Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums
DOI:
https://doi.org/10.4208/ata.OA-SU7Keywords:
One-dimensional fractal drum, Dirichlet eigenvalues, Pόlya conjecture, Minkowski dimension.Abstract
Let $\Omega$, with finite Lebesgue measure $|\Omega|$, be a non-empty open subset of $\mathbb{R}$, and $\Omega=\bigcup_{j=1}^\infty\Omega_j$, where the open sets $\Omega_j$ are pairwise disjoint and the boundary $\Gamma=\partial\Omega$ has Minkowski dimension $D\in (0,1)$. In this paper we study the Dirichlet eigenvalues problem on the domain $\Omega$ and give the exact second asymptotic term for the eigenvalues, which is related to the Minkowski dimension $D$. Meanwhile, we give sharp lower bound estimates for Dirichlet eigenvalues for such one-dimensional fractal domains.
Published
2021-09-20
Abstract View
- 48873
Pdf View
- 4228
Issue
Section
Articles
How to Cite
Estimates of Dirichlet Eigenvalues for One-Dimensional Fractal Drums. (2021). Analysis in Theory and Applications, 36(3), 243-261. https://doi.org/10.4208/ata.OA-SU7