On the Group of $p$-Endotrivial $kG$-Modules

Authors

  • Wenlin Huang School of Information, Renmin University of China, Beijing, 100872

DOI:

https://doi.org/10.13447/j.1674-5647.2018.02.02

Keywords:

$p$-endotrivial module, the group of $p$-endotrivial modules, endo-permutation module, Dade group

Abstract

In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.

Published

2019-12-16

Abstract View

  • 37009

Pdf View

  • 2756

Issue

Section

Articles

How to Cite

On the Group of $p$-Endotrivial $kG$-Modules. (2019). Communications in Mathematical Research, 34(2), 106-116. https://doi.org/10.13447/j.1674-5647.2018.02.02