Harmonic Analysis Associated with the Heckman-Opdam-Jacobi Operator on $\mathbb{R}^{d+1}$

Authors

  • Fida Bahba
  • Rabiaa Ghabi

DOI:

https://doi.org/10.4208/ata.OA-2019-0012

Keywords:

Heckman-Opdam-Jacobi operator, generalized intertwining operator and its dual, generalized Fourier transform, generalized translation operators.

Abstract

In this paper we consider the Heckman-Opdam-Jacobi operator $∆_{HJ}$ on $\mathbb{R}^{d+1}.$ We define the Heckman-Opdam-Jacobi intertwining operator $V_{HJ},$ which turns out to be the transmutation operator between $∆_{HJ}$ and the Laplacian $∆_{d+1}.$ Next we construct $^tV_{HJ}$ the dual of this intertwining operator. We exploit these operators to develop a new harmonic analysis corresponding to $∆_{HJ}.$

Published

2023-01-14

Abstract View

  • 30837

Pdf View

  • 3072

Issue

Section

Articles

How to Cite

Harmonic Analysis Associated with the Heckman-Opdam-Jacobi Operator on $\mathbb{R}^{d+1}$. (2023). Analysis in Theory and Applications, 38(4), 417-438. https://doi.org/10.4208/ata.OA-2019-0012