Integral Equation Method for a Non-Selfadjoint Steklov Eigenvalue Problem
DOI:
https://doi.org/10.4208/cicp.OA-2022-0016Keywords:
Steklov eigenvalues, non-selfadjoint problems, integral equations, Nyström method, spectral projection.Abstract
We propose a numerical method for a non-selfadjoint Steklov eigenvalue problem of the Helmholtz equation. The problem is formulated using boundary integrals. The Nyström method is employed to discretize the integral operators, which leads to a non-Hermitian generalized matrix eigenvalue problems. The spectral indicator method (SIM) is then applied to calculate the (complex) eigenvalues. The convergence is proved using the spectral approximation theory for (non-selfadjoint) compact operators. Numerical examples are presented for validation.
Downloads
Published
2022-05-06
Abstract View
- 44843
Pdf View
- 3217
Issue
Section
Articles
How to Cite
Integral Equation Method for a Non-Selfadjoint Steklov Eigenvalue Problem. (2022). Communications in Computational Physics, 31(5), 1546-1560. https://doi.org/10.4208/cicp.OA-2022-0016