A Singular Trudinger-Moser Inequality in Hyperbolic Space
DOI:
https://doi.org/10.4208/jpde.v28.n1.5Keywords:
Singular Trudinger-Moser inequlity;hyperbolic spaceAbstract
In this paper, we establish a singular Trudinger-Moser inequality for the whole hyperbolic space $$H^n: sup_{u∈W^{1,n}(H^n),∫_{H^n}|∇_H^nu|^ndμ ≤ 1}∫_{H^n}\frac{e^{α|u|\frac{n}{n-1}}-Σ^{n-2}_{k=0}\frac{α^k|u|^\frac{nk}{n-1}}{k!}}{ρ^β}dμ‹∞ ⇔ \frac{α}{α_n}+\frac{β}{n} ≤ 1,$$ where α>0,α ∈ [0,n), ρ and dμ are the distance function and volume element of $H^n$ respectively.Published
2015-03-05
Abstract View
- 42825
Pdf View
- 3678
Issue
Section
Articles
How to Cite
A Singular Trudinger-Moser Inequality in Hyperbolic Space. (2015). Journal of Partial Differential Equations, 28(1), 39-46. https://doi.org/10.4208/jpde.v28.n1.5