$\mathbf{H}$(${\rm curl}^2$) Conforming Element for Maxwell’s Transmission Eigenvalue Problem Using Fixed-Point Approach
DOI:
https://doi.org/10.4208/csiam-am.SO-2021-0046Keywords:
Maxwell’s transmission eigenvalues, curl-curl conforming element, error estimates.Abstract
Using newly developed $\mathbf{H}$(${\rm curl}^2$) conforming elements, we solve the Maxwell’s transmission eigenvalue problem. Both real and complex eigenvalues are considered. Based on the fixed-point weak formulation with reasonable assumptions, the optimal error estimates for numerical eigenvalues and eigenfunctions (in the $\mathbf{H}$(${\rm curl}^2$)-norm and $\mathbf{H}{\rm (curl)}$-semi-norm) are established. Numerical experiments are performed to verify the theoretical assumptions and confirm our theoretical analysis.
Downloads
Published
2025-09-11
Abstract View
- 3843
Pdf View
- 326
Issue
Section
Articles
How to Cite
$\mathbf{H}$(${\rm curl}^2$) Conforming Element for Maxwell’s Transmission Eigenvalue Problem Using Fixed-Point Approach. (2025). CSIAM Transactions on Applied Mathematics, 6(3), 468-488. https://doi.org/10.4208/csiam-am.SO-2021-0046