Completion of $\mathbb{R}^2$ with a Conformal Metric as a Closed Surface
DOI:
https://doi.org/10.4208/ata.2021.pr80.10Keywords:
Gaussian curvature, conformal geometry, semilinear equations, entire solutions.Abstract
In this paper, we obtain some asymptotic behavior results for solutions to the prescribed Gaussian curvature equation. Moreover, we prove that under a conformal metric in $\mathbb{R}^2$, if the total Gaussian curvature is $4\pi$, the conformal area of $\mathbb{R}^2$ is finite and the Gaussian curvature is bounded, then $\mathbb{R}^2$ is a compact $C^{1,\alpha}$ surface after completion at $\infty$, for any $\alpha \in (0,1)$. If the Gaussian curvature has a Hölder decay at infinity, then the completed surface is $C^2$. For radial solutions, the same regularity holds if the Gaussian curvature has a limit at infinity.
Published
2022-12-09
Abstract View
- 45784
Pdf View
- 4358
Issue
Section
Articles
How to Cite
Completion of $\mathbb{R}^2$ with a Conformal Metric as a Closed Surface. (2022). Analysis in Theory and Applications, 37(1), 59-73. https://doi.org/10.4208/ata.2021.pr80.10