On a Right Inverse of a Polynomial of the Laplace in the Weighted Hilbert Space $L^2 (\mathbb{R}^n ,e^{−|x|^2} )$
DOI:
https://doi.org/10.4208/ata.OA-2021-0027Keywords:
Laplace operator, polynomial, right inverse, weighted Hilbert space, Gaussian measure.Abstract
Let $P(∆)$ be a polynomial of the Laplace operator $$∆ = \sum\limits^n_{j=1}\frac{∂^2}{∂x^2_j} \ \ on \ \ \mathbb{R}^n.$$ We prove the existence of a bounded right inverse of the differential operator $P(∆)$ in the weighted Hilbert space with the Gaussian measure, i.e., $L^2(\mathbb{R}^n ,e^{−|x|^2}).$
Published
2023-03-03
Abstract View
- 32335
Pdf View
- 3432
Issue
Section
Articles
How to Cite
On a Right Inverse of a Polynomial of the Laplace in the Weighted Hilbert Space $L^2 (\mathbb{R}^n ,e^{−|x|^2} )$. (2023). Analysis in Theory and Applications, 39(1), 83-92. https://doi.org/10.4208/ata.OA-2021-0027