The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface
DOI:
https://doi.org/10.4208/jpde.v25.n4.3Keywords:
Compact Riemann surface;nonlinear elliptic equation;gauss curvature;existence of solutionAbstract
Let M be a compact Riemann surface, h(x) a positive smooth function on M, and f(x) a smooth function on M which satisfies that $∫_Me^φdV_g=1$. In this paper, we consider the functional $J(u)=½∫_M|∇u|^2e^φdV_g+8πc∫_Mue^φdV_g-8πclog∫_Mhe^{u+φ}dV_g$. We give a sufficient condition under which J achieves its minimum for $c≤inf_{x∈M^{e^φ(x)}}$.
Downloads
Published
2020-05-12
Abstract View
- 42379
Pdf View
- 2487
Issue
Section
Articles
How to Cite
The Equation Δu+∇φ•∇u=8πc(1-heu) on a Riemann Surface. (2020). Journal of Partial Differential Equations, 25(4), 335-355. https://doi.org/10.4208/jpde.v25.n4.3