Fifth-Order A-WENO Path-Conservative Central-Upwind Scheme for Behavioral Non-Equilibrium Traffic Models
DOI:
https://doi.org/10.4208/cicp.OA-2022-0263Keywords:
Finite-difference A-WENO schemes, finite-volume central-upwind schemes, path-conservative central-upwind schemes, non-oscillatory schemes, continuum traffic flow model, driver behavior.Abstract
Non-equilibrium hyperbolic traffic models can be derived as continuum
approximations of car-following models and in many cases the resulting continuum
models are non-conservative. This leads to numerical difficulties, which seem to have
discouraged further development of complex behavioral continuum models, which is
a significant research need.
In this paper, we develop a robust numerical scheme that solves hyperbolic traffic
flow models based on their non-conservative form. We develop a fifth-order alternative weighted essentially non-oscillatory (A-WENO) finite-difference scheme based
on the path-conservative central-upwind (PCCU) method for several non-equilibrium
traffic flow models. In order to treat the non-conservative product terms, we use a
path-conservative technique. To this end, we first apply the recently proposed second-order finite-volume PCCU scheme to the traffic flow models, and then extend this
scheme to the fifth-order of accuracy via the finite-difference A-WENO framework.
The designed schemes are applied to three different traffic flow models and tested on
a number of challenging numerical examples. Both schemes produce quite accurate results though the resolution achieved by the fifth-order A-WENO scheme is higher. The
proposed scheme in this paper sets the stage for developing more robust and complex
continuum traffic flow models with respect to human psychological factors.
Downloads
Published
Abstract View
- 32108
Pdf View
- 2894