Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation

Authors

  • In Kwon & Do Y. Kwak

DOI:

https://doi.org/10.4208/cicp.OA-2018-0014

Keywords:

Biomolecular electrostatics, Poisson-Boltzmann equation, immersed finite element method, discontinuous bubble function, linearization.

Abstract

We develop a numerical scheme for nonlinear Poisson-Boltzmann equation. First, we regularize the solution of PBE to remove the singularity. We introduce the discontinuous bubble function to treat the nonhomogeneous jump conditions of the regularized solution. Next, starting with an initial guess, we apply linearization to treat the nonlinearity. Then, we discretize the discontinuous bubble and the bilinear form of PBE. Finally, we solve the discretized linear problem by IFEM. This process is repeated by updating the previous approximation. 

We carry out numerical experiments. We observe optimal convergence rate for all examples.

Published

2018-11-09

Abstract View

  • 48085

Pdf View

  • 3431

Issue

Section

Articles

How to Cite

Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation. (2018). Communications in Computational Physics, 25(3), 928-946. https://doi.org/10.4208/cicp.OA-2018-0014