

The Least Squares Solutions of Bisymmetric Matrix for Inverse Quadratic Eigenvalue Problem

Xiangrong Wang⁺, Chenggang Chen, Shimin Wan, Yandong Yuan

Department of Fundamental Subject, Tianjin Institute of Urban Construction, Tianjin, 300384, China

(Received January 1, 2010, accepted March 22, 2010)

Abstract. The inverse eigenvalue problem of constructing bisymmetric matrices M, C and K of size n for the quadratic pencil $Q(\Lambda) = MX\Lambda^2 + CX\Lambda + KX$ so that has a prescribed subset of eigenvalues and eigenvectors is discussed. A general expression of solution to the problem is provided. The set of such solutions is denoted by S_L . The optimal approximation problem associated with S_L is posed, that is: to find the nearest triple matrix $[\hat{M}, \hat{C}, \hat{K}]$ from S_L . The existence and uniqueness of the optimal approximation problem is discussed and the expression is provided for the nearest triple matrix.

Keywords: bisymmetric matrix, matrix equation, quadratic eigenvalue, inverse problem, SVD.

1. Introduction

Let $R^{n\times n}$ denote the set of $n\times n$ real matrices. $SR^{n\times n}$ denote the set of $n\times n$ real symmetric matrices. $ASR^{n\times n}$ be the set of $n\times n$ real anti-symmetric matrices, R^n denote the set of n dimensional vector. A^T is the transpose of matrix A. I_n is $n\times n$ unit matrix, $\| \bullet \|$ is Frobenius norm, $\| \bullet \|_2$ is 2-norm. e_i be i-th row of the unit matrix I_n . Let A be a real $m\times n$ matrix and let B be real $p\times q$ matrix. Then the Kronecker product of matrices A and B is defined as

$$A \otimes B := \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{pmatrix}. \tag{1}$$

That is, $A \otimes B$ is the $mp \times nq$ matrix formed all possible pairwise element products of A and B. If we let $vec(X) \in R^{mn}$ be the vector formed by the columns of a permutation matrix $X \in R^{m \times n}$.

Definition^[1]. Let
$$A = (a_{ij})_{n \times n}$$
, $a_1 = (a_{11}, a_{21}, \dots, a_{n1})$, $a_2 = (a_{22}, a_{32}, \dots, a_{n2})$, \dots ,

 $a_{n-1} = (a_{(n-1)(n-1)}, a_{n(n-1)}), a_n = (a_{nn})$. Then we denote $vec_s(A)$ as follow

$$vec_{S}(A) := (a_{1}, a_{2}, \cdots, a_{n-1}, a_{n})^{T} \in R^{\frac{n(n+1)}{2}}.$$
 (2)

Definition^[2]. $A = (a_{ij}) \in R^{n \times n}$ is termed bisymmetric matrix, if

$$a_{ij} = a_{ji} = a_{n-j+1,n-i+1}, i, j=1, 2, \dots, n$$
 (3)

Let
$$G = \{ [X,Y,Z] / X \in BSR^{n \times n}, Y \in BSR^{n \times n}, Z \in BSR^{n \times n} \}$$
.

In this paper, we discuss the following problems:

Problem I. Given matrices $X \in \mathbb{R}^{n \times p}$, $\Lambda \in \mathbb{R}^{p \times p}$, find $[\tilde{M}, \tilde{C}, \tilde{K}] \in G$ such that

⁺ Corresponding author. Tel.: +86-022-23085200. *E-mail address*: ydyuan196@sina.com.

$$\|\tilde{M}X\Lambda^{2} + \tilde{C}X\Lambda + \tilde{K}X\| = \min_{[M,C,K] \in G} \|MX\Lambda^{2} + CX\Lambda + KX\|$$
(4)

where ||•|| is Frobenius norm.

Let $\tilde{G} = \{ [M, C, K] | || MX \Lambda^2 + CX \Lambda + KX || = \min, [M, C, K] \in G \}.$

Problem II. Find $[\tilde{M}, \tilde{C}, \tilde{K}] \in \tilde{G}$, such that

$$\|\tilde{M}\|^{2} + \|\tilde{C}\|^{2} + \|\tilde{K}\|^{2} = \min_{[M,C,K] \in \tilde{G}} (\|M\|^{2} + \|C\|^{2} + \|K\|^{2})$$
(5)

where ||•|| is Frobenius norm.

2. The Solution Problem I

Lemma 1^[1]. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, then the sufficiency and necessary condition of the solution exist for linear equation Ax = b as follow

$$AA^+b=b. (6)$$

the general solution for linear equation Ax = b can write as follow

$$x = A^+b + (I - A^+A)\tau , \qquad (7)$$

where $\tau \in R^n$.

Lemma 2^[1]. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^n$, then the least squares solution of incompatibility linear equation Ax = b can write as follow

$$x = A^{+}b + (I - A^{+}A)\tau, (8)$$

where $\tau \in R^n$.

For any k of positive integer, let

$$D_{2k} = \frac{1}{\sqrt{2}} \begin{pmatrix} I_k & S_k \\ S_k & -I_k \end{pmatrix}, \ D_{2k+1} = \frac{1}{\sqrt{2}} \begin{pmatrix} I_k & O & S_k \\ O & \sqrt{2} & O \\ S_k & O & -I_k \end{pmatrix},$$
(9)

where $S_k = (e_k, e_{k-1}, \dots, e_2, e_1)$.

We easy know, for any positive integer n, have $D_n^T D_n = I_n$, $D_n^T = D_n$, then D_n is symmetric orthogonal matrix.

Lemma 3^[2]. For any n is odd number or even number, the sufficiency and necessary condition of $n \times n$ real matrix being bisymmetric matrix is

$$X = D_n \begin{pmatrix} X_1 & O \\ O & X_2 \end{pmatrix} D_n, \tag{10}$$

where $X_1 \in SR^{(n-k)\times (n-k)}$, $X_2 \in SR^{k\times k}$, $k=\left[\frac{n}{2}\right]$, D_n as (9) .

Lemma 4^[2]. Given matrix $X \in \mathbb{R}^{n \times n}$, then the sufficiency and necessary condition for $X \in S\mathbb{R}^{n \times n}$ as follow

$$vec(X) = \Gamma_n vec_s(X) \tag{11}$$