Robust Decoding from Binary Measurements with Cardinality Constraint Least Squares

Zhao Ding 1 , Junjun Huang 6 , Yuling Jiao 2,3,5 , Xiliang Lu 1,2,3 and Jerry Zhijian Yang 1,2,3,4,*

Received 4 November 2023; Accepted (in revised version) 31 March 2024

Abstract. The principal goal of 1-bit compressive sampling is to decode *n*-dimensional signals with a sparsity level of s from m binary measurements. This task presents significant challenges due to nonlinearity, noise, and sign flips. In this paper, we propose the use of the cardinality-constrained least squares decoder as an optimal solution. We establish that, with high probability, the proposed decoder achieves a minimax estimation error, up to a constant c, as long as $m \geq \mathcal{O}(s\log n)$. In terms of computational efficiency, we employ a generalized Newton algorithm (GNA) to solve the cardinality-constrained minimization problem. At each iteration, this approach incurs the cost of solving a least squares problem with a small size. Through rigorous analysis, we demonstrate that, with high probability, the ℓ_{∞} norm of the estimation error between the output of GNA and the underlying target diminishes to $\mathcal{O}(\sqrt{\frac{\log n}{m}})$ after at most $\mathcal{O}(\log s)$ iterations. Furthermore, provided that the target signal is detectable, we can recover the underlying support with high probability within $\mathcal{O}(\log s)$ steps. To showcase the robustness of our proposed decoder and the efficiency of the GNA algorithm, we present extensive numerical simulations and comparisons with stateof-the-art methods.

AMS subject classifications: 65D18, 68U05, 68U07

Key words: 1-bit compressive sampling, least square with cardinality constraint, minimax estimation error, generalized Newton algorithm, support recovery.

¹ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P.R. China.

² National Center for Applied Mathematics in Hubei, Wuhan University, Wuhan 430072, P.R. China.

³ Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, P.R. China.

⁴ Wuhan Institute for Math & AI, Wuhan University, Wuhan 430072, P.R. China.

⁵ School of Artificial Intelligence, Wuhan University, Wuhan 430072, P.R. China.

⁶ China Electric Power Research Institute, Wuhan 430074, P.R. China.

^{*}Corresponding author. *Email addresses:* zd1998@whu.edu.cn (Z. Ding), huangjunjun@epri.sgcc.com.cn (J. Huang), yulingjiaomath@whu.edu.cn (Y. Jiao), xllv.math@whu.edu.cn (X. Lu), zjyang.math@whu.edu.cn (J. Z. Yang)

1 Introduction

Compressive sensing is a formidable signal acquisition approach that allows for the recovery of signals beyond their bandlimitedness from noisy under-determined measurements. This method is particularly advantageous when the number of measurements is closer to the order of the signal complexity rather than following the Nyquist rate [9, 11, 12, 14]. In order to facilitate storage and transmission, quantization is necessary to convert infinite-precision measurements into discrete ones [37]. Among various quantization techniques, scalar quantization is commonly employed due to its low computational complexity. A scalar quantizer, denoted as $Q(\cdot)$ with a bit depth of b, can be fully characterized by the quantization regions $\{[r_{\ell},r_{\ell+1})\}_{\ell=1}^L$, which form a partition of \mathbb{R} . Here, $L=2^b$, $r_1=-\infty$, $r_{L+1}=\infty$, and the codebook $\{\omega_\ell\}_{\ell=1}^L$, where $\mathcal{Q}(t)=\omega_\ell$ if $t \in [r_{\ell}, r_{\ell+1})$. One of the extreme cases of scalar quantization is the 1-bit quantizer, denoted as Q(t) = sign(t). This quantizer codes the measurements into binary values using a single bit. It has been introduced into compressed sensing, giving rise to 1-bit compressed sensing (1-bit CS) [7]. The 1-bit CS has garnered significant attention due to its low hardware implementation and storage costs, as well as its robustness in scenarios with low signal-to-noise ratios [26].

1.1 Notation and 1-bit CS model

We denote by $\Psi_i \in \mathbb{R}^{m \times 1}$, $i = 1, \dots, n$, and $\psi_i \in \mathbb{R}^{n \times 1}$, $j = 1, \dots, m$, the *i*th column and *j*th row of Ψ , respectively. We denote zero vector by **0**. We use [n] to denote the set $\{1, \dots, n\}$, and I_n to denote the identity matrix of size $n \times n$. For $A, B \subseteq [n]$ with cardinality |A|, |B|, $x_A = (x_i, i \in A) \in \mathbb{R}^{|A|}, \Psi_A = (\Psi_i, i \in A) \in \mathbb{R}^{m \times |A|}$ and $\Psi_{AB} \in \mathbb{R}^{|A| \times |B|}$ denotes a submatrix of Ψ whose rows and columns are listed in A and B, respectively. Let $x|_A = (x_i \mathbf{1}_{i \in A}) \in \mathbb{R}^n$, where, $\mathbf{1}_A$ denotes the indicator function of set A. Let $|x|_{s,\infty}$ and $|x|_{\min}$ be the sth largest elements (in absolute value) and the minimum absolute value of x, respectively. We use $\mathcal{N}(\mathbf{0},\Sigma)$ to denote the multivariate normal distribution, with Σ symmetric and positive definite. Let $\gamma_{\max}(\Sigma)$ and $\gamma_{\min}(\Sigma)$ be the largest and the smallest eigenvalues of Σ , respectively. Let supp(x) denote the support of x. We use $||x||_{\Sigma}$ to denote the elliptic norm of x with respect to Σ, i.e., $||x||_{\Sigma} = (x^t \Sigma x)^{\frac{1}{2}}$. Let $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$, $p \in [1, \infty]$, be the ℓ_p -norm of x. We denote the number of nonzero elements of x by $||x||_0$. The symbols $||\Psi||$ and $\|\Psi\|_{\infty}$ stands for the operator norm of Ψ induced by ℓ_2 norm and the maximum pointwise absolute value of Ψ , respectively. sign(·) operates componentwise with sign(z) = 1 if $z \ge 0$ and sign(z) = -1 otherwise, and \odot denotes the pointwise Hadamard product. By $\mathcal{O}(\cdot)$, we ignore some positive numerical constants. 1-bit compressive sensing is even more challenging due to decode from noisy, nonlinear and sign-flipped measurements.

Following the works of Plan and Vershynin [32] and Huang and Jiao [20], we consider the 1-bit compressed sensing (CS) model described by the following equation:

$$y = \eta \odot \operatorname{sign}(\Psi x^* + \epsilon), \tag{1.1}$$