Vol. **x**, No. x, pp. 1-20 x 2025

Commun. Math. Res. doi: 10.4208/cmr.2025-0040

Some Complexes and Modules Induced by Strongly FP-injective Modules

Donglin He, Yuyan Li and Wujun Pu*

School of Mathematics and Computer Science, Longnan Normal University, Longnan 742500, P.R. China.

Received 20 September 2025; Accepted 17 November 2025

Abstract. Let *R* be an associative ring with identity. In this paper, we consider generalizations of Gorenstein FP-injective *R*-modules and FP-injective complexes, give the definitions and characterizations of strongly Gorenstein FP-injective *R*-modules and strongly FP-injective complexes, which are induced by strongly FP-injective modules. Then we investigate the strongly FP-injective dimension of complexes.

AMS subject classifications: 16E05, 18G35, 18G20

Key words: Cotorsion pairs, strongly Gorenstein FP-injective modules, strongly FP-injective complexes, strongly FP-injective dimension.

1 Introduction

Gorenstein homological theories play an important role in relative algebra. Auslander [12] introduced the notion of *G*-dimension of finite *R*-modules over a commutative Noetherian local ring. Auslander and Bridge [1] extended this notion to two sided Noetherian rings. Enochs and Jenda [3] defined Gorenstein projective modules (not necessarily finitely generated) and Gorenstein injective modules over arbitrary ring. Later, many authors have studied and generalized these notions successively.

^{*}Corresponding author. *Email addresses:* hedonglin@lntc.edu.cn (D. He), nwnulyy@126.com (Y. Li), puwujun@lntc.edu.cn (W. Pu)

In 2013, as an extension of the notion of Gorenstein injective modules, Hu and Zhang [8] introduced the notion of Gorenstein FP-injective R-modules over a left coherent ring based on the complete hereditary cotorsion pair $(\mathcal{FP},\mathcal{FI})$ in R-Mod. Here, the symbol \mathcal{FP} (resp., \mathcal{FI}) stands for the subcategory of all FP-projective (resp., FI-injective) modules. Li *et al.* [9] give the definition of strongly FP-injective modules, and proved that $(^{\perp_1}\mathcal{SFI},\mathcal{SFI})$ is a complete hereditary cotorsion pair over arbitrary ring, where \mathcal{SFI} denotes the subcategory of all strongly FP-injective modules. It is natural to consider another extension of Gorenstein injective modules based on the cotorsion pair $(^{\perp_1}\mathcal{SFI},\mathcal{SFI})$, that is called strongly Gorenstein FP-injective modules in this paper.

Rozas [11] systematically introduced projective complexes, injective complexes and flat complexes. Yang and Liu [16] give the definition of FP-injective complexes. Wang and Liu [17] further investigated FP-injective dimension of complexes. These works are based on a left coherent ring. One purpose of this paper is to extend above works: we introduce and study strongly FP-injective complexes and strongly FP-injective dimension of complexes over an arbitrary ring.

We now state the main results of this paper.

Theorem 1.1. Let M be an R-module. Then the following statements are equivalent:

- (1) *M* is a strongly Gorenstein FP-injective module.
- (2) $M \in (^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ and there is an exact sequence $\cdots \to N_1 \to N_0 \to M \to 0$ with each $N_i \in ^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}$, which is exact under $\operatorname{Hom}_R(^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$.
- (3) There is an exact sequence $S = \cdots \rightarrow S_1 \rightarrow S_0 \rightarrow S_{-1} \rightarrow S_{-2} \rightarrow \cdots$ with each $S_i \in \mathcal{SFI}$ such that $M \cong Im(S_0 \rightarrow S_{-1})$, which is exact under $Hom_R(\mathcal{SGFI}, -)$.
- (4) There is an exact sequence $S = \cdots \rightarrow S_1 \rightarrow S_0 \rightarrow S_{-1} \rightarrow S_{-2} \rightarrow \ldots$ with each $S_i \in \mathcal{SFI}$ such that $M \cong Im(S_0 \rightarrow S_{-1})$, which is exact under $Hom_R(^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$.

Theorem 1.2. *Let* X *be a complex. Then the following conditions are equivalent:*

- (1) X is a flat complex.
- (2) $X^+ = \underline{\text{Hom}}(X, D^1(\mathbb{Q}/\mathbb{Z}))$ is a strongly FP-injective complex.

Theorem 1.3. Assume that X is a strongly FP-injective complex and F is a finitely presented complex. Then $\operatorname{Ext}^{i\geqslant 1}(F,X)=0$.

Theorem 1.4. Let C be a complex and n an integer. Then the following assertions about strongly FP-injective dimension of C are equivalent:

(1)
$$\widetilde{\mathcal{SFI}}$$
-id(C) $\leq n$.

- (2) $\inf H(C) \ge -n$ and $Z_{-n}(I) \in \mathcal{SFI}$ for each dg-injective resolution $C \to I$.
- (3) $\inf H(C) \ge -n$ and $Z_j(I) \in SFI$ for every $j \le -n$ for each dg-injective resolution $C \to I$.
- (4) There exists a dg-injective resolution $C \rightarrow I'$ such that $H_j(I') = 0$ for every $j \leqslant -n-1$ and $Z_{-n}(I') \in \mathcal{SFI}$.
- (5) There exists a dg-injective resolution $C \rightarrow I'$ such that $H_j(I') = 0$ for every $j \leqslant -n-1$ and $Z_j(I') \in SFI$ for each $j \leqslant -n$.

The contents of the paper are summarized as follows. In Section 2, we collect some known notions and results. In Section 3, we introduce strongly Gorenstein FP-injective modules, then give some properties and characterizations of strongly Gorenstein FP-injective modules. Section 4 is devoted to strongly FP-injective complexes and strongly FP-injective dimension of complexes.

2 Preliminaries

Throughout this paper, *R* denotes an associative ring with identity, *R*-Mod denotes the category of all left *R*-modules. By a "module" we always mean a left *R*-module. By the term "subcategory" we always mean a full additive subcategory closed under isomorphisms.

2.1 Cotorsion pairs

Let \mathcal{A} be an abelian category and \mathcal{X} a subcategory of \mathcal{A} . Define

$$^{\perp_1} \mathcal{X} = \left\{ M \in \mathcal{A} \mid \operatorname{Ext}_{\mathcal{A}}^1(M, X) = 0 \text{ for any object } X \in \mathcal{X} \right\},$$

$$^{\perp} \mathcal{X} = \left\{ M \in \mathcal{A} \mid \operatorname{Ext}_{\mathcal{A}}^{i \geqslant 1}(M, X) = 0 \text{ for any object } X \in \mathcal{X} \right\}.$$

 \mathcal{X}^{\perp} and \mathcal{X}^{\perp_1} are similarly defined. A pair $(\mathcal{X},\mathcal{Y})$ of subcategories of \mathcal{A} is said to be a cotorsion pair if $\mathcal{X}^{\perp_1} = \mathcal{Y}$ and $\mathcal{Y}^{\perp_1} = \mathcal{Y}$. The cotorsion pair $(\mathcal{X},\mathcal{Y})$ is said to be hereditary if $\operatorname{Ext}_{\mathcal{A}}^{i \geqslant 1}(X,Y) = 0$ for all objects $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$. A morphism $\varphi: M \to X$ with $X \in \mathcal{X}$ is called an \mathcal{X} -preenvelope of M if for any morphism $f: M \to X'$ with $X' \in \mathcal{X}$, there is a morphism $g: X \to X'$ such that $g\varphi = f$. A monomorphism $\varphi: M \to B$ with $B \in \mathcal{X}$ is said to be a special \mathcal{X} of M if φ is an \mathcal{X} -preenvelope of M and $\operatorname{coker} f \in \mathcal{X}$. Dually, an \mathcal{X} -precover and special \mathcal{X} -precover are similarly defined. A cotorsion pair is said to be complete provided that every object of \mathcal{A} has a special \mathcal{Y} -preenvelope and special \mathcal{X} -precover (for more details see [4]).

2.2 FP-injective modules and strongly FP-injective modules

A module M is called FP-injective [14] if $\operatorname{Ext}^1_R(N,M)=0$ for each finitely presented module N. FP-injective modules act in ways similar to injective modules. Let \mathcal{FI} denote the subcategory of all FP-injective modules, and \mathcal{FP} denote the collection of modules N such that $\operatorname{Ext}^1_R(N,M)=0$ for any FP-injective module M, that is called FP-projective module [10]. $(\mathcal{FP},\mathcal{FI})$ forms a complete hereditary cotorsion pair over a left coherent ring. A module M is called a strongly FP-injective module [9], if $\operatorname{Ext}^{i\geqslant 1}_R(N,M)=0$ for each finitely presented module N. Our study of strongly Gorenstein FP-injective modules is related to the coherence criteria obtained via strongly Gorenstein FP-injective modules in [2], which provide ring-theoretic contexts where our notions naturally arise. In what follows, we denote by \mathcal{SFI} the subcategory of all strongly FP-injective modules. It is obvious that $\mathcal{I}\subseteq\mathcal{SFI}\subseteq\mathcal{FI}$, where \mathcal{I} denote the subcategory of all injective modules. Some results in [9] are spread out as follows, which will be used repeatedly in the paper.

Lemma 2.1. *The following statements are hold:*

- (1) SFI is closed under extensions, products and cokernels of monomorphisms.
- (2) A right R-module M is flat if and only if $M^+ = \operatorname{Hom}_R(M, \mathbb{Q}/\mathbb{Z})$ is a strongly FP-injective left R-module.
- (3) $({}^{\perp_1}SFI,SFI)$ is a complete hereditary cotorsion pair.

Lemma 2.2. *The following conditions are equivalent:*

- (1) R is a left coherent ring.
- (2) SFI = FI.
- (3) Every direct limit of strongly FP-injective left R-modules is FP-injective.

Lemma 2.3. Let $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ be an exact sequence of R-Mod, and U a strongly FP-injective module. Then V is a strongly FP-injective module if and only if W is a strongly FP-injective module.

2.3 Complexes

Let C(R) denote the abelian category of complexes of left R-modules. A complex of modules

$$\cdots \longrightarrow X_{n+1} \xrightarrow{\delta_{n+1}^X} X_n \xrightarrow{\delta_n^X} X_{n-1} \xrightarrow{\delta_{n-1}^X} \cdots$$

is denoted by X. The n-th cycle (resp., homology) module is defined as $\operatorname{Ker} \delta_n^X / \operatorname{Im} \delta_{n+1}^X$) and denoted by $Z_n(X)$ (resp., $H_n(X)$). $\sup_{X=\sup\{i|X_i\neq 0\}}$, $\inf_{X=\inf\{i|X_i\neq 0\}}$. Given a module M, we use $D^n(M)$ to denote the complex $\cdots \to 0 \to M \to M \to M \to 0 \to \cdots$ with M in n-th and (n-1)-th positions. We also use $S^n(M)$ to denote the complex with M in degree zero and 0 elsewhere. Let W be a subcategory of R-Mod. Then a complex X is said to be exact under $\operatorname{Hom}_R(-,W)$ if the complex $\operatorname{Hom}_R(X,W)$ is exact for each $W \in W$.

A morphism $f: X \to Y$ of complexes is a family of homomorphisms $f = (f_n: X_n \to Y_n)_{n \in \mathbb{Z}}$ of modules satisfying $\delta_n^Y f_n = f_{n-1} \delta_n^X$ for all $n \in \mathbb{Z}$. A quasi-isomorphism $f: X \to Y$ is a morphism such that the induced map $H(f): H(X) \to H(Y)$ is an isomorphism for all $n \in \mathbb{Z}$.

For complexes X and Y, denote by $\mathcal{H}om(X,Y)$ the complex of \mathbb{Z} -modules with n-th component $\mathcal{H}om(X,Y)_n = \prod_{t \in \mathbb{Z}} Hom(X_t,Y_{n+t})$ and differential

$$\delta_n(f) = \left(\delta_{n+m}^Y f_m - (-1)^n f_{m-1} \delta_m^X\right)_{m \in \mathbb{Z}}$$

for any $f \in \mathcal{H}om(X,Y)_n$. It is easy to see that $Hom(X,Y) = Z_0(\mathcal{H}om(X,Y))$. Let $\underline{Hom}(X,Y) = Z(\mathcal{H}om(X,Y))$. One checks that $\underline{Hom}(X,Y)$ can be made into a complex in which $\underline{Hom}(X,Y)_n$ is the abelian group of morphisms from X to $\Sigma^{-n}Y$ and whose boundary operator is given by $\delta_n(f): X \to \Sigma^{-(n-1)}Y$ where $\delta_n(f)_m = (-1)^n \delta^Y_{fm}$ for all $m \in \mathbb{Z}$ and $f \in \underline{Hom}(X,Y)_n$, in which $\Sigma^{-n}Y$ is a complex satisfying the condition that $(\Sigma^{-n}Y)_i = Y_{i+n}$ and whose boundary operators are $(-1)^{-n}\delta_{i+n}^Y$ (for more details see [17]).

Following [5], a complex X is called finitely generated if, in the case where we can write $X = \sum_{i \in I} Y_i$ with $Y_i \in \mathcal{C}(R)$ subcomplexes of X, there exists a finite subset $J \subseteq I$ such that $X = \sum_{j \in J} Y_j$. A complex X is called finitely presented if X is finitely generated and for every exact sequence of complexes $0 \to K \to L \to X \to 0$ with L finitely generated, K is also finitely generated.

Lemma 2.4 ([5]). *The following statements are hold:*

- (1) A complex X is finitely presented if and only if X is bounded and X_n is finitely presented in R-Mod for all $n \in \mathbb{Z}$.
- (2) If M is a finitely presented module, then $S^i(M)$ and $D^i(M)$ are finitely presented complexes for each $i \in \mathbb{Z}$.

Definition 2.1 ([17]). A complex X is called FP-injective if $\operatorname{Ext}^1(F,X) = 0$ for all every finitely presented complex F.

Lemma 2.5 ([17]). Let X be a complex. Then the following statements are equivalent:

- (1) X is an FP-injective complex.
- (2) X is exact and $Z_n(X)$ is an FP-injective module for all $n \in \mathbb{Z}$.
- (3) X_n is an FP-injective module for all $n \in \mathbb{Z}$ and $\mathcal{H}om(F,X)$ is exact for each finitely presented complex F.

Definition 2.2 ([8]). Let M be an R-module. M is called a Gorenstein FP-injective module if there exists an exact sequence

$$Y = \cdots \rightarrow Y_2 \rightarrow Y_1 \rightarrow Y_0 \rightarrow Y_{-1} \rightarrow Y_{-2} \rightarrow \cdots$$

with $Y_i \in \mathcal{FI}$ when $i \geqslant 0$ and Y_i is injective when i < 0 such that $M \cong Im(Y_0 \to Y_{-1})$, and which remains exact whenever $Hom_R(H, -)$ is applied for any $H \in \mathcal{FP} \cap \mathcal{FI}$. The subcategory of all Gorenstein FP-injective modules is denoted by \mathcal{GFI} .

3 Strongly Gorenstein FP-injective modules

We start this section with the following definition.

Definition 3.1. Let M be an R-module. Then M is said to be a strongly Gorenstein FP-injective module if there exists an exact sequence

$$X = \cdots \rightarrow X_2 \xrightarrow{\delta_2^X} X_1 \xrightarrow{\delta_1^X} X_0 \xrightarrow{\delta_0^X} X_{-1} \xrightarrow{\delta_{-1}^X} X_{-2} \rightarrow \cdots$$

with $X_i \in \mathcal{SFI}$ when $i \geqslant 0$ and X_i is injective when i < 0 such that $M \cong Im \delta_0^X$, and X stays exact under $Hom_R(S,-)$ for any $S \in {}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}$. This exact sequence is called a complete \mathcal{SFI} - \mathcal{I} resolution. The subcategory of all strongly Gorenstein FP-injective modules is denoted by \mathcal{SGFI} .

Remark 3.1. It is obvious that $\text{Im}\delta_i^X$ is a strongly Gorenstein FP-injective module for each $i \leq 0$ in the above definition.

Lemma 3.1. *Let M be a module. Then:*

- (1) M is strongly Gorenstein FP-injective if and only if $M \in (^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ and there exists an exact sequence $\cdots \to S_1 \to S_0 \to M \to 0$ with each $S_i \in \mathcal{SFI}$, which is exact under $\text{Hom}_R(^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$.
- (2) If M is a strongly FP-injective module, then $M \in SGFI$.
- (3) If M is an injective module, then $M \in SGFI$.

- (4) For each exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ with $U \in SFI$ and $W \in SGFI$, then $V \in SGFI$.
- *Proof.* (1) (\Rightarrow) Let M be a strongly Gorenstein FP-injective module. Then there exists an exact sequence

$$X = \cdots \rightarrow X_2 \xrightarrow{\delta_2^X} X_1 \xrightarrow{\delta_1^X} X_0 \xrightarrow{\delta_0^X} X_{-1} \xrightarrow{\delta_{-1}^X} X_{-2} \rightarrow \cdots$$

with $X_i \in \mathcal{SFI}$ when $i \geqslant 0$ and X_i is injective when i < 0 such that $M \cong \operatorname{Im} \delta_0^X$, and X stays exact under $\operatorname{Hom}_R(S,-)$ for any $S \in {}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}$. It is sufficient to prove that $M \in ({}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$. Consider the short exact sequence $0 \to M \to X_{-1} \to \operatorname{Im} \delta_{-1}^X \to 0$. By applying the functor $\operatorname{Hom}_R(S,-)$ to the sequence for any $S \in {}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}$, we can get an exact sequence $\cdots \to \operatorname{Hom}_R(S,X_{-1}) \to \operatorname{Hom}_R(S,\operatorname{Im} \delta_{-1}^X) \to \operatorname{Ext}_R^1(S,M) \to 0$. Since $\operatorname{Hom}_R(S,X_{-1}) \to \operatorname{Hom}_R(S,\operatorname{Im} \delta_{-1}^X)$ is exact, so $\operatorname{Ext}_R^1(S,M) = 0$. By the shifting formula of dimension and Remark 3.1, it is easy to check that $\operatorname{Ext}_R^{i+1}(S,M) \cong \operatorname{Ext}_R^1(S,\operatorname{Im} \delta_{-i}^X)$ for any $i \geqslant 0$, hence $M \in ({}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$.

(\Leftarrow) Assume that $M \in ({}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ and there exists an exact sequence $(\xi) = \cdots \to S_1 \to S_0 \to M \to 0$ with each $S_i \in \mathcal{SFI}$, which is exact under $\operatorname{Hom}_R({}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. Let

$$(\xi_1) = 0 \to M \to S_{-1} \to S_{-2} \to \cdots$$

be an injective resolution of M with S_i an injective module for each $i \leq -1$. Since $M \in (^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ and $S_i \in (^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ for any $i \leq -1$, we can get (ξ_1) is exact under $\operatorname{Hom}_R(^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$ by [13, Lemma 2.9]. Hence, M is strongly Gorenstein FP-injective by combining (ξ) and (ξ_1) .

(2) Let M be a strongly FP-injective module. Then $M \in (^{\perp_1} \mathcal{SFI})^{\perp} \subseteq (^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ by Lemma 2.1(3). Considering the exact sequence

$$(\xi_2) = \cdots \rightarrow 0 \rightarrow 0 \rightarrow M \xrightarrow{1_M} M \rightarrow 0 \rightarrow \cdots$$

one can check that (ξ_2) is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI},-)$. According to (1), we can know $M \in \mathcal{SGFI}$.

- (3) It is obvious.
- (4) Let $0 \to U \to V \to W \to 0$ be an exact sequence with $U \in \mathcal{SFI}$ and $W \in \mathcal{SGFI}$. Since $W \in \mathcal{SGFI}$, there is an exact sequence $0 \to K \to S \to W \to 0$

with $K \in \mathcal{SGFI}$ and $S \in \mathcal{SFI}$ by the proof of (1), which is exact under $\text{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. Construct the pullback diagram (Diagram 1).

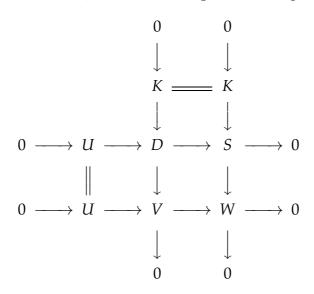


Diagram 1: The pullback diagram of $V \rightarrow W$ and $S \rightarrow W$.

Since $U,S \in \mathcal{SFI}$ and \mathcal{SFI} is closed under extensions by Lemma 2.1, we have $D \in \mathcal{SFI}$. Note that the right column and the middle row are exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. It is not difficult to get that the middle column is also exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. According to (1), we know $U,W \in (^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$, so $V \in (^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$. Therefore, $V \in \mathcal{SGFI}$ by (1).

Lemma 3.2. *Let M be a module. Then:*

- (1) SGFI is closed under extensions, cokernels of monomorphisms and summands.
- (2) Every kernels in a complete SFI-I resolution is in SGFI.
- (3) Let $0 \to U \to V \to W \to 0$ be an exact sequence of R-modules. If $V, W \in \mathcal{SGFI}$, then $U \in \mathcal{SGFI}$ if and only if $\operatorname{Ext}^1_R(N,U) = 0$ for any $N \in L_1 \times \mathcal{SFI} \cap \mathcal{SFI}$.

Proof. In order to prove the conclusion, let us firstly prove that there exists an exact sequence $(\eta) = \cdots \to N_1 \to N_0 \to M \to 0$ with each $N_i \in {}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}$ such that (η) is exact under $\text{Hom}_R({}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$ for any $M \in \mathcal{SGFI}$. By Lemma 3.1(1), there is an exact sequence $0 \to K_0 \to S_0 \to M \to 0$ with $S_0 \in \mathcal{SFI}$ and $K_0 \in \mathcal{SGFI}$. Note that $({}^{\perp_1} \mathcal{SFI}, \mathcal{SFI})$ is a complete hereditary cotorsion pair, there is a special ${}^{\perp_1} \mathcal{SFI}$ -precover of $S_0, 0 \to L_0 \to N_0 \to S_0 \to 0$ with $N_0 \in {}^{\perp_1} \mathcal{SFI}$ and $L_0 \in \mathcal{SFI}$. Since

SFI is closed under extensions, so $N_0 \in {}^{\perp_1}SFI \cap SFI$. Construct the pullback diagram (Diagram 2).

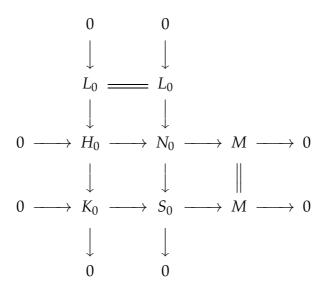


Diagram 2: The pullback diagram of $N_0 \rightarrow S_0$ and $K_0 \rightarrow S_0$.

Since $L_0 \in \mathcal{SFI}$ and $K_0 \in \mathcal{SGFI}$ in the left column, one can see that $H_0 \in \mathcal{SGFI}$ by Lemma 3.1(4). Because the middle column and the bottom row are exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI},-)$, we can get $0 \to H_0 \to N_0 \to M \to 0$ is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI},-)$. Proceed the process to H_0 , and so on, it is not difficult to get an exact sequence $(\eta) = \cdots \to N_1 \to N_0 \to M \to 0$ with each $N_i \in ^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI}$ such that (η) is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI},-)$ for any $M \in \mathcal{SGFI}$.

Let $0 \to U \to V \to W \to 0$ be an exact sequence of R-modules. If $U, W \in \mathcal{SGFI}$, then there exists exact sequences $(\eta_1) = \cdots \to L_1 \to L_0 \to U \to 0$ and $(\eta_2) = \cdots \to N_1 \to N_0 \to W \to 0$ with each $L_i, N_i \in {}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}$ such that (η_1) and (η_2) are exact under $\mathrm{Hom}_R({}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. Note that \mathcal{SGFI} is closed under arbitrary products by Definition 3.1. According to [4, Lemma 8.2.11], we can obtain an exact sequence $(\eta_3) = \cdots \to D_1 \to D_0 \to M \to 0$ with each $D_i \in {}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}$ such that (η_3) is exact under $\mathrm{Hom}_R({}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. Because $U, W \in \mathcal{SGFI}$ and $({}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ is closed under extensions, one can see $V \in ({}^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$, so $V \in \mathcal{SGFI}$ by Lemma 3.1(1). Hence, \mathcal{SGFI} is closed under extensions.

If $U, V \in \mathcal{SGFI}$, then there is an exact sequence $0 \to K_0 \to S_0 \to V \to 0$ with $K_0 \in \mathcal{SGFI}$ and $S_0 \in \mathcal{SFI}$, which is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. Construct the pullback diagram (Diagram 3).

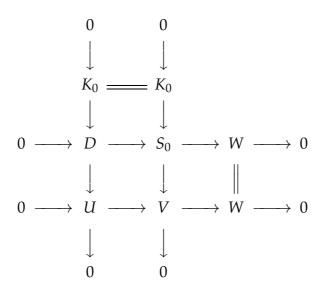


Diagram 3: The pullback diagram of $U \rightarrow V$ and $S_0 \rightarrow V$.

Because the bottom row and the middle column are exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI},-)$, so is the middle row. Since $K_0,U\in\mathcal{SGFI}$ and \mathcal{SGFI} is closed under extensions, one can get $D\in\mathcal{SGFI}$. So there is an exact sequence $(\eta_4)=\cdots\to H_1\to H_0\to D\to 0$ with each $H_i\in^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI}$ such that (η_4) is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI},-)$. Combining (η_4) and $0\to D\to S_0\to W\to 0$, one easily check that there is an exact sequence $(\eta_5)=\cdots\to H_1\to H_0\to S_0\to W\to 0$ with each H_i and S_0 in \mathcal{SFI} . By Lemma 3.1(1) and $U,V\in\mathcal{SGFI}$, we get $W\in(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI})^\perp$. Thus, $W\in\mathcal{SGFI}$. Therefore, \mathcal{SGFI} is closed under cokernels of monomorphisms.

Since SGFI is closed under extensions and products, it is easy to prove that SGFI is also closed under summands by [7, Proposition 1.4].

(2) Let

$$X = \cdots \rightarrow X_2 \stackrel{\delta_2^X}{\rightarrow} X_1 \stackrel{\delta_1^X}{\rightarrow} X_0 \stackrel{\delta_0^X}{\rightarrow} X_{-1} \stackrel{\delta_{-1}^X}{\rightarrow} X_{-2} \rightarrow \cdots$$

be a complete \mathcal{SFI} - \mathcal{I} resolution and $K_n = \operatorname{Ker} \delta_n^X$ for all $n \in \mathbb{Z}$. One can get $\operatorname{Ker} \delta_n^X = \operatorname{Im} \delta_{n+1}^X$ is a strongly Gorenstein \mathcal{FP} -injective module for all $n \leqslant -1$ by Remark 3.1. Suppose $n \geqslant 0$, since $X_i \in \mathcal{SFI} \subseteq (^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ for each $i \in \mathbb{Z}$ and X stays exact under $\operatorname{Hom}_R(^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$, we obtain that

$$\operatorname{Ext}^{1}(N,K_{i}) = 0$$
, $\operatorname{Ext}^{j}_{R}(N,K_{n}) \cong \operatorname{Ext}^{1}_{R}(N,K_{n+j-1})$

for any $N \in {}^{\perp_1} SFI \cap SFI$ and any $j \geqslant 1$. So $\operatorname{Ext}_R^{j \geqslant 1}(N, K_n) = 0$, which means $K_n \in {}^{\perp_1} SFI \cap SFI$

 $(^{\perp_1}S\mathcal{F}\mathcal{I}\cap S\mathcal{F}\mathcal{I})^{\perp}$. By Lemma 3.1(1), one get $K_n\in \mathcal{SGFI}$ for any $n\geqslant 0$. Therefore, every kernel in any complete $\mathcal{SFI-I}$ resolution is in \mathcal{SGFI} .

- (3) (\Rightarrow) It is obvious by Lemma 3.1(1).
- (\Leftarrow) Assume that $\operatorname{Ext}^1(F,\mathcal{U}) = 0$ for any $F \in {}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}$. Since $W \in \mathcal{SGFI}$, there is an exact sequence $0 \to K \to N \to W \to 0$ with $K \in \mathcal{SGFI}$ and $N \in {}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}$ by the proof of (1) such that it is exact under $\operatorname{Hom}_R({}^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$. Construct the pullback diagram (Diagram 4).

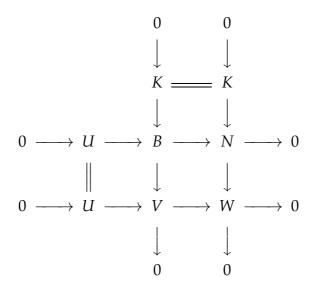


Diagram 4: The pullback diagram of $V \rightarrow W$ and $N \rightarrow W$.

Since $K, V \in \mathcal{SGFI}$, so $B \in \mathcal{SGFI}$ by (1). By assumption $\operatorname{Ext}^1(N, U) = 0$, one know U is a direct summand of B. Hence, $U \in \mathcal{SGFI}$ by (1).

Theorem 3.1. *Let* M *be a module. Then the following statements are equivalent:*

- (1) *M* is a strongly Gorenstein FP-injective module.
- (2) $M \in (^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ and there is an exact sequence $\cdots \to S_1 \to S_0 \to M \to 0$ with each $S_i \in \mathcal{SFI}$, which is exact under $\operatorname{Hom}_R(^{\perp_1} \mathcal{SFI} \cap \mathcal{SFI}, -)$.
- (3) There is an exact sequence $\cdots \to S_1 \to S_0 \to S_{-1} \to S_{-2} \to \cdots$ with each $S_i \in \mathcal{SGFI}$ such that $M \cong \text{Im}(S_0 \to S_{-1})$ which is exact under $\text{Hom}_R(\mathcal{SGFI}, -)$.
- (4) There is an exact sequence $\cdots \to S_1 \to S_0 \to S_{-1} \to S_{-2} \to \cdots$ with each $S_i \in \mathcal{SGFI}$ such that $M \cong Im(S_0 \to S_{-1})$ which is exact under $Hom_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$.

Proof. (1) \Leftrightarrow (2) It is easy to prove it by Lemma 3.1. (1) \Rightarrow (3), (2) \Rightarrow (4), and (3) \Rightarrow (4) are trivial.

 $(4)\Rightarrow(1)$ Assume that there is an exact sequence

$$S = \cdots \rightarrow S_1 \rightarrow S_0 \rightarrow S_{-1} \rightarrow S_{-2} \rightarrow \cdots$$

with each $S_i \in \mathcal{SGFI}$ such that $M \cong \operatorname{Im}(S_0 \to S_{-1})$ which is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. By Lemma 3.1(1) and $S_i \in \mathcal{SGFI}$, we get $S_i \in (^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ for any $i \in \mathbb{Z}$. Meanwhile, S is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$, it is not difficult to obtain that $\operatorname{Ext}^1(N, K_i) = 0$ and $\operatorname{Ext}^j_R(N, K_n) \cong \operatorname{Ext}^1_R(N, K_{n+j-1})$ for any $N \in ^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}$, any $i, n \in \mathbb{Z}$ and $j \geqslant 1$, where $K_n = \operatorname{Ker}(S_n \to S_{n-1})$. So $\operatorname{Ext}^{j\geqslant 1}_R(N, K_n) = 0$, which means $K_n \in (^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$ for any $n \in \mathbb{Z}$. Of course $M \in (^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI})^{\perp}$. Since $S_0 \in \mathcal{SGFI}$, there is an exact sequence $0 \to S_0' \to N_0 \to S_0 \to 0$ with $N_0 \in \mathcal{SFI}$ and $S_0' \in \mathcal{SGFI}$, that is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$. Construct the pullback diagram (Diagram 5).

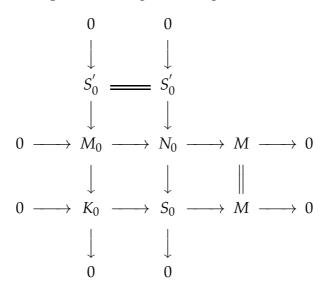


Diagram 5: The pullback diagram of $K_0 \rightarrow S_0$ and $N_0 \rightarrow S_0$.

Since the middle column and the bottom row of Diagram 5 are exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI}\cap\mathcal{SFI},-)$, so is the middle row. Note that $M_0 \in \mathcal{SGFI}$ by Lemma 3.2. Construct the pullback diagram (Diagram 6).

One can see that $M_1 \in \mathcal{SGFI}$ by Lemma 3.2. Since the bottom row and the right column are exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap \mathcal{SFI}, -)$, so is the middle column. Hence, the sequence $\cdots \to S_3 \to S_2 \to M_1 \to M_0 \to 0$ is exact under $\operatorname{Hom}_R(^{\perp_1}\mathcal{SFI} \cap S\mathcal{FI})$

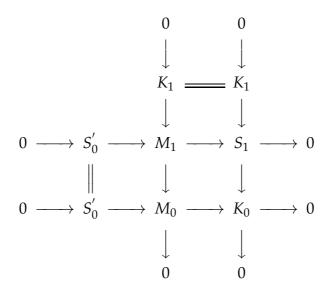


Diagram 6: The pullback diagram of $M_0 \rightarrow K_0$ and $S_1 \rightarrow K_0$.

 \mathcal{SFI} ,—), which is combined by $\cdots \rightarrow S_3 \rightarrow S_2 \rightarrow K_1 \rightarrow 0$ and $0 \rightarrow K_1 \rightarrow M_1 \rightarrow M_0 \rightarrow 0$. Repeat the process of M to M_0 , and so on, we can obtain an exact sequence $\cdots \rightarrow N_2 \rightarrow N_1 \rightarrow N_0 \rightarrow M \rightarrow 0$ with each $N_i \in \mathcal{SFI}$. Therefore, M is a strongly Gorenstein FP-injective module by Lemma 3.1.

4 Strongly FP-injective complexes and strongly FP-injective dimension of complexes

In this section, we introduce the concept of strongly FP-injective complexes, and discuss some properties and characterizations of strongly FP-injective complexes in virtue of the cotorsion pair ($^{\perp_1}SFI$, SFI). Finally, we study strongly FP-injective dimensions of complexes.

Definition 4.1. A complex X is called strongly FP-injective if X is exact and $Z_n(X)$ is a strongly FP-injective module for all $n \in \mathbb{Z}$.

Proposition 4.1. Let X be a complex. If X is a strongly FP-injective complex, then X is also an FP-injective complex.

Proof. Assume that X is a strongly FP-injective complex. By Definition 4.1, X is exact and $Z_n(X)$ is a strongly FP-injective module for all $n \in \mathbb{Z}$. Since strongly FP-injective modules are FP-injective, one can know $Z_n(X)$ is a strongly FP-injective module for all $n \in \mathbb{Z}$. By Lemma 2.5, X is also an FP-injective complex.

Proposition 4.2. *Let* M *be a module. Then the following conditions are equivalent:*

- (1) *M* is a strongly FP-injective module.
- (2) $D^{i}(M)$ is a strongly FP-injective complex.

Recall that a complex X is a flat (resp., injective, projective) if and only if X is exact and $Z_n(X)$ is a flat (resp., injective, projective) module for all $n \in \mathbb{Z}$.

Theorem 4.1. *Let* X *be a complex. Then the following statements are equivalent:*

- (1) X is a flat complex.
- (2) $X^+ = \underline{\text{Hom}}(X, D^1(\mathbb{Q}/\mathbb{Z}))$ is a strongly FP-injective complex.

Proof. Assume that $X = \cdots \to X_{n+1} \to X_n \to X_{n-1} \to \cdots$. Then X^+ can be made into the complex

$$\cdots \to \operatorname{Hom}\left(X, \sum_{n=0}^{\infty} D^{1}(\mathbb{Q}/\mathbb{Z})\right) \to \operatorname{Hom}\left(X, \sum_{n=0}^{\infty} D^{1}(\mathbb{Q}/\mathbb{Z})\right)$$
$$\to \operatorname{Hom}\left(X, \sum_{n=0}^{\infty} D^{1}(\mathbb{Q}/\mathbb{Z})\right) \to \cdots$$

Let α^{-n} : Hom $(X, \sum^{-n} D^1(\mathbb{Q}/\mathbb{Z})) \to \text{Hom}_R(X_{-n}, \mathbb{Q}/\mathbb{Z})$, $f = (f_m)_{m \in \mathbb{Z}} \to \alpha^{-n}(f) = f_{-n}$ for any $n \in \mathbb{Z}$. It is not difficult to prove that α^{-n} is an isomorphism for any $n \in \mathbb{Z}$, and the following diagram is commutative:

$$X^{+} = \cdots \Rightarrow \operatorname{Hom}(X, \sum^{-n-1} D^{1}(\mathbb{Q}/\mathbb{Z})) \Rightarrow \operatorname{Hom}(X, \sum^{-n} D^{1}(\mathbb{Q}/\mathbb{Z})) \Rightarrow \operatorname{Hom}(X, \sum^{-n+1} D^{1}(\mathbb{Q}/\mathbb{Z})) \Rightarrow \cdots$$

$$\downarrow_{\alpha^{-n-1}} \qquad \qquad \downarrow_{\alpha^{-n}} \qquad \qquad \downarrow_{\alpha^{-n+1}}$$

$$W = \cdots \Rightarrow \operatorname{Hom}_{R}(X_{-n-1}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{} \operatorname{Hom}_{R}(X_{-n}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{} \operatorname{Hom}_{R}(X_{-n+1}, \mathbb{Q}/\mathbb{Z}) \xrightarrow{} \cdots$$

One can get isomorphisms

$$Z_n(X^+) \cong Z_n(W) \cong \operatorname{Hom}_R(Z_n, \mathbb{Q}/\mathbb{Z}) \cong Z_n(X)^+,$$

when X is exact. By Lemma 2.1, we have $Z_n(X)$ is flat if and only if $Z_n(X)^+$ is strongly FP-injective. So $Z_n(X)$ is flat if and only if $Z_n(X^+)$ is strongly FP-injective. Note that X is an exact complex if and only if W is an exact complex, if and only if X^+ is exact. Therefore, X is a flat complex if and only if $X^+ = \underline{Hom}(X,D^1(\mathbb{Q}/\mathbb{Z}))$ is a strongly FP-injective complex.

Here are some characterizations of a left coherent ring.

Corollary 4.1. Let R be a ring and X a complex. Then the following assertions are equivalent:

- (1) R is a left coherent ring.
- (2) X is an FP-injective complex if and only if X is a strongly FP-injective complex.
- (3) X is a strongly FP-injective complex if and only if X^+ is a flat complex.
- (4) X is a strongly FP-injective complex if and only if X^{++} is a strongly FP-injective complex.
- (5) X is a flat complex if and only if X^+ is a flat complex.

Proof. It follows from Lemma 2.1, Theorem 3.1 and [17, Corollary 2.14]. □

Proposition 4.3. Let X be a strongly FP-injective complex. Then X_n is a strongly FP-injective module and $\mathcal{H}om(F,X)$ is exact for any finitely presented complex F.

Proof. According to Proposition 4.1 and Lemma 2.5 one can get \mathcal{H} om(F,X) is exact for any finitely presented complex F. It is sufficient to prove that X_n is a strongly FP-injective module. Let

$$X = \cdots \rightarrow X_2 \stackrel{\delta_2^X}{\rightarrow} X_1 \stackrel{\delta_1^X}{\rightarrow} X_0 \stackrel{\delta_0^X}{\rightarrow} X_{-1} \stackrel{\delta_{-1}^X}{\rightarrow} X_{-2} \rightarrow \cdots,$$

and $0 \to X_n \xrightarrow{f} V \to U \to 0$ be an arbitrary extension of X_n by U, in which U is any finitely presented module. Since $\operatorname{Ker} \pi = \operatorname{Im} \delta_n^X \subseteq \operatorname{Ker} \delta_{n-1}^X$ with $\pi: X_{n-1} \to \operatorname{Coker} \delta_n^X$ is a canonical projective. By the factor lemma, there exists homological morphism $g: \operatorname{Coker} \delta_n^X \to X_{n-2}$ such that $g\pi = \delta_{n-1}^X$. Construct the pushout diagram (Diagram 7). So Diagram 8 is commutative.

It is easy to get

$$H = \cdots \to X_{n+2} \xrightarrow{\delta_{n+2}^{X}} X_{n+1} \xrightarrow{f \delta_{n+1}^{X}} V \xrightarrow{\alpha} W \xrightarrow{gh} X_{n-2} \xrightarrow{\delta_{n-2}^{X}} X_{n-3} \to \cdots$$

is a complex. Therefore, $0 \to X \to H \to D^n(U) \to 0$ is a short exact sequence of complexes. According to Lemma 2.4 and U is a finitely presented module, $D^n(U)$ is a finitely presented complex. By applying the functor $Hom(D^n(U), -)$ to above short exact sequence, one can get the following long exact sequence:

$$0 \to \operatorname{Hom}(D^n(U),X) \to \operatorname{Hom}(D^n(U),H)$$
$$\to \operatorname{Hom}(D^n(U),D^n(U)) \to \operatorname{Ext}^1(D^n(U),X) \to \cdots.$$

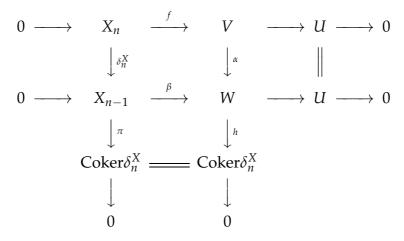


Diagram 7: The pushout diagram of $X_n \to X_{n-1}$ and $X_n \to V$.

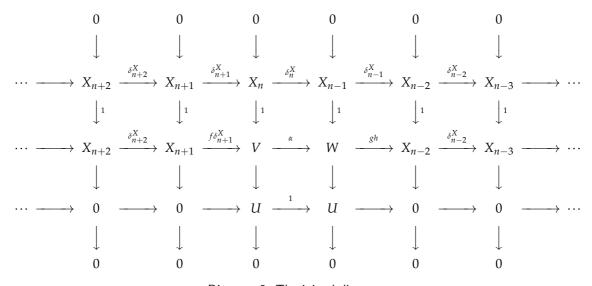


Diagram 8: The joined diagram.

Noting that X is a strongly FP-injective complex, and strongly FP-injective complexes are FP-injective, we know $\operatorname{Ext}^1(D^n(U),X) = 0$, which means $0 \to X \to H \to D^n(U) \to 0$ is split. So the n-th term $0 \to X_n \to V \to U \to 0$ is split, and $\operatorname{Ext}_R^{i \geqslant 1}(U,X_n) = 0$. Thus, X_n is a strongly FP-injective module.

Gillespie introduced in [6] several classes of complexes associated to a cotorsion pair in an abelian category. Specializing to the cotorsion pair ($^{\perp_1}SFI$, SFI), Gillespie's definition reduces to the following.

Definition 4.2. *Let* R *be a ring and* X *a complex.*

- (1) X is called a $^{\perp_1}SFI$ -complex if it is exact and $Z_i(X) \in ^{\perp_1}SFI$ for each $i \in \mathbb{Z}$.
- (2) X is called an SFI-complex if it is exact and $Z_i(X) \in SFI$ for each $i \in \mathbb{Z}$.
- (3) X is called a $dg^{-\perp_1}SFI$ complex if $X_i \in {}^{\perp_1}SFI$ for each $i \in \mathbb{Z}$, and $\mathcal{H}om(X,S)$ is exact whenever S is an SFI-complex.
- (4) X is called a dg-SFI complex if $X_i \in SFI$ for each $i \in \mathbb{Z}$, and Hom(T,X) is exact whenever T is a $^{\perp_1}SFI$ -complex.
- **Remark 4.1.** (1) SFI-complexes are coincide with strongly FP-injective complexes.
 - (2) The class of all $^{\perp_1}SFI$ -complexes (resp., $dg^{-\perp_1}SFI$ complexes) is denoted by $^{\perp_1}SFI$ (resp., $dg^{-\perp_1}SFI$). Similarly, the class of all SFI-complexes (resp., $dg^{-}SFI$ complexes) is denoted by \widetilde{SFI} (resp., $dg^{-}\widetilde{SFI}$).

Proposition 4.4. Let X be a complex. Then X admits a special \widetilde{SFI} -precover and a special \widetilde{SFI} -preenvelope.

Proof. Since $(^{\perp_1}S\mathcal{F}\mathcal{I},S\mathcal{F}\mathcal{I})$ is a complete hereditary cotorsion pair, it is easy to prove that X admits a special $\stackrel{}{}^{\perp_1}S\mathcal{F}\mathcal{I}$ -precover and a special $\stackrel{}{}^{\mathcal{S}\mathcal{F}\mathcal{I}}$ -preenvelope. The proof is complete.

According to [17, Lemma 3.2] and [15, Theorem 3.5], one can get the following conclusion.

Theorem 4.2. *Let* R *be a ring and* X *a complex. Then:*

- (1) Complexes that are bounded below and have components in ${}^{\perp_1}SFI$ are $dg-{}^{\perp_1}SFI$ complexes.
- (2) Complexes that are bounded above and have components in SFI are dg-SFI complexes.
- (3) $(\stackrel{\perp}{}_{1}\mathcal{SFI}, dg-\widetilde{\mathcal{SFI}})$ and $(dg-\stackrel{\perp}{}_{1}\mathcal{SFI}, \widetilde{\mathcal{SFI}})$ are complete hereditary cotorsion pairs in C(R).
- (4) $dg^{-1}SFI \cap \varepsilon = 1SFI$ and $dg^{-}SFI \cap \varepsilon = SFI$, where ε denotes the class of exact complexes.

Proof. Since $(^{\perp_1}\mathcal{SFI},\mathcal{SFI})$ is a complete hereditary cotorsion pair, one can get (1) and (3) by [17, Lemma 3.2], and $(^{\perp_1}\mathcal{SFI}, dg-\widetilde{\mathcal{SFI}})$ and $(dg-^{\perp_1}\mathcal{SFI}, \widetilde{\mathcal{SFI}})$ are hereditary cotorsion pairs in $\mathcal{C}(R)$. According to [15, Theorem 3.5], it is not difficult to prove that $(^{\perp_1}\mathcal{SFI}, dg-\widetilde{\mathcal{SFI}})$ and $(dg-^{\perp_1}\mathcal{SFI}, \widetilde{\mathcal{SFI}})$ are complete. The proof is complete.

Theorem 4.3. Assume that X is a strongly FP-injective complex and F is a finitely presented complex. Then $\operatorname{Ext}^{i\geqslant 1}(F,X)=0$.

Proof. Since F is a finitely presented complex, we have F is bounded and F_n is a finitely presented module for all $n \in \mathbb{Z}$ by Lemma 2.4. According to Definition 4.1, it is easy to know $F_n \in {}^{\perp_1} \mathcal{SFI}$. Hence, F is a $dg^{-\perp_1} \mathcal{SFI}$ complex by Theorem 4.2(1). Note that $(\stackrel{\perp_1}{\mathcal{SFI}}, dg^{-\widetilde{\mathcal{SFI}}})$ is a complete hereditary cotorsion pair, so we can get $\operatorname{Ext}^{i\geqslant 1}(F,X)=0$.

Now let us introduce strongly FP-injective dimensions of complexes.

Definition 4.3. A morphism $X \to D$ is called a dg- \mathcal{SFI} resolution of X, if $X \to D$ is a quasi-isomorphism and D is a dg- \mathcal{SFI} complex.

Proposition 4.5. Let R be a ring and X a complex. Then X has an injective dg- \mathcal{SFI} resolution.

Proof. Since dg-injective complexes are dg-SFI complexes, and X has an injective dg-injective resolution, it is easy to get that X has an injective dg-SFI resolution.

Definition 4.4. Let X be a complex and n an integer. The strongly FP-injective dimension of X, \widetilde{SFI} -id(X), is defined as follows:

- $\widetilde{\mathcal{SFI}}$ -id(X) \leqslant n if there is a quasi-isomorphism X \rightarrow D with D is a dg-SFI complex such that inf D \geqslant -n and $Z_i(D)\in\mathcal{SFI}$ for any integer $i\leqslant$ -n.
- If $\widetilde{\mathcal{SFI}}$ -id(X) $\leqslant n$ but $\widetilde{\mathcal{SFI}}$ -id(X) $\leqslant n-1$ does not hold, then $\widetilde{\mathcal{SFI}}$ -id(X) = n.
- If $\widetilde{\mathcal{SFI}}$ -id(X) \leqslant m for any integer m, then $\widetilde{\mathcal{SFI}}$ -id(X) = $-\infty$.
- If $\widetilde{\mathcal{SFI}}$ -id(X) \leqslant m does not hold for any integer m, then $\widetilde{\mathcal{SFI}}$ -id(X) = $+\infty$.

Theorem 4.4. *Let* C *be a complex. Then the following statements are equivalent:*

- (1) $\widetilde{\mathcal{SFI}}$ -id(C) $\leq n$.
- (2) $\inf H(C) \ge -n$ and $Z_{-n}(I) \in \mathcal{SFI}$ for each dg-injective resolution $C \to I$.
- (3) $\inf H(C) \ge -n$ and $Z_j(I) \in SFI$ for any integer $j \le -n$ for each dg-injective resolution $C \to I$.
- (4) There exists a dg-injective resolution $C \to I'$ such that $H_j(I') = 0$ for any integer $j \le -n-1$ and $Z_{-n}(I') \in \mathcal{SFI}$.
- (5) There exists a dg-injective resolution $C \to I'$ such that $H_j(I') = 0$ for any integer $j \le -n-1$ and $Z_j(I') \in SFI$ for any $j \le -n$.

Proof. $(1) \Rightarrow (2)$ Assume that $\widetilde{\mathcal{SFI}}$ -id $(C) \leqslant n$. Then there is a dg- \mathcal{SFI} resolution $C \xrightarrow{f} F$ such that $\inf H(F) \geqslant -n$ and $Z_{-n}(F) \in \mathcal{SFI}$. For each dg-injective resolution $C \xrightarrow{g} I$, $\inf H(I) = \inf H(C) = \inf H(F) \geqslant -n$. By Proposition 4.5, we can assume f is injective. Consider the exact sequence

$$0 \rightarrow C \rightarrow F \rightarrow L \rightarrow 0$$

with L exact. By applying the functor Hom(-,I) to above sequence, we get the following exact sequence:

$$0 \rightarrow Hom(L,I) \rightarrow Hom(F,I) \rightarrow Hom(C,I) \rightarrow Ext^{1}(L,I) \rightarrow 0.$$

Since I is dg-injective and L is exact, so $\operatorname{Ext}^1(L,I) = 0$, and thus there exists a morphism of complexes $h: F \to I$ such that hf = g. Note that f,g are both quasi-isomorphisms, so is h. We can assume that h is injective (if not, let $F \to \underline{I}$ be injective with \underline{I} an injective complex. Then $F \to I \oplus \underline{I}$ is an injective quasi-isomorphism). Consider the short exact sequence $0 \to F \to I \to W \to 0$ with W an exact sequence. Since F and I are both $dg-\mathcal{SFI}$ complexes, so is W. According to Theorem 4.2(3), we get W is an \mathcal{SFI} -complex. Consider the following short exact sequence of modules:

$$0 \!\rightarrow\! Z_{-n}(F) \!\rightarrow\! Z_{-n}(I) \!\rightarrow\! Z_{-n}(W) \!\rightarrow\! 0$$

with $Z_{-n}(W)$ and $Z_{-n}(F)$ strongly FP-injective modules. Hence, $Z_{-n}(I) \in \mathcal{SFI}$ by Lemma 2.1.

- $(2) \Rightarrow (4)$ is obvious.
- $(4) \Rightarrow (1)$ Since dg-injective resolutions are dg- \mathcal{SFI} resolutions, it is easy to prove (1) by Definition 4.3.
 - $(2) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ One can easily prove them by Lemma 2.1.

$$(3) \Rightarrow (2)$$
 and $(5) \Rightarrow (4)$ are clear.

Acknowledgments

We thank the referees for their time and comments. The paper is supported by the Gansu Natural Science Foundation Project (No. 25JRRK002).

References

- [1] M. Auslander and M. Bridger, Stable Module Theory, AMS, 1969.
- [2] M. Chen, H. Kim, F. Wang, and X. Zhang, Some characterizations of coherent rings in terms of strongly FP-injective modules, Commun. Algebra 48(7) (2020), 2857–2871.
- [3] E. E. Enochs and O. M. G. Jenda, *Gorenstein injective and projective modules*, Math. Z. 220(1) (1995), 611–633.
- [4] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, De Gruyter, 2011.
- [5] E. E. Enochs and J. R. G. Rozas, Flat covers of complexes, J. Algebra 210(1) (1998), 86–102.
- [6] J. Gillespie, *The flat model structure on Ch(R)*, Trans. Am. Math. Soc. 356(8) (2004), 3369–3390.
- [7] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189(1-3) (2004), 167–193.
- [8] J. Hu and D. Zhang, Weak AB-context for FP-injective modules with respect to semidualizing modules, J. Algebra Appl. 12(07) (2013), 1350039.
- [9] W. Li, J. Guan, and B. Ouyang, *Strongly FP-injective modules*, Commun. Algebra 45(9) (2017), 3816–3824.
- [10] L. Mao and N. Ding, FP-projective dimensions, Commun. Algebra 33(4) (2005), 1153–1170.
- [11] J. R. G. Rozas, Covers and Envelopes in the Category of Complexes of Modules, CRC Press, 1999.
- [12] P. Samuel and M. Auslander, *Anneaux de Gorenstein, et torsion en algèbre commutative*, Séminaire d'algèbre Commutative, 1967.
- [13] S. Sather-Wagstaff, T. Sharif, and D. White, *AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules*, Algebras Represent. Theory 14(3) (2011), 403–428.
- [14] B. Stenström, Coherent rings and FP-injective modules, J. Lond. Math. Soc. 2(2) (1970), 323–329.
- [15] G. Yang and Z. Liu, *Cotorsion pairs and model structures on Ch(R)*, Proc. Edinb. Math. Soc. 54(3) (2011), 783–797.
- [16] X. Yang and Z. Liu, FP-injective complexes, Commun. Algebra 38(1) (2009), 131–142.
- [17] Z. Wang and Z. Liu, FP-injective complexes and FP-injective dimension of complexes, J. Aust. Math. Soc. 91(2) (2011), 163–187.