On a Right Inverse of a Polynomial of the Laplace in the Weighted Hilbert Space $L^2 (\mathbb{R}^n ,e^{−|x|^2} )$

Authors

  • Shaoyu Dai
  • Yang Liu
  • Yifei Pan

DOI:

https://doi.org/10.4208/ata.OA-2021-0027

Keywords:

Laplace operator, polynomial, right inverse, weighted Hilbert space, Gaussian measure.

Abstract

Let $P(∆)$ be a polynomial of the Laplace operator $$∆ = \sum\limits^n_{j=1}\frac{∂^2}{∂x^2_j} \ \  on  \ \  \mathbb{R}^n.$$ We prove the existence of a bounded right inverse of the differential operator $P(∆)$ in the weighted Hilbert space with the Gaussian measure, i.e., $L^2(\mathbb{R}^n ,e^{−|x|^2}).$

Published

2023-03-03

Abstract View

  • 32335

Pdf View

  • 3432

Issue

Section

Articles

How to Cite

On a Right Inverse of a Polynomial of the Laplace in the Weighted Hilbert Space $L^2 (\mathbb{R}^n ,e^{−|x|^2} )$. (2023). Analysis in Theory and Applications, 39(1), 83-92. https://doi.org/10.4208/ata.OA-2021-0027