The Unstable Mode in the Crank-Nicolson Leap-Frog Method Is Stable
Keywords:
IMEX method, Crank-Nicolson Leap-Frog, CNLF, unstable mode, computational mode.Abstract
This report proves that under the time step condition $\bigtriangleup t|\Lambda|<1$(| $\cdot$ | = Euclidean
norm) suggested by root condition analysis and necessary for stability, all modes of the Crank-Nicolson Leap-Frog (CNLF) approximate solution to the system
$\frac{du}{dt}+ Au + \Lambda u = 0$, for $t > 0$ and $u(0) = u_0$,
where $A + A^T$ is symmetric positive definite and $\Lambda$ is skew symmetric, are asymptotically stable.
This result gives a sufficient stability condition for non-commutative $A$ and $\Lambda$, and is proven by
energy methods. Thus, the growth, often reported in the unstable mode, is not due to systems
effects and its explanation must be sought elsewhere.
Downloads
Published
Abstract View
- 33694
Pdf View
- 2760