A Sufficient and Necessary Condition of the Existence of WENO-Like Linear Combination for Finite Difference Schemes

Authors

  • Jian Kang Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
  • Xinliang Li

DOI:

https://doi.org/10.4208/cicp.OA-2019-0112

Keywords:

Finite difference, WENO, sufficient and necessary condition, proof.

Abstract

In the finite difference WENO (weighted essentially non-oscillatory) method, the final scheme on the whole stencil was constructed by linear combinations of highest order accurate schemes on sub-stencils, all of which share the same total count of grid points. The linear combination method which the original WENO applied was generalized to arbitrary positive-integer-order derivative on an arbitrary (uniform or non-uniform) mesh, still applying finite difference method. The possibility of expressing the final scheme on the whole stencil as a linear combination of highest order accurate schemes on WENO-like sub-stencils was investigated. The main results include: (a) the highest order of accuracy a finite difference scheme can achieve and (b) a sufficient and necessary condition that the linear combination exists. This is a sufficient and necessary condition for all finite difference schemes in a set (rather than a specific finite difference scheme) to have WENO-like linear combinations. After the proofs of the results, some remarks on the WENO schemes and TENO (targeted essentially non-oscillatory) schemes were given.

Published

2020-12-02

Abstract View

  • 46495

Pdf View

  • 3248

Issue

Section

Articles

How to Cite

A Sufficient and Necessary Condition of the Existence of WENO-Like Linear Combination for Finite Difference Schemes. (2020). Communications in Computational Physics, 29(2), 534-570. https://doi.org/10.4208/cicp.OA-2019-0112