The Pseudo Drazin Inverses in Banach Algebras
DOI:
https://doi.org/10.4208/cmr.2021-0013Keywords:
Drazin inverse, pseudo Drazin inverse, generalized Drazin inverse.Abstract
Let $\mathscr{A}$ be a complex Banach algebra and $J$ be the Jacobson radical of $\mathscr{A}$. (1) We firstly show that $a$ is generalized Drazin invertible in $\mathscr{A}$ if and only if $a+J$ is generalized Drazin invertible in $\mathscr{A}$/$J$. Then we prove that $a$ is pseudo Drazin invertible in $\mathscr{A}$ if and only if $a+J$ is Drazin invertible in $\mathscr{A}$/$J$. As its application, the pseudo Drazin invertibility of elements in a Banach algebra is explored. (2) The pseudo Drazin order is introduced in $\mathscr{A}$. We give the necessary and sufficient conditions under which elements in $\mathscr{A}$ have pseudo Drazin order, then we prove that the pseudo Drazin order is a pre-order.
Downloads
Published
2022-12-02
Abstract View
- 40732
Pdf View
- 2735
Issue
Section
Articles
How to Cite
The Pseudo Drazin Inverses in Banach Algebras. (2022). Communications in Mathematical Research, 37(4), 484-495. https://doi.org/10.4208/cmr.2021-0013