dimension $D\in (0,1)$. In this paper we study the Dirichlet eigenvalues problem on the domain $\Omega$ and give the exact second asymptotic term for the eigenvalues, which is related to the Minkowski dimension $D$. Meanwhile, we give sharp lower bound estimates for Dirichlet eigenvalues for such one-dimensional fractal domains.

Published

2021-09-20

Abstract View

  • 48873

Pdf View

  • 4228

Issue

Section

Articles

How to Cite

Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums. (2021). Analysis in Theory and Applications, 36(3), 243-261. https://doi.org/10.4208/ata.OA-SU7