L1 Existence and Uniqueness of Entropy Solutions to Nonlinear Multivalued Elliptic Equations with Homogeneous Neumann Boundary Condition and Variable Exponent
DOI:
https://doi.org/10.4208/jpde.v27.n1.1Keywords:
Elliptic equation;variable exponent;entropy solution;L¹-data;Neumann boundary conditionAbstract
"In this work, we study the following nonlinear homogeneous Neumann boundary value problem $\u03b2(u)\u2212diva(x,\u2207u) \u220b f in \u03a9, a(x,\u2207u)\u22c5\u03b7$ $=0$ on $\u2202\u03a9$, where $\u03a9$ is a smooth bounded open domain in $\u211c^N, N \u2265 3$ with smooth boundary $\u2202\u03a9$ and $\u03b7$ the outer unit normal vector on $\u2202\u03a9$. We prove the existence and uniqueness of an entropy solution for L\u00b9-data f. The functional setting involves Lebesgue and Sobolev spaces with variable exponent.<\/p>"
Published
2014-03-05
Abstract View
- 44521
Pdf View
- 3517
Issue
Section
Articles
How to Cite
L1 Existence and Uniqueness of Entropy Solutions to Nonlinear Multivalued Elliptic Equations with Homogeneous Neumann Boundary Condition and Variable Exponent. (2014). Journal of Partial Differential Equations, 27(1), 1-27. https://doi.org/10.4208/jpde.v27.n1.1