Boundary Values of Generalized Harmonic Functions Associated with the Rank-One Dunkl Operator

Authors

  • Jiaxi Jiu
  • Zhongkai Li

DOI:

https://doi.org/10.4208/ata.OA-SU11

Keywords:

Dunkl operator, Dunkl transform, harmonic function, non-tangential limit, area integral.

Abstract

We consider the local boundary values of generalized harmonic functions associated with the rank-one Dunkl operator $D$ in the upper half-plane $R^{2}_+=R\times(0,\infty)$, where
                           $$(Df)(x)=f'(x)+(\lambda/x)[f(x)-f(-x)]$$
for given $\lambda\ge0$. A $C^2$ function $u$ in $R^{2}_+$ is said to be $\lambda$-harmonic if $(D_x^2+\partial_{y}^2)u=0$. For a $\lambda$-harmonic function $u$ in $R^{2}_+$ and for a subset $E$ of $\partial R^{2}_+=R$ symmetric about $y$-axis, we prove that the following three assertions are equivalent: (i) $u$ has a finite non-tangential limit at $(x,0)$ for a.e. $x\in E$; (ii) $u$ is non-tangentially bounded for a.e. $x\in E$; (iii) $(Su)(x)<\infty$ for a.e. $x\in E$, where $S$ is a Lusin-type area integral associated with the Dunkl operator $D$.

Published

2021-09-20

Abstract View

  • 46685

Pdf View

  • 4315

Issue

Section

Articles

How to Cite

Boundary Values of Generalized Harmonic Functions Associated with the Rank-One Dunkl Operator. (2021). Analysis in Theory and Applications, 36(3), 326-347. https://doi.org/10.4208/ata.OA-SU11