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Abstract. In this paper, we propose a fast proximity point algorithm and apply it to to-
tal variation (TV) based image restoration. The novel method is derived from the idea
of establishing a general proximity point operator framework based on which new
first-order schemes for total variation (TV) based image restoration have been pro-
posed. Many current algorithms for TV-based image restoration, such as Chambolle’s
projection algorithm, the split Bregman algorithm, the Bermtidez-Moreno algorithm,
the Jia-Zhao denoising algorithm, and the fixed point algorithm, can be viewed as
special cases of the new first-order schemes. Moreover, the convergence of the new
algorithm has been analyzed at length. Finally, we make comparisons with the split
Bregman algorithm which is one of the best algorithms for solving TV-based image
restoration at present. Numerical experiments illustrate the efficiency of the proposed
algorithms.
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1 Introduction
The well known Rudin-Osher-Fatemi (ROF) total variation (TV) model [1] was intro-
duced to image restoration in 1992 by Rudin and Osher et al., and gained a great number

of studied interest and applications [2, 3] such as image deblurring, image inpainting
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during the last over twenty years. The central difficulty in the TV model lies in the non-
differentiability of the total variation norm and the large dimension of the underlying
image from a numerical point of view.

Up to now, there are a wide variety of methods to address the total variation norm
minimization in image proceeding. We here just list a few of them: Chambolle’s pro-
jection algorithm [4, 5], the split Bregman algorithm [6,7], Nestrov’s schemes [8, 9], the
Bermudez-Moreno algorithm [10] and the FP?O algorithm [11]. We would like to explain
why we are interested in these methods: Chambolle’s projection algorithm has grown
very popular since it is the first algorithm minimizing the ROF model exactly; both the
split Bregman method and Nestrov’s schemes gain lots of studying interest in many cases
such as frame-based image restoration [12], segmentation and surface reconstruction [13],
and sparse recovery [14-16]; the Bermtdez-Moreno and the FP?O algorithms are most
recently proposed, and the Bermtdez-Moreno’s algorithm is comparable with Nestrov’s
schemes while the FP?O algorithm can be viewed as a modification of the split Bregman
algorithm.

When the methods above are applied to the total variation denoising, many of
them have a common numerical scheme via some modifications. For example, Aujol
in [17] showed that the modification of Chambolle’s projection algorithm has the exact
scheme of the Bermtdez-Moreno algorithm, Micchell et al. in [11] illustrated that with
some modification the split Bregman algorithm reduces to the Jia-Zhao denoising algo-
rithm [18] which can be considered as a special case of the FP?O algorithm. The first
main contribution of the paper is of discovering the connection between the Bermudez-
Moreno algorithm and the FP?O algorithm; both of them can be viewed as generation
of the Chambolle’s projection algorithm but from different angles: the FP?O is based on
the Picard sequence, and the Bermudez-Moreno algorithm is to extend the operator in
square term from identical operator to symmetric positive operator. Under the proximity
point operator frameworks, we firstly extend the FP?O algorithm from image denois-
ing to image deconvolution and image restoration based on wavelet with total variation,
and introduce new and efficient schemes. That is the second main contribution of the
paper. With these derived schemes we conclude that the algorithms above are all spe-
cial cases of our proposed schemes. Moreover, we also prove the convergence of the
proposed schemes by introducing the Opial x-averaged property [19]. Since Aujol in [17]
have tested numerous numerical comparisons between the Bermtdez-Moreno algorithm
and the Nestrov’s schemes, we have decided to make some comparisons with the split
Bregman method to test the efficiency of the proposed schemes.

Before presenting the plan of the paper, we emphasis once the main contributions of
the paper:

e Discovering the connection between the Bermtdez-Moreno algorithm and the
FP20 algorithm; both of them can be viewed as generation of the Chambolle’s pro-
jection algorithm but from different angles.

e Extending the FP?O algorithm from image denoising to image deconvolution and
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image restoration based on wavelet with total variation, and introducing new and
efficient schemes for them. Many current algorithms can be viewed as special cases
of such schemes.

e Presenting numerical comparisons with the split Bregman algorithm.

The remainder of the paper is organized as follows. In Section 2, we formulate the
TV-based image deconvolution model (TVL2) and the image restoration model based on
wavelet analysis with TV (TVL1L2) by restricting our attention onto the discrete setting.
In Section 3, we introduce the proximity point operator theory, and then propose fixed
point formulations for the TVL2 and the TVL1L2 models. In Section 4, based on the
fixed point formulations, we design new iteration schemes, and provide fast algorithms
by using the fast Fourier transformation. The relationship with other algorithms is also
discussed. In Section 5, we strictly prove the convergence of the new algorithms by in-
troducing the Opial x-averaged property [19]. In Section 6, we illustrate our study by
numerous comparisons with the split Bregman algorithm.

2 Problem formulation

Image restoration is one of the earliest and most classical linear inverse problems in image
processing. In this class of problems, one wants to recover an original image u from its
degraded observation f. In other words, we want to recover u by solving the following
linear inverse problem

f=Ku+y, (2.1)

where K represents a blurring or convolution operator for image deblurring and an iden-
tity operator for image denoising, and 7 is additive noise. For simplicity, we assume
that the underlying image has square domains and adopt the vector notation for image,
where the pixels on an 1 x n image are stacked into an n2-vector, e.g., lexicographic order.
Thus our discussed space can be fixed as R”. Given f and K, the TVL2 model for image
restoration is

min%HKu—fH%-l—ﬁTV(u), (2.2)

with B being a regularization parameter that reflects the noisy level. The discrete total
variation norm of u has two forms: one is the isotropic TV norm given by

nz
TVi(u)=)_|Diul)>, (2.3)
i=1

where D;u € R? denotes the discrete gradient of f at pixel i; the other is the anisotropic
TV norm given by

TVa(u)=)_[IDjul;. (24)
i=1
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Let D) e R™ X”Q, (j=1,2) be the first order finite difference matrices in the horizontal and

vertical directions, respectively. Then D; € R" " is a two-row matrix formed by stacking
the i-th rows of D(*) and D®), We stack DY) and D into a matrix as

B=(pW',p@")" 2 (D), p@).

In order to describe the TV norm as a composition of a convex function with a linear
transformation, we define two functions as follows. ¢ ‘R2” 3R as

n?

pr(x) =} Il ez ) s (2.5)
i=1
and ¢» :R>” SR as
Pa(x):=)_lIx[a. (2.6)
i=1

Then we have TV;(u) =11 (Bu) and TV, (1) = ¢po(Bu). With these preparations, we write
the TVL2 model for image restoration in a general form:

min%(Au,w —(g,u)+¢(Bu), (2.7)

with A=KTK+al, g=KT f and ¢(-) a convex function. This framework has been used by
J. E. Aujol in [17] for studying the Bermtidez-Moreno algorithm. We start our discussion
with such a framework since many image processing problems can be formulated into
it, and at the same time, it is convenient to build the connection between the Bermtudez-
Moreno algorithm and the FP?O algorithm. Here and from now on, we assumed that
the matrix A is symmetric positive definite and hence the objective function in (2.7) is
strongly convex. Though in practice the matrix A is not in such a case, we can make
up it by adding a square term al|u||? in the TVL2 model which has little effect on the
objective function as the parameter a tends to zero. If we choose the matrix A = I, then
the TVL2 model becomes the TV denoising model and the problem (2.7) is equivalent
to computing the proximity point of the degraded image f; this has been studied by C.
A. Micchelli in [11]. The difference here is that we assume the matrix to be symmetric
positive definite which will cover more applications in image processing. Except this, we
extend the framework to a more complicated case; that is

min%<Au,u)—(g,u)—l—qol(Bu)—l—qoz(Wu), (2.8)

where ¢;(-), i=1,2, are two convex functions and W is some wavelet frame [20]. Many
image processing models can be written as the form of (2.8). For example, the TVL1T2
model whose objective function is

1
> |Ku— I3+ 1TV (1) + pio || Wue ||y
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is a case of choosing ¢;(-), i=1,2 to be the total variation norm and the 1-norm respec-
tively. This model also arises in the magnetic resonance (MR) image reconstruction prob-
lem [21] in which wavelet analysis with TV performs better than the case of that with
a single regularized term. Up to now, there are a few algorithms for dealing with this
model [6,22,23]. S. Becker in [24] even pointed out that there might be no first-order
algorithms that can deal with complicated objectives like f(u) =TV (u)+||Wul|; for a
non-diagonal and non-orthogonal W before their paper. In the paper, we will show that
we can design first-order algorithms for such a complicated composite objective under
the proximity point framework. Additionally, we will make comparisons with the split
Bregman algorithm to illustrate our proposed algorithm performs better.

3 Proposed method under the proximity operator framework

3.1 Proximity operator

The foundational theory of proximity operators was introduced by Moreau [25] in 1962.
Recently, P. Combettes et al. [26-28] developed a series of theory on proximity operators
and applied them to signal recovery problems. Let H be a real Hilbert space with inner
product (-|-) and a corresponding norm ||-||, and I'o(#) be a class of lower semicontin-
uous, convex, and proper functions from # to (—oo,+o0]. The proximity operator of a
function f € To(H) is the operator proxs:H — H which maps every x € H to the unique
minimizer of the function f+||x—-|?/2, i.e., for Vxe H,

. : 1, 0
proxfx.—argr;;ggf(y)Jrzllx yl® (3.1)

We will calculate the proximity operators i; and ¥,. From their expression, it is suf-
ficient to present two examples; they are one-dimensional function f; =||-||; and two-
dimensional function f>(x,y) = \/x>+y? whose proximity is given by

1 .
proxi g x:=max (HxH1 — X'()) sign(x), (3.2a)
1 u
prox;fzu.:max(Hqu—X,O)m. (3.2b)

Another important concept is the subdifferential of a convex function defined as follows:

Definition 3.1 (see [29]). Let f:H — R be a convex function. A variable v is a subgradient
of fatuec™H if

f(x)>f(u)+{v,x—u), VxeH.

The set of all subgradients of f at u € H is called the subdifferential of f at u € H, denoted
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In the paper, we need the following result that characterizes the relationship between
the proximity operator and the subdifferential of a convex function.

Lemma 3.1 (see [12]). If ¢ is a convex function on H and u € H, then v € d,(u) if and only if
u=prox,(u+v).

From the lemma above, every element v, namely a subgradient in the subdifferential
@ at point u, can be formulated into an equation by the proximity point operator at u+v.
Such a property will play a central role in our algorithm designing. Also because of the
relationship between the proximity operator and the subdifferential of a convex function,
we call our work the proximity point operator framework.

3.2 Fixed point formulation for TVL2 model

Since the objective function in (2.7) has been assumed to be strictly convex, the unique
solution can be characterized by

OGAu—g-I-)\BToa%gooB(u), (3.3)

which is a necessary and sufficient condition for a variable to be a solution of (2.7), where
A >0 is a parameter for convergence analysis. We have observed that every element in
the subdifferential ¢/A at point Bu can be characterized. If we introduced a variable v
belong to the subdifferential ¢ /A at point Bu to satisfy the condition (3.3), and then we
can describe that condition as two equations, given by

0=Au—g+ABTy, (3.4a)
Bu:prox%q)(Bu—i—v). (3.4b)

We have assumed that the matrix A is symmetric positive definite and hence invertible,
so u=A"1(g—ABTv). Replacing the expression of u into the other equation above, we
get

BA_l(g—ABTv):prox%gy(BA_l(g—ABTv)—i-v). (3.5)

It follows that
v+BA 1(¢g—ABTv) =0v+proxy, (BA™Y(g—ABTv)+0). (3.6)
We introduce the affine transformation L:R2"* — R2"’ given by
Lv:=BA '¢+(I-ABA"'BT)y, (3.7)
and the operator S R2¥ IR”Z,

S:= (I—prox%q))oL. (3.8)
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Then we can write the Eq. (3.6) as v = Sv. With these discussions, we conclude that the
necessary and sufficient condition for a variable to be a solution of (2.7) can reduce to

v=_Sv, (3.9a)
u=A"1(g—ABT0). (3.9b)

If we can obtain a fixed point of the operator S, then the minimizer of (2.7) can be got at
once. In the next section, we will design an iteration algorithm to generate a minimizer
based on the above equations.

3.3 Fixed point formulation for TVL1L2 model

Following the thought of the deriving the fixed point formulation for TVL2 model, we
derive a similar formulation for the TVL1L2 model in this subsection. At first, we define
some operators as follows. Affine transformations L; :R3” — R?" defined as

Lio(vy;v0):=BA g+ [I-ABA'BT —ABA™'WT](vy;00), (3.10)
and L,: R3” 5 R™ as
Lyo(vy;v0):=WA g+ [I-AWA BT _AWA T WT](vy;0,), (3.11)

where v; € IRZ”Z, Uy € R"™. We define composition operators S; R3" ]RZ”Z,

Si:= (I—prox%%)oLl, (3.12)

and S,:R¥ R,
Syi= (I—prox%(Pz)oLz, (3.13)

and $:R3” 5 R3,
So(v1;02) 1= (S10(v1;02);520(v1;02)), (3.14)

where we let a = (aj;a,) = (al,az)T, v=(vy;00) 2 (vlT,va)T, A= (A;A) 2 (AlT,AZT)T for
scalars a;, vectors v; and matrices A; for appropriate sizes. We formulate our conclusion
into the following proposition for the TVL1L2 model.

Proposition 3.1. Let A be a positive number, then u = A~1(g—ABTv; —AWT0,) is the
unique solution of (2.8) if and only if (v1;v;) is a fixed point of S.

Proof. Note that the objective function of (2.8) is strictly convex, we derive a necessary
and sufficient condition for a variable to be the solution of (2.8), that is

0c Au—g+BTodgi0B(u)+WTodgroW (u). (3.15)
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Thus there exist subgradients v1 €9y, /3 0B (1) and v2 €9, /oW (u) such that the solution

u=A"1(g—ABTv; —AWT0,) to be the unique solution of (2.8). By Lemma 3.1, we have
that

Bu:prox%q)l(vl—l—Bu), (3.16a)
Wu=proxy,, (v2+Wu). (3.16b)

Utilizing the operators defined above together with the expression of u, we get

v1+Bu=1Lq0(v1;02), (3.17a)
vy +Wu=1Lyo(v1;07). (3.17b)

Therefore, it follows that
Lio(vl;vz):vi—l—prox%(pioLio(vl;vz), i:1,2. (318)

i.e., Sjo(v1;02) =v;, i =1,2. We finally get So(vy;v2) = (v1;v2). Now, we can write the
necessary and sufficient condition (3.15) as the following equations:

u=A"1(g—ABTv; —AWTv,), (3.19a)
(7)1;02)290<7)1;7)2), (319b)
which concludes the proposition. O

4 Iterative algorithms based on fixed point formulations

4.1 Iterative algorithms for the TVL2 and TVL1L2 models

In this subsection, we will firstly introduce concepts such as the Picard sequence and
k-averaged operator. Then with these tools we will construct iterative algorithms to com-
pute fixed points of the operator S and S.

For a given ¢° € R"” and an operator P: R" — R"”, we define v"!:= P(v"). The
sequence {v"} is called the Picard sequence of the operator P. For any « € (0,1), the
x-averaged operator Py of P is defined by

Pe:=xI+(1—x)P. 4.1)

Since
Sv=(I—prox1,) (BA™(g—AB"v)+0), (4.2)

if we let u™ = A~!(g—ABTv™), then the Picard sequence of the x-averaged operator Sy is
given by
vm“:Kvm—i—(l—;c)(l—prox]ﬂ))(Bum—l—vm). (4.3)
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In the following Section we will prove that the Picard sequence {v" } converges to a fixed
point of S and hence conclude that {u™} converges to the solution of (2.7) or the TVL2
model. We list the completion iterative algorithm as follows:

m_ A—1(Hy__ T,,m
{ u"=A"1(g—ABTo™), a9

" =0+ (1—x) (I—prox%q)) (Bu™+o™).
Similarly, we derive the following iterative algorithm for TVL1L2 model:

u"=A"Yg—ABTol —AWTol),
vlm+1:;cv’1”—|—(1—1c)(I—prox%q)l)(Bum—i—v’fz), (4.5)
0"l =k + (1—x) (I—prox%q)z) (Wu™+0l).

At the end of this part, we follow notations of [30] and give a fast algorithm for computing
u™ in (4.4). Let o™ = (w},;w}y') with w" € R",i=1,2, then u™ = A~Y(¢g—ABTu™) can be
written as

(KTK+al)u" =KTf—ADM @ —AD® 1, (4.6)

where « is a regularization parameter discussed before. Under the periodic boundary
condition, KTK is block circulation. Therefore, the matrix on the left-hand side of (4.6) can
be diagonalized by two-dimensional discrete Fourier transform F. Using the convolution
theorem of Fourier transform, we get

F(K)*F(f) =AF(DD) o F(w!) —AF(DP) o F(w)

w7 eI+ F(K) o F(K)

) 2 F1(wM). (47)
where ”+” denotes complex conjugate, “o” denotes component-wise multiplication, and
the division is component-wise as well. For more details please refer to [30]. The method
can also be applied to scheme (4.5) for fast algorithm.

4.2 The relationship with other algorithms

Bermtdez and Moreno derived their results for solving variational inequalities by the
Yosida approximation of the subdifferential of ¢ in 1981. Recently, J. F. Aujol [17] used
their results to deal with the TV related problems, such as the TV denoising, smoothed
TV-based image restoration, and get a class of iterative algorithms. He also discovered
that the Chambolle’s projection algorithm can be viewed as a particular instance of his
proposed algorithm. In Aujol’s paper, numerous numerical examples show that such iter-
ative algorithms are comparable with a general class of algorithm introduced by Nestorv.
Recently, C. A. Micchelli proposed a proximity point algorithm for TV denoising named
FP20 which also includes the Chambolle’s projection algorithm as a special case of it. We
have found that both of them can be viewed as generation of the Chambolle’s projection
algorithm but from different points of view. The FP?O algorithm is based on the Picard
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iteration, and the Bermtdez-Moreno algorithm is to extend the operator A from identity
operator to symmetric positive operator. Since we consider these two points, in some
degree our algorithms are a more generation for both of the FP?0O and the Bermudez-
Moreno algorithms.

Now, let us firstly show that the Bermtidez-Moreno algorithm is the particular case of
scheme (4.4) when x =0. Denote

1 -1

then the Bermtdez-Moreno iterative scheme is
X = AN (g ABTy"),

1 (4.8)
m+1 __ m_y —m
y"+ 1 =Hy (Bx oy ).

Lety™/u=0v", x™=u", then the Bermtdez-Moreno iterative scheme can be written equiv-

alently as
m:A—l —)\BT m ,

0" = (I—L,)(Bu™+ov™).
The remainder is to show that L, = prox,,,. Indeed, for any convex function ¢, its prox-

imity point u at any fixed point v is equal to the minimizer of ||x—v||> /2+¢(x)/A. Since
such objective function is strictly convex, we conclude that

o{Lis-stt s koo -0

ie.,

1
u—v+ Xaq,(u) =0.

It follows that
1

u= <I—|—%H) (v)=Ly(v),

which validates the equality of the operators L, and prox,,,. Furthermore,
e If we choose k=0 and A =1 in the scheme (4.4), or choose A =1 in the Bermudez-
Moreno scheme, then we get the Jia-Zhao denoising algorithm.

e If we only choose A =1 in the scheme (4.4), then the scheme (4.4) reduces to the
FP20 algorithm.

e If we only choose k¥ =0 in the scheme (4.4), then the scheme (4.4) reduces to the
Bermudez-Moreno algorithm.
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Since the connection among the split Bregman algorithm, the Jia-Zhao denoising algo-
rithm, and the FP20 algorithm has been discussed in several papers [11, 18,31], we do
not repeat it here. But we have determined in the introduction to compare our algorithms
with the split Bregman algorithm. To this end, we recall that the split Bregman algorithm
applied to the TVL2 and TVL1L2 models which have the following forms respectively:

u™ ! =argmin,, ||[Ku— f||3+A||Bu—d"™ +b" |3,
d"*tl =argming¢(d) + % | Bu™*1—d+b™"|3, (4.10)
b =p" 4 (Bt —dmtl),

and

w1 =argmin,||[Ku— f|[3+A[| Bu—d"™ +b]" |3+ A Bu—w" +b3'|3,

d"*tl =argming ¢ (d) + % [Bu ! —d+ b3,

A
me=argmian)z(w)+5||Wum+1—w+b2m|\§, (4.11)

by = (Bumt g,
by = byt (W — gt

\

5 Convergence analysis

The following lemma plays a central role in our convergence analysis.

Lemma 5.1 (Opial x-averaged property [19]). If C is a closed and convex set in R" and
P:C — C has at least one fixed point and is a nonexpansive mapping, i.e., for any x,y it holds that
|IP(x)—P(y)|l2 <||[x—yl|2; then for x € (0,1), P, is nonexpansive, maps C to itself, and has the
same set of the fixed points as P. Furthermore, for any u € C and x € (0,1), the Picard sequence of
Py converges to a fixed point of P.

Under some assumptions, we shall show that both of S and S fulfill the conditions
required by Lemma 5.1 which can guarantee the schemes (4.4) and (4.5) converge to the
fixed point of S and S respectively. The existence of the fixed point of our discussed
operators is a direct result of the existence of solution to the strictly convex problems. If
we can construct a closed and convex set containing at least one fixed point of S or S, and
at the same time this set is the range of the operators, then we validate the first condition.
Therefore, we only need to discuss under what assumptions the nonexpansive condition
can be satisfied. As a guidance, we list the main points we will talk about.

e Determining an upper bound for the parameter A and showing under such an up-
per bound the operators S and S must be nonexpansive.

e Constructing a closed and convex set in which at least one fixed point of the opera-
tors lies, and at the same time this set is the range of the operators.
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Proposition 5.1. If ¢ is a convex function, and A is a positive number such that ||I—
ABA~1BT|,<1, where ||-||2 is the spectral norm and represents the biggest eigenvalue of
some matrix, then S is nonexpansive.

The proof of proposition above is similar to Lemma 3.3 in [11]. We do not repeat their
arguments here. From practical point of view, the parameter A is not easy to be deter-
mined by the above conclusion. The following corollary would be a good complemen-
tarity for such a drawback since it only depends on the regularization and the spectral
norm of BBT whose eigenvalues have been determined in [11].

Corollary 5.1. If ¢ is a convex function, A is a positive number such that A <2a/|BBT||2, then
S is nonexpansive.

Proof. Since DM, D@ KTK —Hxl can be diagonalized by two-dimensional discrete Fourier
transform, it follows that D A-1=A-1D() ;=12 Thus

BA7'=(DW; DA™ =diag(A~',A"")B.
Therefore,

|I—ABA'BT||,=||I—-Adiag(A~*,A~1)BBT||»
MN—1, if 1T=AA <AAN—1,
_{ N 1 1 N (5.1)

1—AA;, otherwise,

where A1, Ay are the smallest and the biggest eigenvalues of diag(A~!,A~1)BBT respec-
tively. In the first case,

My —1=Al||diag(A~,A"1)BBT||,—1
<A|diag(A™!,A7Y)|l2|[BBT |21
<Aa~YBBT|,—1. (5.2)

The last inequality is valid because of that |diag(A~1,A~Y)|2=||A" Y2 and ||A~ |2 =
H(KTK—i—le)le <a~!. By the condition A <2a/||BBT||5, we conclude that AAy—1<1
which implies || [-ABA~!BT||,<1, so S is nonexpansive by Proposition 5.1. In the second
case, |[[-ABA~1BT|;=1-AA;<1always holds since A\ is a positive number. Therefore,
A <2a/||BBT||, is sufficient to guarantee S to be nonexpansive. O

Before deducing similar results for operator S, we denote

(5.3)

y_ (I-ABATIBT  —ABAT'WT
“\ —AWAIBT [-AWA-IWT )

Lemma 5.2 (see [11]). If ¢ is a convex function, then operator I —prox,,, is nonexpansive.
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Proposition 5.2. If ¢;, i=1,2 are convex functions, and A is a positive number such that
|Y]|2<1, then the operator S is nonexpansive.

Proof. Since for any u; € ]RZ”Z, i=1,2and v; € IR”Z, i=1,2, we derive that

2
‘ So(ul> S_O <vl>
Uy (%]

2

(I—prox%%) oLyo(ur;uz) — (I—proxy, )oLio(vi;02)
(I—prox%(Pz)oLzo(ul;uz)—(I—prox oLyo(v1;v0)

2

>

»)

2
:Z-_Zl;zH (I—prox%q)i) oL;o(uy;up)— (I—proxlﬂ)i) OL:‘O<7)1;02)H2

Lyo(uq;uz)—Lyo(v1;02) 2
1 1,42)— L1 1,02
< ¥ o) Lio(onsen) [3= | (1o ute) ~p1otenen))

i=1,2
[Z5] 01
us 02

() ()
Uz 02
where the second and the third equations are based on the Pythagorean identity and the
first inequality on Lemma 5.2. Therefore, we conclude that if A is a positive number such
that ||Y||2 <1, then the operator S is nonexpansive. O
Note that

BA™! BA7'\ (BT 0
Y_I_)‘<WA1 WA1><0 WT>

_I_A<diag(A1,A1)B diag(Al,Al)B> <BT 0 )

2

2
’ (54)

2
<II¥lz
2 2

ATIW ATIW 0 WrT

o aai a1 a1 4-1n(B BY(BT 0
=I—Adiag(A=" A= ,A™") (W wllo wr
=I1—Adiag(A~',A"1,A"1BBT, (5.5)

where B=(B;W). We have to mention that in (5.5) we have assumed WA~1=A~1W. This
equality is not always valid for general wavelet frame except in some special cases such
as W is a convolution operator. Repeating the arguments in the proof of Corollary 5.1,
we get the following corollary for operator S.

Corollary 5.2. If ¢ is a convex function and the frame W is a convolution operator, A is a positive
number such that A <2/ ||BBT ||, with B= (B;W), then § is nonexpansive.

We construct a closed and convex set for Lipschitz continuous convex function ¢; that
is
. 2n? i
Cp:={z:2€R™, ||z|a<Lip,/A}, (5.6)
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where Lip, is the Lipschitz constant of ¢, given by the smallest constant L such that
|@(u)—¢@(v)| < L|ju—0l2. For Lipschitz continuous convex functions @1, ¢2, we define
Ci2:=Cy, X Cy,, where ”x” is the Descartes production. By the Tychonov theorem, C; »
is a compact and hence closed set since it lies in a finite dimensional space. The convexity
is obvious by the definition of convex set.

Proposition 5.3. If ¢ is a Lipschitz continuous convex function, then S maps R2" into
Cop.
¢

Proposition 5.4. If ¢1, ¢, are Lipschitz continuous convex functions, then S maps RR3"*
into Cl,Z-

The validity of propositions 5.3 and 5.4 depends on an inclusion: (I—prox,/,)v€C,y
for any variable v in the defined domain, since both S and S are compositions of an affine
transform and the operator (I—prox,,,). The inclusion has been shown in [11], so we do
not prove Propositions 5.3 and 5.4 at length. But here we would like to emphasize a fact
that C, and Cy» are exactly the sets we want since they are the range of operator S and
S respectively and each of them contains at least one fixed point. At last, we have the
following results as direct consequences of Lemma 3.1:

Proposition 5.5. If ¢ is a Lipschitz continuous convex function, 0 <x <1, and A is a
positive number such that ||[[—ABA~!BT||,<1or A<2a/||BBT||,, then {u"} and {v"} in
the scheme (4.4) converge to the solution of (2.7) and the fixed point of S.

Proposition 5.6. If @1, ¢, are Lipschitz continuous convex functions, 0 <x <1, and A is a
positive number such that ||Y||> <1, then {#} and {v"} in the scheme (4.5) converge to
the solution of (2.8) and the fixed point of S.

J. F. Aujol in [17] has shown the convergence under the assumption A <2a/||BBT ||, for
the Bermtidez-Moreno algorithm; this is just the case x =0 of the scheme (4.4). Together
with their result, we get a more complete convergent result for the scheme (4.4).

Proposition 5.7. If ¢ is a Lipschitz continuous convex function, 0 <x <1, and A is a posi-
tive number such that A <2a/||BBT||,, then {u™} and {v"} in the scheme (4.4) converge
to the solution of (2.7) and the fixed point of S.

Notice that the conditions in Proposition 5.5 are different from those in Proposi-
tion 5.7. In the former proposition, the interval of x excludes the case k=0 corresponding
to the Bermtidez-Moreno scheme; in the later one, though it includes such a special case,
the upper bound of A has been tighten.

6 Numerical experiments

In this section, we report some numerical experiments with the proposed first-order al-
gorithms, and compare the computational performance of our algorithms with that of the
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Figure 1: The classical Lena and Cameraman images with sizes 256 x 256.

split Bregman algorithm, which is one of the best algorithms for solving TV-based vari-
ation models at present. All the experiments were performed using MATLAB (version
7.01), on a computer equipped with an Intel Pentium-IV 3.0GHz processor, with 512MB
of RAM, and running Windows XP.

We used two images of Cameraman and Lena with sizes 256 x 256 as the original
images for our experiments to illustrate our study. These images are shown in Fig. 1. The
observed images are modeled as

f=Ku+n,1~N(0,0?), 6.1)

with N(0,0%) being Gaussian noise, and K represents a blurring or convolution operator.
We consider five benchmark deblurring problems [32] to test the scheme (4.4), summa-
rized in Table 1. We only use experiment 1 to test the scheme (4.5) because our aim is to
show the proposed first-order algorithm can deal with the complicated TVL1L2 model
and performs better than the split Bregman method. We choose the Haar wavelet with
level 2 as wavelet analysis. The quality of restoration images i obtained from algorithms
is evaluated by the signal-to-noise ratio

SNR:lelog{ =2l

p 6.2
=) 62

Table 1: Details of the images restoration experiments.

Experiments Operator K o?
1 9 x 9 uniform 0.562

2A Gaussian 2

2B Gaussian 8

3A hij=1/(1+2+/) 2

3B hij=1/(1+2+7) 8
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Table 2: Numerical results for Lena image, the pair (-,-) is used to report both the SNR value (the first number)
and the number of CPU time (seconds) (the second number).

Experiments  1(=0.08) 2A(p=0.50) 2B(f=2.00) 3A(B=0.10) 3B(p=0.60)
Scheme (4.10) (13.76,8.98) (25.36,15.66) (15.56,18.05) (15.60,10.17) (11.74,14.33)
Scheme (4.4) (13.90,6.63) (25.44,12.30) (15.80,12.33) (15.65,7.59) (11.78,10.59)

Table 3: Numerical results for Cameraman image, the pair (-,-) is used to report both the SNR value (the first
number) and the number of CPU time (seconds) (the second number).

Experiments  1(8=0.06) 2A(B=0.40) 2B(=2.00) 3A(B=0.08) 3B(B=0.80)
Scheme (4.10) (15.16,13.10) (27.41,15.80) (17.71,17.50) (15.39,10.45) (12.22,14.48)
Scheme (4.4)  (15.44,832) (27.46,11.30) (17.74,12.25) (15.69,7.01) (12.24,11.02)

where i represents the mean of restored image. Since isotropic total variation model
always perform better than anisotropic total variation model, we adopt isotropic total
variation in experiments, but the results are similar for anisotropic total variation model.
Therefore, we choose ¢(-) = By (-) with B being a regularization parameter in schemes
(44) and (4.10), and @1 (-) =B191(+), @2(-) = B2y (-) with By, B2 being regularization pa-
rameters in schemes (4.5) and (4.11). We tune these parameters in each case for best
improvement in SNR, so that the comparison is carried out in the regime that is relevant
in practice. We fixed x =0.0001, « =0.002 and A =0.0005 (i.e., A =«/4) by Corollary 5.1
and discussion in the convergence analysis.

Since our proposed algorithms are computing a fixed point of Picard iteration se-
quence, we stop the algorithms when the iteration sequence has little change. Therefore,
for the scheme (4.4) iterations are terminated when the following condition is satisfied
va+1 _vaZ

EREE <TOL, (6.3)
where TOL denotes a prescribed tolerance value. For the split Bregman algorithm, i.e.,
scheme (4.10), we terminated the iterations when the iteration sequence {b™ } satisfies

Hbm—i—l_bmHz

In our experiments, we set TOL=0.005. For schemes (4.5) and (4.11), similar stopping
criterions were used. Our results for comparisons between schemes (4.4) and (4.10) are
reported in Table 2, Table 3 and Fig. 2. From there, one can see that the new scheme
cost less time but get higher SNR than that of scheme (4.10). Fig. 3 shows the results of
schemes (4.5) and (4.11) that illustrates the new schemes perform better than the split
Bregman method.
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Figure 2: Image restoration results for comparisons between the scheme (4.4) and the split Bregman method.
(top): Degraded images (convolved with a hl-jzl/(l—i—iz—i—jz) kernel, and then degraded by a zero mean

Gaussian noise with derivation o =8); (middle): Restored images by the scheme (4.4); (bottom): Restored
images by the scheme (4.10).

7 Conclusions

In this paper, we propose new first-order schemes for total variation (TV) model and also
for wavelet analysis with TV model. Under the proximity point operator framework,
these schemes are natural generations of the proximity point algorithm for total variation
denoising. We firstly derive fixed point formulations for the models, and then design new
first-order algorithms by introducing the Picard sequence. We proved the convergence
of the new algorithms based on the Opial x-averaged theorem. Moreover, a series of
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Figure 3: Image restoration results for comparisons between the scheme (4.5) and the split Bregman method
with B;=p,=0.04. (top): Degraded images (convolved with a 9x9 uniform kernel, and then degraded by a zero

mean Gaussian noise with derivation ¢=0.56%); (middle): Restored images by the scheme (4.5); (middle left):
SNR=15.39dB, time=31.37s; (middle right): SNR=15.83dB, time=34.61s; (bottom): Restored images by the
scheme (4.11); (bottom left): SNR=15.16dB, time=33.64s; (bottom right): SNR=15.56dB, time=39.08s.

connection among current algorithms, such as Chambolle’s projection algorithm, the split
Bregman algorithm, the Bermudez-Morenoalgorithm, the Jia-Zhao denoising algorithm,
and the fixed point algorithm, have been discovered; all of them are famous because
either of their history or efficiency. At last, we make comparisons with the split Bregman
algorithm which is one of the best algorithms for solving TV-based variation models at
present. Numerical experiments illustrate that the proposed algorithms perform better
than the split Bregman algorithm.
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