Commun. Math. Res. doi: 10.4208/cmr.2025-0026

Logarithmic Upper Bound for Solutions of Degenerate Parabolic Equation

Zheng Li and Bin Guo*

School of Mathematics, Jilin University, Changchun 130012, P.R. China.

Received 15 June 2025; Accepted 1 August 2025

Abstract. In this note, we consider the following degenerate parabolic equation studied in [F. Chiarenza and R. Serapioni, *Degenerate parabolic equations and Harnack inequality*, Ann. Mat. Pura Appl. 137 (1984)] i.e.,

$$\begin{cases} \frac{\partial u}{\partial t} - \frac{\partial}{\partial x_i} \left(a_{ij}(x, t) \frac{\partial u}{\partial x_j} \right) = -\operatorname{div} f & \text{in } \Omega \times (0, T), \\ u = 0 & \text{on } \partial \Omega \times (0, T), \\ u(x, 0) = u_0(x) & \text{in } \Omega, \end{cases}$$

where $f = (f^1, \dots, f^n)$ and Ω is a bounded domain in \mathbb{R}^n with Lipschitz boundary, $n \ge 2$ and T > 0. In this paper, we apply Moser iteration argument to build up the explicit relationship among the coefficients $a_{i,j}(x,t)$, f and the maximum norm of the solution. Meanwhile, we also find that the weighed Lebesgue space $L^{2l/(l-1)}$ to which f belongs is essentially sharp in order to establish local boundedness of the solution. Here the definition of l is found in Lemma 2.3. Our results cover the well-known results.

AMS subject classifications: 35K20, 35D30, 35B50

Key words: A_p weight, degenerate parabolic equations, Moser iteration argument.

1 Introduction

The purpose of this paper is to analyze the relation between the maximum norm of the solution and vector function f. Namely, we discuss the following Cauchy-

^{*}Corresponding author. *Email addresses*: lizheng22@mails.jlu.edu.cn (Z. Li), bguo@jlu.edu.cn (B. Guo)

Dirichlet problem:

$$\begin{cases}
\mathcal{L}u := \frac{\partial u}{\partial t} - \frac{\partial}{\partial x_i} \left(a_{ij}(x, t) \frac{\partial u}{\partial x_j} \right) = -\left(f^i \right)_{x_i} & \text{in } \Omega \times (0, T), \\
u = 0 & \text{on } \partial \Omega \times (0, T), \\
u(x, 0) = u_0(x) & \text{in } \Omega,
\end{cases} \tag{1.1}$$

where Ω be a bounded domain in \mathbb{R}^n with Lipschitz boundary, $n \ge 2$ and T > 0. The coefficients $a_{ij}(x,t)$, the nonlinear term f^i and the initial date u_0 satisfy the following assumptions:

(H1) The coefficients $a_{ij}(x,t)$ are non-negative measurable functions, satisfying

$$a_{ij}(x,t) = a_{ji}(x,t), \quad i,j = 1,...,n, \quad x \in \Omega, \quad t > 0.$$

(H2) There exists $\lambda > 0$ such that

$$\frac{1}{\lambda}\omega(x,t)|\xi|^2 \le a_{ij}(x,t)\xi_i\xi_j \le \lambda\omega(x,t)|\xi|^2$$

for all $\xi \in \mathbb{R}^n$ and a.e. $(x,t) \in Q_T := \Omega \times [0,T]$, where $\omega(x,t)$ is an A_2 weight in \mathbb{R}^n uniformly with respect to t in (0,T), and an A_2 weight in (0,T) uniformly with respect to x in Ω . See more details in Section 2.

(H3) The nonlinear term $f = (f^1, \dots, f^n)$ satisfies

$$\frac{f^i}{\omega} \in L^r(Q_T; \omega)$$
 with $r > \frac{2l}{l-1}$,

where l is the same as in Lemma 2.3.

(H4) The initial date u_0 satisfies

$$\sup_{\Omega}|u_0(x)|=K_0<+\infty.$$

It is well-known, when $\omega^{-1}(x,t)$ and $\omega(x,t)$ are essentially bounded, the problem (1.1) reduces the uniform parabolic problem. In this situation, the study dates back to works of Moser [19, 20]. For more pioneer works, we may refer to the monographs by Ladyženskaja *et al.* [14] and Lieberman [16].

On the contrary, if $\omega^{-1}(x,t)$ is unbounded, the problem (1.1) is degenerate. In particular, when the weight is time independent i.e., $\omega(x,t) = \omega(x)$, Chiarenza